numam-dpdk/app/test/test_security_inline_proto.c
Volodymyr Fialko 1086465695 test/security: add event inline IPsec cases
Enable ability to run inline security tests using event
API(rte_event_eth_tx_adapter_enqueue/rte_event_dequeue_burst).
New test command - event_inline_ipsec_autotest will run same list of
test cases as inline_ipsec_autotest, but packets will go through eventdev.

Signed-off-by: Volodymyr Fialko <vfialko@marvell.com>
Acked-by: Anoob Joseph <anoobj@marvell.com>
Acked-by: Akhil Goyal <gakhil@marvell.com>
2022-06-28 10:24:41 +02:00

2746 lines
74 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2022 Marvell.
*/
#include <stdio.h>
#include <inttypes.h>
#include <rte_ethdev.h>
#include <rte_malloc.h>
#include <rte_security.h>
#include "test.h"
#include "test_security_inline_proto_vectors.h"
#ifdef RTE_EXEC_ENV_WINDOWS
static int
test_inline_ipsec(void)
{
printf("Inline ipsec not supported on Windows, skipping test\n");
return TEST_SKIPPED;
}
static int
test_event_inline_ipsec(void)
{
printf("Event inline ipsec not supported on Windows, skipping test\n");
return TEST_SKIPPED;
}
#else
#include <rte_eventdev.h>
#include <rte_event_eth_rx_adapter.h>
#include <rte_event_eth_tx_adapter.h>
#define NB_ETHPORTS_USED 1
#define MEMPOOL_CACHE_SIZE 32
#define MAX_PKT_BURST 32
#define RTE_TEST_RX_DESC_DEFAULT 1024
#define RTE_TEST_TX_DESC_DEFAULT 1024
#define RTE_PORT_ALL (~(uint16_t)0x0)
#define RX_PTHRESH 8 /**< Default values of RX prefetch threshold reg. */
#define RX_HTHRESH 8 /**< Default values of RX host threshold reg. */
#define RX_WTHRESH 0 /**< Default values of RX write-back threshold reg. */
#define TX_PTHRESH 32 /**< Default values of TX prefetch threshold reg. */
#define TX_HTHRESH 0 /**< Default values of TX host threshold reg. */
#define TX_WTHRESH 0 /**< Default values of TX write-back threshold reg. */
#define MAX_TRAFFIC_BURST 2048
#define NB_MBUF 10240
#define ENCAP_DECAP_BURST_SZ 33
#define APP_REASS_TIMEOUT 10
extern struct ipsec_test_data pkt_aes_128_gcm;
extern struct ipsec_test_data pkt_aes_192_gcm;
extern struct ipsec_test_data pkt_aes_256_gcm;
extern struct ipsec_test_data pkt_aes_128_gcm_frag;
extern struct ipsec_test_data pkt_aes_128_cbc_null;
extern struct ipsec_test_data pkt_null_aes_xcbc;
extern struct ipsec_test_data pkt_aes_128_cbc_hmac_sha384;
extern struct ipsec_test_data pkt_aes_128_cbc_hmac_sha512;
static struct rte_mempool *mbufpool;
static struct rte_mempool *sess_pool;
static struct rte_mempool *sess_priv_pool;
/* ethernet addresses of ports */
static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
static struct rte_eth_conf port_conf = {
.rxmode = {
.mq_mode = RTE_ETH_MQ_RX_NONE,
.split_hdr_size = 0,
.offloads = RTE_ETH_RX_OFFLOAD_CHECKSUM |
RTE_ETH_RX_OFFLOAD_SECURITY,
},
.txmode = {
.mq_mode = RTE_ETH_MQ_TX_NONE,
.offloads = RTE_ETH_TX_OFFLOAD_SECURITY |
RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE,
},
.lpbk_mode = 1, /* enable loopback */
};
static struct rte_eth_rxconf rx_conf = {
.rx_thresh = {
.pthresh = RX_PTHRESH,
.hthresh = RX_HTHRESH,
.wthresh = RX_WTHRESH,
},
.rx_free_thresh = 32,
};
static struct rte_eth_txconf tx_conf = {
.tx_thresh = {
.pthresh = TX_PTHRESH,
.hthresh = TX_HTHRESH,
.wthresh = TX_WTHRESH,
},
.tx_free_thresh = 32, /* Use PMD default values */
.tx_rs_thresh = 32, /* Use PMD default values */
};
static uint16_t port_id;
static uint8_t eventdev_id;
static uint8_t rx_adapter_id;
static uint8_t tx_adapter_id;
static bool event_mode_enabled;
static uint64_t link_mbps;
static int ip_reassembly_dynfield_offset = -1;
static struct rte_flow *default_flow[RTE_MAX_ETHPORTS];
/* Create Inline IPsec session */
static int
create_inline_ipsec_session(struct ipsec_test_data *sa, uint16_t portid,
struct rte_security_session **sess, struct rte_security_ctx **ctx,
uint32_t *ol_flags, const struct ipsec_test_flags *flags,
struct rte_security_session_conf *sess_conf)
{
uint16_t src_v6[8] = {0x2607, 0xf8b0, 0x400c, 0x0c03, 0x0000, 0x0000,
0x0000, 0x001a};
uint16_t dst_v6[8] = {0x2001, 0x0470, 0xe5bf, 0xdead, 0x4957, 0x2174,
0xe82c, 0x4887};
uint32_t src_v4 = rte_cpu_to_be_32(RTE_IPV4(192, 168, 1, 2));
uint32_t dst_v4 = rte_cpu_to_be_32(RTE_IPV4(192, 168, 1, 1));
struct rte_security_capability_idx sec_cap_idx;
const struct rte_security_capability *sec_cap;
enum rte_security_ipsec_sa_direction dir;
struct rte_security_ctx *sec_ctx;
uint32_t verify;
sess_conf->action_type = RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL;
sess_conf->protocol = RTE_SECURITY_PROTOCOL_IPSEC;
sess_conf->ipsec = sa->ipsec_xform;
dir = sa->ipsec_xform.direction;
verify = flags->tunnel_hdr_verify;
if ((dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) && verify) {
if (verify == RTE_SECURITY_IPSEC_TUNNEL_VERIFY_SRC_DST_ADDR)
src_v4 += 1;
else if (verify == RTE_SECURITY_IPSEC_TUNNEL_VERIFY_DST_ADDR)
dst_v4 += 1;
}
if (sa->ipsec_xform.mode == RTE_SECURITY_IPSEC_SA_MODE_TUNNEL) {
if (sa->ipsec_xform.tunnel.type ==
RTE_SECURITY_IPSEC_TUNNEL_IPV4) {
memcpy(&sess_conf->ipsec.tunnel.ipv4.src_ip, &src_v4,
sizeof(src_v4));
memcpy(&sess_conf->ipsec.tunnel.ipv4.dst_ip, &dst_v4,
sizeof(dst_v4));
if (flags->df == TEST_IPSEC_SET_DF_0_INNER_1)
sess_conf->ipsec.tunnel.ipv4.df = 0;
if (flags->df == TEST_IPSEC_SET_DF_1_INNER_0)
sess_conf->ipsec.tunnel.ipv4.df = 1;
if (flags->dscp == TEST_IPSEC_SET_DSCP_0_INNER_1)
sess_conf->ipsec.tunnel.ipv4.dscp = 0;
if (flags->dscp == TEST_IPSEC_SET_DSCP_1_INNER_0)
sess_conf->ipsec.tunnel.ipv4.dscp =
TEST_IPSEC_DSCP_VAL;
} else {
if (flags->dscp == TEST_IPSEC_SET_DSCP_0_INNER_1)
sess_conf->ipsec.tunnel.ipv6.dscp = 0;
if (flags->dscp == TEST_IPSEC_SET_DSCP_1_INNER_0)
sess_conf->ipsec.tunnel.ipv6.dscp =
TEST_IPSEC_DSCP_VAL;
if (flags->flabel == TEST_IPSEC_SET_FLABEL_0_INNER_1)
sess_conf->ipsec.tunnel.ipv6.flabel = 0;
if (flags->flabel == TEST_IPSEC_SET_FLABEL_1_INNER_0)
sess_conf->ipsec.tunnel.ipv6.flabel =
TEST_IPSEC_FLABEL_VAL;
memcpy(&sess_conf->ipsec.tunnel.ipv6.src_addr, &src_v6,
sizeof(src_v6));
memcpy(&sess_conf->ipsec.tunnel.ipv6.dst_addr, &dst_v6,
sizeof(dst_v6));
}
}
/* Save SA as userdata for the security session. When
* the packet is received, this userdata will be
* retrieved using the metadata from the packet.
*
* The PMD is expected to set similar metadata for other
* operations, like rte_eth_event, which are tied to
* security session. In such cases, the userdata could
* be obtained to uniquely identify the security
* parameters denoted.
*/
sess_conf->userdata = (void *) sa;
sec_ctx = (struct rte_security_ctx *)rte_eth_dev_get_sec_ctx(portid);
if (sec_ctx == NULL) {
printf("Ethernet device doesn't support security features.\n");
return TEST_SKIPPED;
}
sec_cap_idx.action = RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL;
sec_cap_idx.protocol = RTE_SECURITY_PROTOCOL_IPSEC;
sec_cap_idx.ipsec.proto = sess_conf->ipsec.proto;
sec_cap_idx.ipsec.mode = sess_conf->ipsec.mode;
sec_cap_idx.ipsec.direction = sess_conf->ipsec.direction;
sec_cap = rte_security_capability_get(sec_ctx, &sec_cap_idx);
if (sec_cap == NULL) {
printf("No capabilities registered\n");
return TEST_SKIPPED;
}
if (sa->aead || sa->aes_gmac)
memcpy(&sess_conf->ipsec.salt, sa->salt.data,
RTE_MIN(sizeof(sess_conf->ipsec.salt), sa->salt.len));
/* Copy cipher session parameters */
if (sa->aead) {
rte_memcpy(sess_conf->crypto_xform, &sa->xform.aead,
sizeof(struct rte_crypto_sym_xform));
sess_conf->crypto_xform->aead.key.data = sa->key.data;
/* Verify crypto capabilities */
if (test_ipsec_crypto_caps_aead_verify(sec_cap,
sess_conf->crypto_xform) != 0) {
RTE_LOG(INFO, USER1,
"Crypto capabilities not supported\n");
return TEST_SKIPPED;
}
} else {
if (dir == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
rte_memcpy(&sess_conf->crypto_xform->cipher,
&sa->xform.chain.cipher.cipher,
sizeof(struct rte_crypto_cipher_xform));
rte_memcpy(&sess_conf->crypto_xform->next->auth,
&sa->xform.chain.auth.auth,
sizeof(struct rte_crypto_auth_xform));
sess_conf->crypto_xform->cipher.key.data =
sa->key.data;
sess_conf->crypto_xform->next->auth.key.data =
sa->auth_key.data;
/* Verify crypto capabilities */
if (test_ipsec_crypto_caps_cipher_verify(sec_cap,
sess_conf->crypto_xform) != 0) {
RTE_LOG(INFO, USER1,
"Cipher crypto capabilities not supported\n");
return TEST_SKIPPED;
}
if (test_ipsec_crypto_caps_auth_verify(sec_cap,
sess_conf->crypto_xform->next) != 0) {
RTE_LOG(INFO, USER1,
"Auth crypto capabilities not supported\n");
return TEST_SKIPPED;
}
} else {
rte_memcpy(&sess_conf->crypto_xform->next->cipher,
&sa->xform.chain.cipher.cipher,
sizeof(struct rte_crypto_cipher_xform));
rte_memcpy(&sess_conf->crypto_xform->auth,
&sa->xform.chain.auth.auth,
sizeof(struct rte_crypto_auth_xform));
sess_conf->crypto_xform->auth.key.data =
sa->auth_key.data;
sess_conf->crypto_xform->next->cipher.key.data =
sa->key.data;
/* Verify crypto capabilities */
if (test_ipsec_crypto_caps_cipher_verify(sec_cap,
sess_conf->crypto_xform->next) != 0) {
RTE_LOG(INFO, USER1,
"Cipher crypto capabilities not supported\n");
return TEST_SKIPPED;
}
if (test_ipsec_crypto_caps_auth_verify(sec_cap,
sess_conf->crypto_xform) != 0) {
RTE_LOG(INFO, USER1,
"Auth crypto capabilities not supported\n");
return TEST_SKIPPED;
}
}
}
if (test_ipsec_sec_caps_verify(&sess_conf->ipsec, sec_cap, false) != 0)
return TEST_SKIPPED;
if ((sa->ipsec_xform.direction ==
RTE_SECURITY_IPSEC_SA_DIR_EGRESS) &&
(sa->ipsec_xform.options.iv_gen_disable == 1)) {
/* Set env variable when IV generation is disabled */
char arr[128];
int len = 0, j = 0;
int iv_len = (sa->aead || sa->aes_gmac) ? 8 : 16;
for (; j < iv_len; j++)
len += snprintf(arr+len, sizeof(arr) - len,
"0x%x, ", sa->iv.data[j]);
setenv("ETH_SEC_IV_OVR", arr, 1);
}
*sess = rte_security_session_create(sec_ctx,
sess_conf, sess_pool, sess_priv_pool);
if (*sess == NULL) {
printf("SEC Session init failed.\n");
return TEST_FAILED;
}
*ol_flags = sec_cap->ol_flags;
*ctx = sec_ctx;
return 0;
}
/* Check the link status of all ports in up to 3s, and print them finally */
static void
check_all_ports_link_status(uint16_t port_num, uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 30 /* 3s (30 * 100ms) in total */
uint16_t portid;
uint8_t count, all_ports_up, print_flag = 0;
struct rte_eth_link link;
int ret;
char link_status[RTE_ETH_LINK_MAX_STR_LEN];
printf("Checking link statuses...\n");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
for (portid = 0; portid < port_num; portid++) {
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
ret = rte_eth_link_get_nowait(portid, &link);
if (ret < 0) {
all_ports_up = 0;
if (print_flag == 1)
printf("Port %u link get failed: %s\n",
portid, rte_strerror(-ret));
continue;
}
/* print link status if flag set */
if (print_flag == 1) {
if (link.link_status && link_mbps == 0)
link_mbps = link.link_speed;
rte_eth_link_to_str(link_status,
sizeof(link_status), &link);
printf("Port %d %s\n", portid, link_status);
continue;
}
/* clear all_ports_up flag if any link down */
if (link.link_status == RTE_ETH_LINK_DOWN) {
all_ports_up = 0;
break;
}
}
/* after finally printing all link status, get out */
if (print_flag == 1)
break;
if (all_ports_up == 0) {
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
/* set the print_flag if all ports up or timeout */
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1))
print_flag = 1;
}
}
static void
print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
printf("%s%s", name, buf);
}
static void
copy_buf_to_pkt_segs(const uint8_t *buf, unsigned int len,
struct rte_mbuf *pkt, unsigned int offset)
{
unsigned int copied = 0;
unsigned int copy_len;
struct rte_mbuf *seg;
void *seg_buf;
seg = pkt;
while (offset >= seg->data_len) {
offset -= seg->data_len;
seg = seg->next;
}
copy_len = seg->data_len - offset;
seg_buf = rte_pktmbuf_mtod_offset(seg, char *, offset);
while (len > copy_len) {
rte_memcpy(seg_buf, buf + copied, (size_t) copy_len);
len -= copy_len;
copied += copy_len;
seg = seg->next;
seg_buf = rte_pktmbuf_mtod(seg, void *);
}
rte_memcpy(seg_buf, buf + copied, (size_t) len);
}
static inline struct rte_mbuf *
init_packet(struct rte_mempool *mp, const uint8_t *data, unsigned int len)
{
struct rte_mbuf *pkt;
pkt = rte_pktmbuf_alloc(mp);
if (pkt == NULL)
return NULL;
if (((data[0] & 0xF0) >> 4) == IPVERSION) {
rte_memcpy(rte_pktmbuf_append(pkt, RTE_ETHER_HDR_LEN),
&dummy_ipv4_eth_hdr, RTE_ETHER_HDR_LEN);
pkt->l3_len = sizeof(struct rte_ipv4_hdr);
} else {
rte_memcpy(rte_pktmbuf_append(pkt, RTE_ETHER_HDR_LEN),
&dummy_ipv6_eth_hdr, RTE_ETHER_HDR_LEN);
pkt->l3_len = sizeof(struct rte_ipv6_hdr);
}
pkt->l2_len = RTE_ETHER_HDR_LEN;
if (pkt->buf_len > (len + RTE_ETHER_HDR_LEN))
rte_memcpy(rte_pktmbuf_append(pkt, len), data, len);
else
copy_buf_to_pkt_segs(data, len, pkt, RTE_ETHER_HDR_LEN);
return pkt;
}
static int
init_mempools(unsigned int nb_mbuf)
{
struct rte_security_ctx *sec_ctx;
uint16_t nb_sess = 512;
uint32_t sess_sz;
char s[64];
if (mbufpool == NULL) {
snprintf(s, sizeof(s), "mbuf_pool");
mbufpool = rte_pktmbuf_pool_create(s, nb_mbuf,
MEMPOOL_CACHE_SIZE, 0,
RTE_MBUF_DEFAULT_BUF_SIZE, SOCKET_ID_ANY);
if (mbufpool == NULL) {
printf("Cannot init mbuf pool\n");
return TEST_FAILED;
}
printf("Allocated mbuf pool\n");
}
sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
if (sec_ctx == NULL) {
printf("Device does not support Security ctx\n");
return TEST_SKIPPED;
}
sess_sz = rte_security_session_get_size(sec_ctx);
if (sess_pool == NULL) {
snprintf(s, sizeof(s), "sess_pool");
sess_pool = rte_mempool_create(s, nb_sess, sess_sz,
MEMPOOL_CACHE_SIZE, 0,
NULL, NULL, NULL, NULL,
SOCKET_ID_ANY, 0);
if (sess_pool == NULL) {
printf("Cannot init sess pool\n");
return TEST_FAILED;
}
printf("Allocated sess pool\n");
}
if (sess_priv_pool == NULL) {
snprintf(s, sizeof(s), "sess_priv_pool");
sess_priv_pool = rte_mempool_create(s, nb_sess, sess_sz,
MEMPOOL_CACHE_SIZE, 0,
NULL, NULL, NULL, NULL,
SOCKET_ID_ANY, 0);
if (sess_priv_pool == NULL) {
printf("Cannot init sess_priv pool\n");
return TEST_FAILED;
}
printf("Allocated sess_priv pool\n");
}
return 0;
}
static int
create_default_flow(uint16_t portid)
{
struct rte_flow_action action[2];
struct rte_flow_item pattern[2];
struct rte_flow_attr attr = {0};
struct rte_flow_error err;
struct rte_flow *flow;
int ret;
/* Add the default rte_flow to enable SECURITY for all ESP packets */
pattern[0].type = RTE_FLOW_ITEM_TYPE_ESP;
pattern[0].spec = NULL;
pattern[0].mask = NULL;
pattern[0].last = NULL;
pattern[1].type = RTE_FLOW_ITEM_TYPE_END;
action[0].type = RTE_FLOW_ACTION_TYPE_SECURITY;
action[0].conf = NULL;
action[1].type = RTE_FLOW_ACTION_TYPE_END;
action[1].conf = NULL;
attr.ingress = 1;
ret = rte_flow_validate(portid, &attr, pattern, action, &err);
if (ret) {
printf("\nValidate flow failed, ret = %d\n", ret);
return -1;
}
flow = rte_flow_create(portid, &attr, pattern, action, &err);
if (flow == NULL) {
printf("\nDefault flow rule create failed\n");
return -1;
}
default_flow[portid] = flow;
return 0;
}
static void
destroy_default_flow(uint16_t portid)
{
struct rte_flow_error err;
int ret;
if (!default_flow[portid])
return;
ret = rte_flow_destroy(portid, default_flow[portid], &err);
if (ret) {
printf("\nDefault flow rule destroy failed\n");
return;
}
default_flow[portid] = NULL;
}
struct rte_mbuf **tx_pkts_burst;
struct rte_mbuf **rx_pkts_burst;
static int
compare_pkt_data(struct rte_mbuf *m, uint8_t *ref, unsigned int tot_len)
{
unsigned int len;
unsigned int nb_segs = m->nb_segs;
unsigned int matched = 0;
struct rte_mbuf *save = m;
while (m) {
len = tot_len;
if (len > m->data_len)
len = m->data_len;
if (len != 0) {
if (memcmp(rte_pktmbuf_mtod(m, char *),
ref + matched, len)) {
printf("\n====Reassembly case failed: Data Mismatch");
rte_hexdump(stdout, "Reassembled",
rte_pktmbuf_mtod(m, char *),
len);
rte_hexdump(stdout, "reference",
ref + matched,
len);
return TEST_FAILED;
}
}
tot_len -= len;
matched += len;
m = m->next;
}
if (tot_len) {
printf("\n====Reassembly case failed: Data Missing %u",
tot_len);
printf("\n====nb_segs %u, tot_len %u", nb_segs, tot_len);
rte_pktmbuf_dump(stderr, save, -1);
return TEST_FAILED;
}
return TEST_SUCCESS;
}
static inline bool
is_ip_reassembly_incomplete(struct rte_mbuf *mbuf)
{
static uint64_t ip_reassembly_dynflag;
int ip_reassembly_dynflag_offset;
if (ip_reassembly_dynflag == 0) {
ip_reassembly_dynflag_offset = rte_mbuf_dynflag_lookup(
RTE_MBUF_DYNFLAG_IP_REASSEMBLY_INCOMPLETE_NAME, NULL);
if (ip_reassembly_dynflag_offset < 0)
return false;
ip_reassembly_dynflag = RTE_BIT64(ip_reassembly_dynflag_offset);
}
return (mbuf->ol_flags & ip_reassembly_dynflag) != 0;
}
static void
free_mbuf(struct rte_mbuf *mbuf)
{
rte_eth_ip_reassembly_dynfield_t dynfield;
if (!mbuf)
return;
if (!is_ip_reassembly_incomplete(mbuf)) {
rte_pktmbuf_free(mbuf);
} else {
if (ip_reassembly_dynfield_offset < 0)
return;
while (mbuf) {
dynfield = *RTE_MBUF_DYNFIELD(mbuf,
ip_reassembly_dynfield_offset,
rte_eth_ip_reassembly_dynfield_t *);
rte_pktmbuf_free(mbuf);
mbuf = dynfield.next_frag;
}
}
}
static int
get_and_verify_incomplete_frags(struct rte_mbuf *mbuf,
struct reassembly_vector *vector)
{
rte_eth_ip_reassembly_dynfield_t *dynfield[MAX_PKT_BURST];
int j = 0, ret;
/**
* IP reassembly offload is incomplete, and fragments are listed in
* dynfield which can be reassembled in SW.
*/
printf("\nHW IP Reassembly is not complete; attempt SW IP Reassembly,"
"\nMatching with original frags.");
if (ip_reassembly_dynfield_offset < 0)
return -1;
printf("\ncomparing frag: %d", j);
/* Skip Ethernet header comparison */
rte_pktmbuf_adj(mbuf, RTE_ETHER_HDR_LEN);
ret = compare_pkt_data(mbuf, vector->frags[j]->data,
vector->frags[j]->len);
if (ret)
return ret;
j++;
dynfield[j] = RTE_MBUF_DYNFIELD(mbuf, ip_reassembly_dynfield_offset,
rte_eth_ip_reassembly_dynfield_t *);
printf("\ncomparing frag: %d", j);
/* Skip Ethernet header comparison */
rte_pktmbuf_adj(dynfield[j]->next_frag, RTE_ETHER_HDR_LEN);
ret = compare_pkt_data(dynfield[j]->next_frag, vector->frags[j]->data,
vector->frags[j]->len);
if (ret)
return ret;
while ((dynfield[j]->nb_frags > 1) &&
is_ip_reassembly_incomplete(dynfield[j]->next_frag)) {
j++;
dynfield[j] = RTE_MBUF_DYNFIELD(dynfield[j-1]->next_frag,
ip_reassembly_dynfield_offset,
rte_eth_ip_reassembly_dynfield_t *);
printf("\ncomparing frag: %d", j);
/* Skip Ethernet header comparison */
rte_pktmbuf_adj(dynfield[j]->next_frag, RTE_ETHER_HDR_LEN);
ret = compare_pkt_data(dynfield[j]->next_frag,
vector->frags[j]->data, vector->frags[j]->len);
if (ret)
return ret;
}
return ret;
}
static int
test_ipsec_with_reassembly(struct reassembly_vector *vector,
const struct ipsec_test_flags *flags)
{
struct rte_security_session *out_ses[ENCAP_DECAP_BURST_SZ] = {0};
struct rte_security_session *in_ses[ENCAP_DECAP_BURST_SZ] = {0};
struct rte_eth_ip_reassembly_params reass_capa = {0};
struct rte_security_session_conf sess_conf_out = {0};
struct rte_security_session_conf sess_conf_in = {0};
unsigned int nb_tx, burst_sz, nb_sent = 0;
struct rte_crypto_sym_xform cipher_out = {0};
struct rte_crypto_sym_xform auth_out = {0};
struct rte_crypto_sym_xform aead_out = {0};
struct rte_crypto_sym_xform cipher_in = {0};
struct rte_crypto_sym_xform auth_in = {0};
struct rte_crypto_sym_xform aead_in = {0};
struct ipsec_test_data sa_data;
struct rte_security_ctx *ctx;
unsigned int i, nb_rx = 0, j;
uint32_t ol_flags;
int ret = 0;
burst_sz = vector->burst ? ENCAP_DECAP_BURST_SZ : 1;
nb_tx = vector->nb_frags * burst_sz;
rte_eth_dev_stop(port_id);
if (ret != 0) {
printf("rte_eth_dev_stop: err=%s, port=%u\n",
rte_strerror(-ret), port_id);
return ret;
}
rte_eth_ip_reassembly_capability_get(port_id, &reass_capa);
if (reass_capa.max_frags < vector->nb_frags)
return TEST_SKIPPED;
if (reass_capa.timeout_ms > APP_REASS_TIMEOUT) {
reass_capa.timeout_ms = APP_REASS_TIMEOUT;
rte_eth_ip_reassembly_conf_set(port_id, &reass_capa);
}
ret = rte_eth_dev_start(port_id);
if (ret < 0) {
printf("rte_eth_dev_start: err=%d, port=%d\n",
ret, port_id);
return ret;
}
memset(tx_pkts_burst, 0, sizeof(tx_pkts_burst[0]) * nb_tx);
memset(rx_pkts_burst, 0, sizeof(rx_pkts_burst[0]) * nb_tx);
for (i = 0; i < nb_tx; i += vector->nb_frags) {
for (j = 0; j < vector->nb_frags; j++) {
tx_pkts_burst[i+j] = init_packet(mbufpool,
vector->frags[j]->data,
vector->frags[j]->len);
if (tx_pkts_burst[i+j] == NULL) {
ret = -1;
printf("\n packed init failed\n");
goto out;
}
}
}
for (i = 0; i < burst_sz; i++) {
memcpy(&sa_data, vector->sa_data,
sizeof(struct ipsec_test_data));
/* Update SPI for every new SA */
sa_data.ipsec_xform.spi += i;
sa_data.ipsec_xform.direction =
RTE_SECURITY_IPSEC_SA_DIR_EGRESS;
if (sa_data.aead) {
sess_conf_out.crypto_xform = &aead_out;
} else {
sess_conf_out.crypto_xform = &cipher_out;
sess_conf_out.crypto_xform->next = &auth_out;
}
/* Create Inline IPsec outbound session. */
ret = create_inline_ipsec_session(&sa_data, port_id,
&out_ses[i], &ctx, &ol_flags, flags,
&sess_conf_out);
if (ret) {
printf("\nInline outbound session create failed\n");
goto out;
}
}
j = 0;
for (i = 0; i < nb_tx; i++) {
if (ol_flags & RTE_SECURITY_TX_OLOAD_NEED_MDATA)
rte_security_set_pkt_metadata(ctx,
out_ses[j], tx_pkts_burst[i], NULL);
tx_pkts_burst[i]->ol_flags |= RTE_MBUF_F_TX_SEC_OFFLOAD;
/* Move to next SA after nb_frags */
if ((i + 1) % vector->nb_frags == 0)
j++;
}
for (i = 0; i < burst_sz; i++) {
memcpy(&sa_data, vector->sa_data,
sizeof(struct ipsec_test_data));
/* Update SPI for every new SA */
sa_data.ipsec_xform.spi += i;
sa_data.ipsec_xform.direction =
RTE_SECURITY_IPSEC_SA_DIR_INGRESS;
if (sa_data.aead) {
sess_conf_in.crypto_xform = &aead_in;
} else {
sess_conf_in.crypto_xform = &auth_in;
sess_conf_in.crypto_xform->next = &cipher_in;
}
/* Create Inline IPsec inbound session. */
ret = create_inline_ipsec_session(&sa_data, port_id, &in_ses[i],
&ctx, &ol_flags, flags, &sess_conf_in);
if (ret) {
printf("\nInline inbound session create failed\n");
goto out;
}
}
/* Retrieve reassembly dynfield offset if available */
if (ip_reassembly_dynfield_offset < 0 && vector->nb_frags > 1)
ip_reassembly_dynfield_offset = rte_mbuf_dynfield_lookup(
RTE_MBUF_DYNFIELD_IP_REASSEMBLY_NAME, NULL);
ret = create_default_flow(port_id);
if (ret)
goto out;
nb_sent = rte_eth_tx_burst(port_id, 0, tx_pkts_burst, nb_tx);
if (nb_sent != nb_tx) {
ret = -1;
printf("\nFailed to tx %u pkts", nb_tx);
goto out;
}
rte_delay_ms(1);
/* Retry few times before giving up */
nb_rx = 0;
j = 0;
do {
nb_rx += rte_eth_rx_burst(port_id, 0, &rx_pkts_burst[nb_rx],
nb_tx - nb_rx);
j++;
if (nb_rx >= nb_tx)
break;
rte_delay_ms(1);
} while (j < 5 || !nb_rx);
/* Check for minimum number of Rx packets expected */
if ((vector->nb_frags == 1 && nb_rx != nb_tx) ||
(vector->nb_frags > 1 && nb_rx < burst_sz)) {
printf("\nreceived less Rx pkts(%u) pkts\n", nb_rx);
ret = TEST_FAILED;
goto out;
}
for (i = 0; i < nb_rx; i++) {
if (vector->nb_frags > 1 &&
is_ip_reassembly_incomplete(rx_pkts_burst[i])) {
ret = get_and_verify_incomplete_frags(rx_pkts_burst[i],
vector);
if (ret != TEST_SUCCESS)
break;
continue;
}
if (rx_pkts_burst[i]->ol_flags &
RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED ||
!(rx_pkts_burst[i]->ol_flags & RTE_MBUF_F_RX_SEC_OFFLOAD)) {
printf("\nsecurity offload failed\n");
ret = TEST_FAILED;
break;
}
if (vector->full_pkt->len + RTE_ETHER_HDR_LEN !=
rx_pkts_burst[i]->pkt_len) {
printf("\nreassembled/decrypted packet length mismatch\n");
ret = TEST_FAILED;
break;
}
rte_pktmbuf_adj(rx_pkts_burst[i], RTE_ETHER_HDR_LEN);
ret = compare_pkt_data(rx_pkts_burst[i],
vector->full_pkt->data,
vector->full_pkt->len);
if (ret != TEST_SUCCESS)
break;
}
out:
destroy_default_flow(port_id);
/* Clear session data. */
for (i = 0; i < burst_sz; i++) {
if (out_ses[i])
rte_security_session_destroy(ctx, out_ses[i]);
if (in_ses[i])
rte_security_session_destroy(ctx, in_ses[i]);
}
for (i = nb_sent; i < nb_tx; i++)
free_mbuf(tx_pkts_burst[i]);
for (i = 0; i < nb_rx; i++)
free_mbuf(rx_pkts_burst[i]);
return ret;
}
static int
event_tx_burst(struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct rte_event ev;
int i, nb_sent = 0;
/* Convert packets to events */
memset(&ev, 0, sizeof(ev));
ev.sched_type = RTE_SCHED_TYPE_PARALLEL;
for (i = 0; i < nb_pkts; i++) {
ev.mbuf = tx_pkts[i];
nb_sent += rte_event_eth_tx_adapter_enqueue(
eventdev_id, port_id, &ev, 1, 0);
}
return nb_sent;
}
static int
event_rx_burst(struct rte_mbuf **rx_pkts, uint16_t nb_pkts_to_rx)
{
int nb_ev, nb_rx = 0, j = 0;
const int ms_per_pkt = 3;
struct rte_event ev;
do {
nb_ev = rte_event_dequeue_burst(eventdev_id, port_id,
&ev, 1, 0);
if (nb_ev == 0) {
rte_delay_ms(1);
continue;
}
/* Get packet from event */
if (ev.event_type != RTE_EVENT_TYPE_ETHDEV) {
printf("Unsupported event type: %i\n",
ev.event_type);
continue;
}
rx_pkts[nb_rx++] = ev.mbuf;
} while (j++ < (nb_pkts_to_rx * ms_per_pkt) && nb_rx < nb_pkts_to_rx);
return nb_rx;
}
static int
test_ipsec_inline_proto_process(struct ipsec_test_data *td,
struct ipsec_test_data *res_d,
int nb_pkts,
bool silent,
const struct ipsec_test_flags *flags)
{
struct rte_security_session_conf sess_conf = {0};
struct rte_crypto_sym_xform cipher = {0};
struct rte_crypto_sym_xform auth = {0};
struct rte_crypto_sym_xform aead = {0};
struct rte_security_session *ses;
struct rte_security_ctx *ctx;
int nb_rx = 0, nb_sent;
uint32_t ol_flags;
int i, j = 0, ret;
memset(rx_pkts_burst, 0, sizeof(rx_pkts_burst[0]) * nb_pkts);
if (td->aead) {
sess_conf.crypto_xform = &aead;
} else {
if (td->ipsec_xform.direction ==
RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
sess_conf.crypto_xform = &cipher;
sess_conf.crypto_xform->type = RTE_CRYPTO_SYM_XFORM_CIPHER;
sess_conf.crypto_xform->next = &auth;
sess_conf.crypto_xform->next->type = RTE_CRYPTO_SYM_XFORM_AUTH;
} else {
sess_conf.crypto_xform = &auth;
sess_conf.crypto_xform->type = RTE_CRYPTO_SYM_XFORM_AUTH;
sess_conf.crypto_xform->next = &cipher;
sess_conf.crypto_xform->next->type = RTE_CRYPTO_SYM_XFORM_CIPHER;
}
}
/* Create Inline IPsec session. */
ret = create_inline_ipsec_session(td, port_id, &ses, &ctx,
&ol_flags, flags, &sess_conf);
if (ret)
return ret;
if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) {
ret = create_default_flow(port_id);
if (ret)
goto out;
}
for (i = 0; i < nb_pkts; i++) {
tx_pkts_burst[i] = init_packet(mbufpool, td->input_text.data,
td->input_text.len);
if (tx_pkts_burst[i] == NULL) {
while (i--)
rte_pktmbuf_free(tx_pkts_burst[i]);
ret = TEST_FAILED;
goto out;
}
if (test_ipsec_pkt_update(rte_pktmbuf_mtod_offset(tx_pkts_burst[i],
uint8_t *, RTE_ETHER_HDR_LEN), flags)) {
while (i--)
rte_pktmbuf_free(tx_pkts_burst[i]);
ret = TEST_FAILED;
goto out;
}
if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
if (ol_flags & RTE_SECURITY_TX_OLOAD_NEED_MDATA)
rte_security_set_pkt_metadata(ctx, ses,
tx_pkts_burst[i], NULL);
tx_pkts_burst[i]->ol_flags |= RTE_MBUF_F_TX_SEC_OFFLOAD;
}
}
/* Send packet to ethdev for inline IPsec processing. */
if (event_mode_enabled)
nb_sent = event_tx_burst(tx_pkts_burst, nb_pkts);
else
nb_sent = rte_eth_tx_burst(port_id, 0, tx_pkts_burst, nb_pkts);
if (nb_sent != nb_pkts) {
printf("\nUnable to TX %d packets, sent: %i", nb_pkts, nb_sent);
for ( ; nb_sent < nb_pkts; nb_sent++)
rte_pktmbuf_free(tx_pkts_burst[nb_sent]);
ret = TEST_FAILED;
goto out;
}
rte_pause();
/* Receive back packet on loopback interface. */
if (event_mode_enabled)
nb_rx = event_rx_burst(rx_pkts_burst, nb_sent);
else
do {
rte_delay_ms(1);
nb_rx += rte_eth_rx_burst(port_id, 0,
&rx_pkts_burst[nb_rx],
nb_sent - nb_rx);
if (nb_rx >= nb_sent)
break;
} while (j++ < 5 || nb_rx == 0);
if (nb_rx != nb_sent) {
printf("\nUnable to RX all %d packets, received(%i)",
nb_sent, nb_rx);
while (--nb_rx >= 0)
rte_pktmbuf_free(rx_pkts_burst[nb_rx]);
ret = TEST_FAILED;
goto out;
}
for (i = 0; i < nb_rx; i++) {
rte_pktmbuf_adj(rx_pkts_burst[i], RTE_ETHER_HDR_LEN);
ret = test_ipsec_post_process(rx_pkts_burst[i], td,
res_d, silent, flags);
if (ret != TEST_SUCCESS) {
for ( ; i < nb_rx; i++)
rte_pktmbuf_free(rx_pkts_burst[i]);
goto out;
}
ret = test_ipsec_stats_verify(ctx, ses, flags,
td->ipsec_xform.direction);
if (ret != TEST_SUCCESS) {
for ( ; i < nb_rx; i++)
rte_pktmbuf_free(rx_pkts_burst[i]);
goto out;
}
rte_pktmbuf_free(rx_pkts_burst[i]);
rx_pkts_burst[i] = NULL;
}
out:
if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS)
destroy_default_flow(port_id);
/* Destroy session so that other cases can create the session again */
rte_security_session_destroy(ctx, ses);
ses = NULL;
return ret;
}
static int
test_ipsec_inline_proto_all(const struct ipsec_test_flags *flags)
{
struct ipsec_test_data td_outb;
struct ipsec_test_data td_inb;
unsigned int i, nb_pkts = 1, pass_cnt = 0, fail_cnt = 0;
int ret;
if (flags->iv_gen || flags->sa_expiry_pkts_soft ||
flags->sa_expiry_pkts_hard)
nb_pkts = IPSEC_TEST_PACKETS_MAX;
for (i = 0; i < RTE_DIM(alg_list); i++) {
test_ipsec_td_prepare(alg_list[i].param1,
alg_list[i].param2,
flags, &td_outb, 1);
if (!td_outb.aead) {
enum rte_crypto_cipher_algorithm cipher_alg;
enum rte_crypto_auth_algorithm auth_alg;
cipher_alg = td_outb.xform.chain.cipher.cipher.algo;
auth_alg = td_outb.xform.chain.auth.auth.algo;
if (td_outb.aes_gmac && cipher_alg != RTE_CRYPTO_CIPHER_NULL)
continue;
/* ICV is not applicable for NULL auth */
if (flags->icv_corrupt &&
auth_alg == RTE_CRYPTO_AUTH_NULL)
continue;
/* IV is not applicable for NULL cipher */
if (flags->iv_gen &&
cipher_alg == RTE_CRYPTO_CIPHER_NULL)
continue;
}
if (flags->udp_encap)
td_outb.ipsec_xform.options.udp_encap = 1;
ret = test_ipsec_inline_proto_process(&td_outb, &td_inb, nb_pkts,
false, flags);
if (ret == TEST_SKIPPED)
continue;
if (ret == TEST_FAILED) {
printf("\n TEST FAILED");
test_ipsec_display_alg(alg_list[i].param1,
alg_list[i].param2);
fail_cnt++;
continue;
}
test_ipsec_td_update(&td_inb, &td_outb, 1, flags);
ret = test_ipsec_inline_proto_process(&td_inb, NULL, nb_pkts,
false, flags);
if (ret == TEST_SKIPPED)
continue;
if (ret == TEST_FAILED) {
printf("\n TEST FAILED");
test_ipsec_display_alg(alg_list[i].param1,
alg_list[i].param2);
fail_cnt++;
continue;
}
if (flags->display_alg)
test_ipsec_display_alg(alg_list[i].param1,
alg_list[i].param2);
pass_cnt++;
}
printf("Tests passed: %d, failed: %d", pass_cnt, fail_cnt);
if (fail_cnt > 0)
return TEST_FAILED;
if (pass_cnt > 0)
return TEST_SUCCESS;
else
return TEST_SKIPPED;
}
static int
test_ipsec_inline_proto_process_with_esn(struct ipsec_test_data td[],
struct ipsec_test_data res_d[],
int nb_pkts,
bool silent,
const struct ipsec_test_flags *flags)
{
struct rte_security_session_conf sess_conf = {0};
struct ipsec_test_data *res_d_tmp = NULL;
struct rte_crypto_sym_xform cipher = {0};
struct rte_crypto_sym_xform auth = {0};
struct rte_crypto_sym_xform aead = {0};
struct rte_mbuf *rx_pkt = NULL;
struct rte_mbuf *tx_pkt = NULL;
int nb_rx, nb_sent;
struct rte_security_session *ses;
struct rte_security_ctx *ctx;
uint32_t ol_flags;
int i, ret;
if (td[0].aead) {
sess_conf.crypto_xform = &aead;
} else {
if (td[0].ipsec_xform.direction ==
RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
sess_conf.crypto_xform = &cipher;
sess_conf.crypto_xform->type = RTE_CRYPTO_SYM_XFORM_CIPHER;
sess_conf.crypto_xform->next = &auth;
sess_conf.crypto_xform->next->type = RTE_CRYPTO_SYM_XFORM_AUTH;
} else {
sess_conf.crypto_xform = &auth;
sess_conf.crypto_xform->type = RTE_CRYPTO_SYM_XFORM_AUTH;
sess_conf.crypto_xform->next = &cipher;
sess_conf.crypto_xform->next->type = RTE_CRYPTO_SYM_XFORM_CIPHER;
}
}
/* Create Inline IPsec session. */
ret = create_inline_ipsec_session(&td[0], port_id, &ses, &ctx,
&ol_flags, flags, &sess_conf);
if (ret)
return ret;
if (td[0].ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) {
ret = create_default_flow(port_id);
if (ret)
goto out;
}
for (i = 0; i < nb_pkts; i++) {
tx_pkt = init_packet(mbufpool, td[i].input_text.data,
td[i].input_text.len);
if (tx_pkt == NULL) {
ret = TEST_FAILED;
goto out;
}
if (test_ipsec_pkt_update(rte_pktmbuf_mtod_offset(tx_pkt,
uint8_t *, RTE_ETHER_HDR_LEN), flags)) {
ret = TEST_FAILED;
goto out;
}
if (td[i].ipsec_xform.direction ==
RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
if (flags->antireplay) {
sess_conf.ipsec.esn.value =
td[i].ipsec_xform.esn.value;
ret = rte_security_session_update(ctx, ses,
&sess_conf);
if (ret) {
printf("Could not update ESN in session\n");
rte_pktmbuf_free(tx_pkt);
ret = TEST_SKIPPED;
goto out;
}
}
if (ol_flags & RTE_SECURITY_TX_OLOAD_NEED_MDATA)
rte_security_set_pkt_metadata(ctx, ses,
tx_pkt, NULL);
tx_pkt->ol_flags |= RTE_MBUF_F_TX_SEC_OFFLOAD;
}
/* Send packet to ethdev for inline IPsec processing. */
nb_sent = rte_eth_tx_burst(port_id, 0, &tx_pkt, 1);
if (nb_sent != 1) {
printf("\nUnable to TX packets");
rte_pktmbuf_free(tx_pkt);
ret = TEST_FAILED;
goto out;
}
rte_pause();
/* Receive back packet on loopback interface. */
do {
rte_delay_ms(1);
nb_rx = rte_eth_rx_burst(port_id, 0, &rx_pkt, 1);
} while (nb_rx == 0);
rte_pktmbuf_adj(rx_pkt, RTE_ETHER_HDR_LEN);
if (res_d != NULL)
res_d_tmp = &res_d[i];
ret = test_ipsec_post_process(rx_pkt, &td[i],
res_d_tmp, silent, flags);
if (ret != TEST_SUCCESS) {
rte_pktmbuf_free(rx_pkt);
goto out;
}
ret = test_ipsec_stats_verify(ctx, ses, flags,
td->ipsec_xform.direction);
if (ret != TEST_SUCCESS) {
rte_pktmbuf_free(rx_pkt);
goto out;
}
rte_pktmbuf_free(rx_pkt);
rx_pkt = NULL;
tx_pkt = NULL;
}
out:
if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS)
destroy_default_flow(port_id);
/* Destroy session so that other cases can create the session again */
rte_security_session_destroy(ctx, ses);
ses = NULL;
return ret;
}
static int
ut_setup_inline_ipsec(void)
{
int ret;
/* Start device */
ret = rte_eth_dev_start(port_id);
if (ret < 0) {
printf("rte_eth_dev_start: err=%d, port=%d\n",
ret, port_id);
return ret;
}
/* always enable promiscuous */
ret = rte_eth_promiscuous_enable(port_id);
if (ret != 0) {
printf("rte_eth_promiscuous_enable: err=%s, port=%d\n",
rte_strerror(-ret), port_id);
return ret;
}
check_all_ports_link_status(1, RTE_PORT_ALL);
return 0;
}
static void
ut_teardown_inline_ipsec(void)
{
struct rte_eth_ip_reassembly_params reass_conf = {0};
uint16_t portid;
int ret;
/* port tear down */
RTE_ETH_FOREACH_DEV(portid) {
ret = rte_eth_dev_stop(portid);
if (ret != 0)
printf("rte_eth_dev_stop: err=%s, port=%u\n",
rte_strerror(-ret), portid);
/* Clear reassembly configuration */
rte_eth_ip_reassembly_conf_set(portid, &reass_conf);
}
}
static int
inline_ipsec_testsuite_setup(void)
{
uint16_t nb_rxd;
uint16_t nb_txd;
uint16_t nb_ports;
int ret;
uint16_t nb_rx_queue = 1, nb_tx_queue = 1;
printf("Start inline IPsec test.\n");
nb_ports = rte_eth_dev_count_avail();
if (nb_ports < NB_ETHPORTS_USED) {
printf("At least %u port(s) used for test\n",
NB_ETHPORTS_USED);
return TEST_SKIPPED;
}
ret = init_mempools(NB_MBUF);
if (ret)
return ret;
if (tx_pkts_burst == NULL) {
tx_pkts_burst = (struct rte_mbuf **)rte_calloc("tx_buff",
MAX_TRAFFIC_BURST,
sizeof(void *),
RTE_CACHE_LINE_SIZE);
if (!tx_pkts_burst)
return TEST_FAILED;
rx_pkts_burst = (struct rte_mbuf **)rte_calloc("rx_buff",
MAX_TRAFFIC_BURST,
sizeof(void *),
RTE_CACHE_LINE_SIZE);
if (!rx_pkts_burst)
return TEST_FAILED;
}
printf("Generate %d packets\n", MAX_TRAFFIC_BURST);
nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
nb_txd = RTE_TEST_TX_DESC_DEFAULT;
/* configuring port 0 for the test is enough */
port_id = 0;
/* port configure */
ret = rte_eth_dev_configure(port_id, nb_rx_queue,
nb_tx_queue, &port_conf);
if (ret < 0) {
printf("Cannot configure device: err=%d, port=%d\n",
ret, port_id);
return ret;
}
ret = rte_eth_macaddr_get(port_id, &ports_eth_addr[port_id]);
if (ret < 0) {
printf("Cannot get mac address: err=%d, port=%d\n",
ret, port_id);
return ret;
}
printf("Port %u ", port_id);
print_ethaddr("Address:", &ports_eth_addr[port_id]);
printf("\n");
/* tx queue setup */
ret = rte_eth_tx_queue_setup(port_id, 0, nb_txd,
SOCKET_ID_ANY, &tx_conf);
if (ret < 0) {
printf("rte_eth_tx_queue_setup: err=%d, port=%d\n",
ret, port_id);
return ret;
}
/* rx queue steup */
ret = rte_eth_rx_queue_setup(port_id, 0, nb_rxd, SOCKET_ID_ANY,
&rx_conf, mbufpool);
if (ret < 0) {
printf("rte_eth_rx_queue_setup: err=%d, port=%d\n",
ret, port_id);
return ret;
}
test_ipsec_alg_list_populate();
return 0;
}
static void
inline_ipsec_testsuite_teardown(void)
{
uint16_t portid;
int ret;
/* port tear down */
RTE_ETH_FOREACH_DEV(portid) {
ret = rte_eth_dev_reset(portid);
if (ret != 0)
printf("rte_eth_dev_reset: err=%s, port=%u\n",
rte_strerror(-ret), port_id);
}
rte_free(tx_pkts_burst);
rte_free(rx_pkts_burst);
}
static int
event_inline_ipsec_testsuite_setup(void)
{
struct rte_event_eth_rx_adapter_queue_conf queue_conf = {0};
struct rte_event_dev_info evdev_default_conf = {0};
struct rte_event_dev_config eventdev_conf = {0};
struct rte_event_queue_conf eventq_conf = {0};
struct rte_event_port_conf ev_port_conf = {0};
const uint16_t nb_txd = 1024, nb_rxd = 1024;
uint16_t nb_rx_queue = 1, nb_tx_queue = 1;
uint8_t ev_queue_id = 0, tx_queue_id = 0;
int nb_eventqueue = 1, nb_eventport = 1;
const int all_queues = -1;
uint32_t caps = 0;
uint16_t nb_ports;
int ret;
printf("Start event inline IPsec test.\n");
nb_ports = rte_eth_dev_count_avail();
if (nb_ports == 0) {
printf("Test require: 1 port, available: 0\n");
return TEST_SKIPPED;
}
init_mempools(NB_MBUF);
if (tx_pkts_burst == NULL) {
tx_pkts_burst = (struct rte_mbuf **)rte_calloc("tx_buff",
MAX_TRAFFIC_BURST,
sizeof(void *),
RTE_CACHE_LINE_SIZE);
if (!tx_pkts_burst)
return -1;
rx_pkts_burst = (struct rte_mbuf **)rte_calloc("rx_buff",
MAX_TRAFFIC_BURST,
sizeof(void *),
RTE_CACHE_LINE_SIZE);
if (!rx_pkts_burst)
return -1;
}
printf("Generate %d packets\n", MAX_TRAFFIC_BURST);
/* configuring port 0 for the test is enough */
port_id = 0;
/* port configure */
ret = rte_eth_dev_configure(port_id, nb_rx_queue,
nb_tx_queue, &port_conf);
if (ret < 0) {
printf("Cannot configure device: err=%d, port=%d\n",
ret, port_id);
return ret;
}
/* Tx queue setup */
ret = rte_eth_tx_queue_setup(port_id, 0, nb_txd,
SOCKET_ID_ANY, &tx_conf);
if (ret < 0) {
printf("rte_eth_tx_queue_setup: err=%d, port=%d\n",
ret, port_id);
return ret;
}
/* rx queue steup */
ret = rte_eth_rx_queue_setup(port_id, 0, nb_rxd, SOCKET_ID_ANY,
&rx_conf, mbufpool);
if (ret < 0) {
printf("rte_eth_rx_queue_setup: err=%d, port=%d\n",
ret, port_id);
return ret;
}
/* Setup eventdev */
eventdev_id = 0;
rx_adapter_id = 0;
tx_adapter_id = 0;
/* Get default conf of eventdev */
ret = rte_event_dev_info_get(eventdev_id, &evdev_default_conf);
if (ret < 0) {
printf("Error in getting event device info[devID:%d]\n",
eventdev_id);
return ret;
}
/* Get Tx adapter capabilities */
ret = rte_event_eth_tx_adapter_caps_get(eventdev_id, tx_adapter_id, &caps);
if (ret < 0) {
printf("Failed to get event device %d eth tx adapter"
" capabilities for port %d\n",
eventdev_id, port_id);
return ret;
}
if (!(caps & RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT))
tx_queue_id = nb_eventqueue++;
eventdev_conf.nb_events_limit =
evdev_default_conf.max_num_events;
eventdev_conf.nb_event_queue_flows =
evdev_default_conf.max_event_queue_flows;
eventdev_conf.nb_event_port_dequeue_depth =
evdev_default_conf.max_event_port_dequeue_depth;
eventdev_conf.nb_event_port_enqueue_depth =
evdev_default_conf.max_event_port_enqueue_depth;
eventdev_conf.nb_event_queues = nb_eventqueue;
eventdev_conf.nb_event_ports = nb_eventport;
/* Configure event device */
ret = rte_event_dev_configure(eventdev_id, &eventdev_conf);
if (ret < 0) {
printf("Error in configuring event device\n");
return ret;
}
/* Configure event queue */
eventq_conf.schedule_type = RTE_SCHED_TYPE_PARALLEL;
eventq_conf.nb_atomic_flows = 1024;
eventq_conf.nb_atomic_order_sequences = 1024;
/* Setup the queue */
ret = rte_event_queue_setup(eventdev_id, ev_queue_id, &eventq_conf);
if (ret < 0) {
printf("Failed to setup event queue %d\n", ret);
return ret;
}
/* Configure event port */
ret = rte_event_port_setup(eventdev_id, port_id, NULL);
if (ret < 0) {
printf("Failed to setup event port %d\n", ret);
return ret;
}
/* Make event queue - event port link */
ret = rte_event_port_link(eventdev_id, port_id, NULL, NULL, 1);
if (ret < 0) {
printf("Failed to link event port %d\n", ret);
return ret;
}
/* Setup port conf */
ev_port_conf.new_event_threshold = 1200;
ev_port_conf.dequeue_depth =
evdev_default_conf.max_event_port_dequeue_depth;
ev_port_conf.enqueue_depth =
evdev_default_conf.max_event_port_enqueue_depth;
/* Create Rx adapter */
ret = rte_event_eth_rx_adapter_create(rx_adapter_id, eventdev_id,
&ev_port_conf);
if (ret < 0) {
printf("Failed to create rx adapter %d\n", ret);
return ret;
}
/* Setup queue conf */
queue_conf.ev.queue_id = ev_queue_id;
queue_conf.ev.sched_type = RTE_SCHED_TYPE_PARALLEL;
queue_conf.ev.event_type = RTE_EVENT_TYPE_ETHDEV;
/* Add queue to the adapter */
ret = rte_event_eth_rx_adapter_queue_add(rx_adapter_id, port_id,
all_queues, &queue_conf);
if (ret < 0) {
printf("Failed to add eth queue to rx adapter %d\n", ret);
return ret;
}
/* Start rx adapter */
ret = rte_event_eth_rx_adapter_start(rx_adapter_id);
if (ret < 0) {
printf("Failed to start rx adapter %d\n", ret);
return ret;
}
/* Create tx adapter */
ret = rte_event_eth_tx_adapter_create(tx_adapter_id, eventdev_id,
&ev_port_conf);
if (ret < 0) {
printf("Failed to create tx adapter %d\n", ret);
return ret;
}
/* Add queue to the adapter */
ret = rte_event_eth_tx_adapter_queue_add(tx_adapter_id, port_id,
all_queues);
if (ret < 0) {
printf("Failed to add eth queue to tx adapter %d\n", ret);
return ret;
}
/* Setup Tx queue & port */
if (tx_queue_id) {
/* Setup the queue */
ret = rte_event_queue_setup(eventdev_id, tx_queue_id,
&eventq_conf);
if (ret < 0) {
printf("Failed to setup tx event queue %d\n", ret);
return ret;
}
/* Link Tx event queue to Tx port */
ret = rte_event_port_link(eventdev_id, port_id,
&tx_queue_id, NULL, 1);
if (ret != 1) {
printf("Failed to link event queue to port\n");
return ret;
}
}
/* Start tx adapter */
ret = rte_event_eth_tx_adapter_start(tx_adapter_id);
if (ret < 0) {
printf("Failed to start tx adapter %d\n", ret);
return ret;
}
/* Start eventdev */
ret = rte_event_dev_start(eventdev_id);
if (ret < 0) {
printf("Failed to start event device %d\n", ret);
return ret;
}
event_mode_enabled = true;
test_ipsec_alg_list_populate();
return 0;
}
static void
event_inline_ipsec_testsuite_teardown(void)
{
uint16_t portid;
int ret;
event_mode_enabled = false;
/* Stop and release rx adapter */
ret = rte_event_eth_rx_adapter_stop(rx_adapter_id);
if (ret < 0)
printf("Failed to stop rx adapter %d\n", ret);
ret = rte_event_eth_rx_adapter_queue_del(rx_adapter_id, port_id, -1);
if (ret < 0)
printf("Failed to remove rx adapter queues %d\n", ret);
ret = rte_event_eth_rx_adapter_free(rx_adapter_id);
if (ret < 0)
printf("Failed to free rx adapter %d\n", ret);
/* Stop and release tx adapter */
ret = rte_event_eth_tx_adapter_stop(tx_adapter_id);
if (ret < 0)
printf("Failed to stop tx adapter %d\n", ret);
ret = rte_event_eth_tx_adapter_queue_del(tx_adapter_id, port_id, -1);
if (ret < 0)
printf("Failed to remove tx adapter queues %d\n", ret);
ret = rte_event_eth_tx_adapter_free(tx_adapter_id);
if (ret < 0)
printf("Failed to free tx adapter %d\n", ret);
/* Stop and release event devices */
rte_event_dev_stop(eventdev_id);
ret = rte_event_dev_close(eventdev_id);
if (ret < 0)
printf("Failed to close event dev %d, %d\n", eventdev_id, ret);
/* port tear down */
RTE_ETH_FOREACH_DEV(portid) {
ret = rte_eth_dev_reset(portid);
if (ret != 0)
printf("rte_eth_dev_reset: err=%s, port=%u\n",
rte_strerror(-ret), port_id);
}
rte_free(tx_pkts_burst);
rte_free(rx_pkts_burst);
}
static int
test_inline_ip_reassembly(const void *testdata)
{
struct reassembly_vector reassembly_td = {0};
const struct reassembly_vector *td = testdata;
struct ip_reassembly_test_packet full_pkt;
struct ip_reassembly_test_packet frags[MAX_FRAGS];
struct ipsec_test_flags flags = {0};
int i = 0;
reassembly_td.sa_data = td->sa_data;
reassembly_td.nb_frags = td->nb_frags;
reassembly_td.burst = td->burst;
memcpy(&full_pkt, td->full_pkt,
sizeof(struct ip_reassembly_test_packet));
reassembly_td.full_pkt = &full_pkt;
test_vector_payload_populate(reassembly_td.full_pkt, true);
for (; i < reassembly_td.nb_frags; i++) {
memcpy(&frags[i], td->frags[i],
sizeof(struct ip_reassembly_test_packet));
reassembly_td.frags[i] = &frags[i];
test_vector_payload_populate(reassembly_td.frags[i],
(i == 0) ? true : false);
}
return test_ipsec_with_reassembly(&reassembly_td, &flags);
}
static int
test_ipsec_inline_proto_known_vec(const void *test_data)
{
struct ipsec_test_data td_outb;
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
memcpy(&td_outb, test_data, sizeof(td_outb));
if (td_outb.aead ||
td_outb.xform.chain.cipher.cipher.algo != RTE_CRYPTO_CIPHER_NULL) {
/* Disable IV gen to be able to test with known vectors */
td_outb.ipsec_xform.options.iv_gen_disable = 1;
}
return test_ipsec_inline_proto_process(&td_outb, NULL, 1,
false, &flags);
}
static int
test_ipsec_inline_proto_known_vec_inb(const void *test_data)
{
const struct ipsec_test_data *td = test_data;
struct ipsec_test_flags flags;
struct ipsec_test_data td_inb;
memset(&flags, 0, sizeof(flags));
if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS)
test_ipsec_td_in_from_out(td, &td_inb);
else
memcpy(&td_inb, td, sizeof(td_inb));
return test_ipsec_inline_proto_process(&td_inb, NULL, 1, false, &flags);
}
static int
test_ipsec_inline_proto_display_list(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.display_alg = true;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_udp_encap(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.udp_encap = true;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_udp_ports_verify(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.udp_encap = true;
flags.udp_ports_verify = true;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_err_icv_corrupt(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.icv_corrupt = true;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_tunnel_dst_addr_verify(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.tunnel_hdr_verify = RTE_SECURITY_IPSEC_TUNNEL_VERIFY_DST_ADDR;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_tunnel_src_dst_addr_verify(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.tunnel_hdr_verify = RTE_SECURITY_IPSEC_TUNNEL_VERIFY_SRC_DST_ADDR;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_inner_ip_csum(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.ip_csum = true;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_inner_l4_csum(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.l4_csum = true;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_tunnel_v4_in_v4(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.ipv6 = false;
flags.tunnel_ipv6 = false;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_tunnel_v6_in_v6(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.ipv6 = true;
flags.tunnel_ipv6 = true;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_tunnel_v4_in_v6(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.ipv6 = false;
flags.tunnel_ipv6 = true;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_tunnel_v6_in_v4(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.ipv6 = true;
flags.tunnel_ipv6 = false;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_transport_v4(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.ipv6 = false;
flags.transport = true;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_transport_l4_csum(const void *data __rte_unused)
{
struct ipsec_test_flags flags = {
.l4_csum = true,
.transport = true,
};
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_stats(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.stats_success = true;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_pkt_fragment(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.fragment = true;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_copy_df_inner_0(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.df = TEST_IPSEC_COPY_DF_INNER_0;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_copy_df_inner_1(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.df = TEST_IPSEC_COPY_DF_INNER_1;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_set_df_0_inner_1(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.df = TEST_IPSEC_SET_DF_0_INNER_1;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_set_df_1_inner_0(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.df = TEST_IPSEC_SET_DF_1_INNER_0;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_ipv4_copy_dscp_inner_0(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.dscp = TEST_IPSEC_COPY_DSCP_INNER_0;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_ipv4_copy_dscp_inner_1(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.dscp = TEST_IPSEC_COPY_DSCP_INNER_1;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_ipv4_set_dscp_0_inner_1(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.dscp = TEST_IPSEC_SET_DSCP_0_INNER_1;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_ipv4_set_dscp_1_inner_0(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.dscp = TEST_IPSEC_SET_DSCP_1_INNER_0;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_ipv6_copy_dscp_inner_0(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.ipv6 = true;
flags.tunnel_ipv6 = true;
flags.dscp = TEST_IPSEC_COPY_DSCP_INNER_0;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_ipv6_copy_dscp_inner_1(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.ipv6 = true;
flags.tunnel_ipv6 = true;
flags.dscp = TEST_IPSEC_COPY_DSCP_INNER_1;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_ipv6_set_dscp_0_inner_1(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.ipv6 = true;
flags.tunnel_ipv6 = true;
flags.dscp = TEST_IPSEC_SET_DSCP_0_INNER_1;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_ipv6_set_dscp_1_inner_0(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.ipv6 = true;
flags.tunnel_ipv6 = true;
flags.dscp = TEST_IPSEC_SET_DSCP_1_INNER_0;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_ipv6_copy_flabel_inner_0(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.ipv6 = true;
flags.tunnel_ipv6 = true;
flags.flabel = TEST_IPSEC_COPY_FLABEL_INNER_0;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_ipv6_copy_flabel_inner_1(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.ipv6 = true;
flags.tunnel_ipv6 = true;
flags.flabel = TEST_IPSEC_COPY_FLABEL_INNER_1;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_ipv6_set_flabel_0_inner_1(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.ipv6 = true;
flags.tunnel_ipv6 = true;
flags.flabel = TEST_IPSEC_SET_FLABEL_0_INNER_1;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_ipv6_set_flabel_1_inner_0(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.ipv6 = true;
flags.tunnel_ipv6 = true;
flags.flabel = TEST_IPSEC_SET_FLABEL_1_INNER_0;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_ipv4_ttl_decrement(const void *data __rte_unused)
{
struct ipsec_test_flags flags = {
.dec_ttl_or_hop_limit = true
};
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_ipv6_hop_limit_decrement(const void *data __rte_unused)
{
struct ipsec_test_flags flags = {
.ipv6 = true,
.dec_ttl_or_hop_limit = true
};
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_iv_gen(const void *data __rte_unused)
{
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.iv_gen = true;
return test_ipsec_inline_proto_all(&flags);
}
static int
test_ipsec_inline_proto_known_vec_fragmented(const void *test_data)
{
struct ipsec_test_data td_outb;
struct ipsec_test_flags flags;
memset(&flags, 0, sizeof(flags));
flags.fragment = true;
memcpy(&td_outb, test_data, sizeof(td_outb));
/* Disable IV gen to be able to test with known vectors */
td_outb.ipsec_xform.options.iv_gen_disable = 1;
return test_ipsec_inline_proto_process(&td_outb, NULL, 1, false,
&flags);
}
static int
test_ipsec_inline_pkt_replay(const void *test_data, const uint64_t esn[],
bool replayed_pkt[], uint32_t nb_pkts, bool esn_en,
uint64_t winsz)
{
struct ipsec_test_data td_outb[IPSEC_TEST_PACKETS_MAX];
struct ipsec_test_data td_inb[IPSEC_TEST_PACKETS_MAX];
struct ipsec_test_flags flags;
uint32_t i, ret = 0;
memset(&flags, 0, sizeof(flags));
flags.antireplay = true;
for (i = 0; i < nb_pkts; i++) {
memcpy(&td_outb[i], test_data, sizeof(td_outb[0]));
td_outb[i].ipsec_xform.options.iv_gen_disable = 1;
td_outb[i].ipsec_xform.replay_win_sz = winsz;
td_outb[i].ipsec_xform.options.esn = esn_en;
}
for (i = 0; i < nb_pkts; i++)
td_outb[i].ipsec_xform.esn.value = esn[i];
ret = test_ipsec_inline_proto_process_with_esn(td_outb, td_inb,
nb_pkts, true, &flags);
if (ret != TEST_SUCCESS)
return ret;
test_ipsec_td_update(td_inb, td_outb, nb_pkts, &flags);
for (i = 0; i < nb_pkts; i++) {
td_inb[i].ipsec_xform.options.esn = esn_en;
/* Set antireplay flag for packets to be dropped */
td_inb[i].ar_packet = replayed_pkt[i];
}
ret = test_ipsec_inline_proto_process_with_esn(td_inb, NULL, nb_pkts,
true, &flags);
return ret;
}
static int
test_ipsec_inline_proto_pkt_antireplay(const void *test_data, uint64_t winsz)
{
uint32_t nb_pkts = 5;
bool replayed_pkt[5];
uint64_t esn[5];
/* 1. Advance the TOP of the window to WS * 2 */
esn[0] = winsz * 2;
/* 2. Test sequence number within the new window(WS + 1) */
esn[1] = winsz + 1;
/* 3. Test sequence number less than the window BOTTOM */
esn[2] = winsz;
/* 4. Test sequence number in the middle of the window */
esn[3] = winsz + (winsz / 2);
/* 5. Test replay of the packet in the middle of the window */
esn[4] = winsz + (winsz / 2);
replayed_pkt[0] = false;
replayed_pkt[1] = false;
replayed_pkt[2] = true;
replayed_pkt[3] = false;
replayed_pkt[4] = true;
return test_ipsec_inline_pkt_replay(test_data, esn, replayed_pkt,
nb_pkts, false, winsz);
}
static int
test_ipsec_inline_proto_pkt_antireplay1024(const void *test_data)
{
return test_ipsec_inline_proto_pkt_antireplay(test_data, 1024);
}
static int
test_ipsec_inline_proto_pkt_antireplay2048(const void *test_data)
{
return test_ipsec_inline_proto_pkt_antireplay(test_data, 2048);
}
static int
test_ipsec_inline_proto_pkt_antireplay4096(const void *test_data)
{
return test_ipsec_inline_proto_pkt_antireplay(test_data, 4096);
}
static int
test_ipsec_inline_proto_pkt_esn_antireplay(const void *test_data, uint64_t winsz)
{
uint32_t nb_pkts = 7;
bool replayed_pkt[7];
uint64_t esn[7];
/* Set the initial sequence number */
esn[0] = (uint64_t)(0xFFFFFFFF - winsz);
/* 1. Advance the TOP of the window to (1<<32 + WS/2) */
esn[1] = (uint64_t)((1ULL << 32) + (winsz / 2));
/* 2. Test sequence number within new window (1<<32 + WS/2 + 1) */
esn[2] = (uint64_t)((1ULL << 32) - (winsz / 2) + 1);
/* 3. Test with sequence number within window (1<<32 - 1) */
esn[3] = (uint64_t)((1ULL << 32) - 1);
/* 4. Test with sequence number within window (1<<32 - 1) */
esn[4] = (uint64_t)(1ULL << 32);
/* 5. Test with duplicate sequence number within
* new window (1<<32 - 1)
*/
esn[5] = (uint64_t)((1ULL << 32) - 1);
/* 6. Test with duplicate sequence number within new window (1<<32) */
esn[6] = (uint64_t)(1ULL << 32);
replayed_pkt[0] = false;
replayed_pkt[1] = false;
replayed_pkt[2] = false;
replayed_pkt[3] = false;
replayed_pkt[4] = false;
replayed_pkt[5] = true;
replayed_pkt[6] = true;
return test_ipsec_inline_pkt_replay(test_data, esn, replayed_pkt, nb_pkts,
true, winsz);
}
static int
test_ipsec_inline_proto_pkt_esn_antireplay1024(const void *test_data)
{
return test_ipsec_inline_proto_pkt_esn_antireplay(test_data, 1024);
}
static int
test_ipsec_inline_proto_pkt_esn_antireplay2048(const void *test_data)
{
return test_ipsec_inline_proto_pkt_esn_antireplay(test_data, 2048);
}
static int
test_ipsec_inline_proto_pkt_esn_antireplay4096(const void *test_data)
{
return test_ipsec_inline_proto_pkt_esn_antireplay(test_data, 4096);
}
static struct unit_test_suite inline_ipsec_testsuite = {
.suite_name = "Inline IPsec Ethernet Device Unit Test Suite",
.unit_test_cases = {
TEST_CASE_NAMED_WITH_DATA(
"Outbound known vector (ESP tunnel mode IPv4 AES-GCM 128)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec, &pkt_aes_128_gcm),
TEST_CASE_NAMED_WITH_DATA(
"Outbound known vector (ESP tunnel mode IPv4 AES-GCM 192)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec, &pkt_aes_192_gcm),
TEST_CASE_NAMED_WITH_DATA(
"Outbound known vector (ESP tunnel mode IPv4 AES-GCM 256)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec, &pkt_aes_256_gcm),
TEST_CASE_NAMED_WITH_DATA(
"Outbound known vector (ESP tunnel mode IPv4 AES-CBC 128 HMAC-SHA256 [16B ICV])",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec,
&pkt_aes_128_cbc_hmac_sha256),
TEST_CASE_NAMED_WITH_DATA(
"Outbound known vector (ESP tunnel mode IPv4 AES-CBC 128 HMAC-SHA384 [24B ICV])",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec,
&pkt_aes_128_cbc_hmac_sha384),
TEST_CASE_NAMED_WITH_DATA(
"Outbound known vector (ESP tunnel mode IPv4 AES-CBC 128 HMAC-SHA512 [32B ICV])",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec,
&pkt_aes_128_cbc_hmac_sha512),
TEST_CASE_NAMED_WITH_DATA(
"Outbound known vector (ESP tunnel mode IPv6 AES-GCM 128)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec, &pkt_aes_256_gcm_v6),
TEST_CASE_NAMED_WITH_DATA(
"Outbound known vector (ESP tunnel mode IPv6 AES-CBC 128 HMAC-SHA256 [16B ICV])",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec,
&pkt_aes_128_cbc_hmac_sha256_v6),
TEST_CASE_NAMED_WITH_DATA(
"Outbound known vector (ESP tunnel mode IPv4 NULL AES-XCBC-MAC [12B ICV])",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec,
&pkt_null_aes_xcbc),
TEST_CASE_NAMED_WITH_DATA(
"Outbound fragmented packet",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec_fragmented,
&pkt_aes_128_gcm_frag),
TEST_CASE_NAMED_WITH_DATA(
"Inbound known vector (ESP tunnel mode IPv4 AES-GCM 128)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec_inb, &pkt_aes_128_gcm),
TEST_CASE_NAMED_WITH_DATA(
"Inbound known vector (ESP tunnel mode IPv4 AES-GCM 192)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec_inb, &pkt_aes_192_gcm),
TEST_CASE_NAMED_WITH_DATA(
"Inbound known vector (ESP tunnel mode IPv4 AES-GCM 256)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec_inb, &pkt_aes_256_gcm),
TEST_CASE_NAMED_WITH_DATA(
"Inbound known vector (ESP tunnel mode IPv4 AES-CBC 128)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec_inb, &pkt_aes_128_cbc_null),
TEST_CASE_NAMED_WITH_DATA(
"Inbound known vector (ESP tunnel mode IPv4 AES-CBC 128 HMAC-SHA256 [16B ICV])",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec_inb,
&pkt_aes_128_cbc_hmac_sha256),
TEST_CASE_NAMED_WITH_DATA(
"Inbound known vector (ESP tunnel mode IPv4 AES-CBC 128 HMAC-SHA384 [24B ICV])",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec_inb,
&pkt_aes_128_cbc_hmac_sha384),
TEST_CASE_NAMED_WITH_DATA(
"Inbound known vector (ESP tunnel mode IPv4 AES-CBC 128 HMAC-SHA512 [32B ICV])",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec_inb,
&pkt_aes_128_cbc_hmac_sha512),
TEST_CASE_NAMED_WITH_DATA(
"Inbound known vector (ESP tunnel mode IPv6 AES-GCM 128)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec_inb, &pkt_aes_256_gcm_v6),
TEST_CASE_NAMED_WITH_DATA(
"Inbound known vector (ESP tunnel mode IPv6 AES-CBC 128 HMAC-SHA256 [16B ICV])",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec_inb,
&pkt_aes_128_cbc_hmac_sha256_v6),
TEST_CASE_NAMED_WITH_DATA(
"Inbound known vector (ESP tunnel mode IPv4 NULL AES-XCBC-MAC [12B ICV])",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_known_vec_inb,
&pkt_null_aes_xcbc),
TEST_CASE_NAMED_ST(
"Combined test alg list",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_display_list),
TEST_CASE_NAMED_ST(
"UDP encapsulation",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_udp_encap),
TEST_CASE_NAMED_ST(
"UDP encapsulation ports verification test",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_udp_ports_verify),
TEST_CASE_NAMED_ST(
"Negative test: ICV corruption",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_err_icv_corrupt),
TEST_CASE_NAMED_ST(
"Tunnel dst addr verification",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_tunnel_dst_addr_verify),
TEST_CASE_NAMED_ST(
"Tunnel src and dst addr verification",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_tunnel_src_dst_addr_verify),
TEST_CASE_NAMED_ST(
"Inner IP checksum",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_inner_ip_csum),
TEST_CASE_NAMED_ST(
"Inner L4 checksum",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_inner_l4_csum),
TEST_CASE_NAMED_ST(
"Tunnel IPv4 in IPv4",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_tunnel_v4_in_v4),
TEST_CASE_NAMED_ST(
"Tunnel IPv6 in IPv6",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_tunnel_v6_in_v6),
TEST_CASE_NAMED_ST(
"Tunnel IPv4 in IPv6",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_tunnel_v4_in_v6),
TEST_CASE_NAMED_ST(
"Tunnel IPv6 in IPv4",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_tunnel_v6_in_v4),
TEST_CASE_NAMED_ST(
"Transport IPv4",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_transport_v4),
TEST_CASE_NAMED_ST(
"Transport l4 checksum",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_transport_l4_csum),
TEST_CASE_NAMED_ST(
"Statistics: success",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_stats),
TEST_CASE_NAMED_ST(
"Fragmented packet",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_pkt_fragment),
TEST_CASE_NAMED_ST(
"Tunnel header copy DF (inner 0)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_copy_df_inner_0),
TEST_CASE_NAMED_ST(
"Tunnel header copy DF (inner 1)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_copy_df_inner_1),
TEST_CASE_NAMED_ST(
"Tunnel header set DF 0 (inner 1)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_set_df_0_inner_1),
TEST_CASE_NAMED_ST(
"Tunnel header set DF 1 (inner 0)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_set_df_1_inner_0),
TEST_CASE_NAMED_ST(
"Tunnel header IPv4 copy DSCP (inner 0)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_ipv4_copy_dscp_inner_0),
TEST_CASE_NAMED_ST(
"Tunnel header IPv4 copy DSCP (inner 1)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_ipv4_copy_dscp_inner_1),
TEST_CASE_NAMED_ST(
"Tunnel header IPv4 set DSCP 0 (inner 1)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_ipv4_set_dscp_0_inner_1),
TEST_CASE_NAMED_ST(
"Tunnel header IPv4 set DSCP 1 (inner 0)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_ipv4_set_dscp_1_inner_0),
TEST_CASE_NAMED_ST(
"Tunnel header IPv6 copy DSCP (inner 0)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_ipv6_copy_dscp_inner_0),
TEST_CASE_NAMED_ST(
"Tunnel header IPv6 copy DSCP (inner 1)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_ipv6_copy_dscp_inner_1),
TEST_CASE_NAMED_ST(
"Tunnel header IPv6 set DSCP 0 (inner 1)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_ipv6_set_dscp_0_inner_1),
TEST_CASE_NAMED_ST(
"Tunnel header IPv6 set DSCP 1 (inner 0)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_ipv6_set_dscp_1_inner_0),
TEST_CASE_NAMED_ST(
"Tunnel header IPv6 copy FLABEL (inner 0)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_ipv6_copy_flabel_inner_0),
TEST_CASE_NAMED_ST(
"Tunnel header IPv6 copy FLABEL (inner 1)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_ipv6_copy_flabel_inner_1),
TEST_CASE_NAMED_ST(
"Tunnel header IPv6 set FLABEL 0 (inner 1)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_ipv6_set_flabel_0_inner_1),
TEST_CASE_NAMED_ST(
"Tunnel header IPv6 set FLABEL 1 (inner 0)",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_ipv6_set_flabel_1_inner_0),
TEST_CASE_NAMED_ST(
"Tunnel header IPv4 decrement inner TTL",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_ipv4_ttl_decrement),
TEST_CASE_NAMED_ST(
"Tunnel header IPv6 decrement inner hop limit",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_ipv6_hop_limit_decrement),
TEST_CASE_NAMED_ST(
"IV generation",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_iv_gen),
TEST_CASE_NAMED_WITH_DATA(
"Antireplay with window size 1024",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_pkt_antireplay1024,
&pkt_aes_128_gcm),
TEST_CASE_NAMED_WITH_DATA(
"Antireplay with window size 2048",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_pkt_antireplay2048,
&pkt_aes_128_gcm),
TEST_CASE_NAMED_WITH_DATA(
"Antireplay with window size 4096",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_pkt_antireplay4096,
&pkt_aes_128_gcm),
TEST_CASE_NAMED_WITH_DATA(
"ESN and Antireplay with window size 1024",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_pkt_esn_antireplay1024,
&pkt_aes_128_gcm),
TEST_CASE_NAMED_WITH_DATA(
"ESN and Antireplay with window size 2048",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_pkt_esn_antireplay2048,
&pkt_aes_128_gcm),
TEST_CASE_NAMED_WITH_DATA(
"ESN and Antireplay with window size 4096",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_ipsec_inline_proto_pkt_esn_antireplay4096,
&pkt_aes_128_gcm),
TEST_CASE_NAMED_WITH_DATA(
"IPv4 Reassembly with 2 fragments",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_inline_ip_reassembly, &ipv4_2frag_vector),
TEST_CASE_NAMED_WITH_DATA(
"IPv6 Reassembly with 2 fragments",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_inline_ip_reassembly, &ipv6_2frag_vector),
TEST_CASE_NAMED_WITH_DATA(
"IPv4 Reassembly with 4 fragments",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_inline_ip_reassembly, &ipv4_4frag_vector),
TEST_CASE_NAMED_WITH_DATA(
"IPv6 Reassembly with 4 fragments",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_inline_ip_reassembly, &ipv6_4frag_vector),
TEST_CASE_NAMED_WITH_DATA(
"IPv4 Reassembly with 5 fragments",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_inline_ip_reassembly, &ipv4_5frag_vector),
TEST_CASE_NAMED_WITH_DATA(
"IPv6 Reassembly with 5 fragments",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_inline_ip_reassembly, &ipv6_5frag_vector),
TEST_CASE_NAMED_WITH_DATA(
"IPv4 Reassembly with incomplete fragments",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_inline_ip_reassembly, &ipv4_incomplete_vector),
TEST_CASE_NAMED_WITH_DATA(
"IPv4 Reassembly with overlapping fragments",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_inline_ip_reassembly, &ipv4_overlap_vector),
TEST_CASE_NAMED_WITH_DATA(
"IPv4 Reassembly with out of order fragments",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_inline_ip_reassembly, &ipv4_out_of_order_vector),
TEST_CASE_NAMED_WITH_DATA(
"IPv4 Reassembly with burst of 4 fragments",
ut_setup_inline_ipsec, ut_teardown_inline_ipsec,
test_inline_ip_reassembly, &ipv4_4frag_burst_vector),
TEST_CASES_END() /**< NULL terminate unit test array */
},
};
static int
test_inline_ipsec(void)
{
inline_ipsec_testsuite.setup = inline_ipsec_testsuite_setup;
inline_ipsec_testsuite.teardown = inline_ipsec_testsuite_teardown;
return unit_test_suite_runner(&inline_ipsec_testsuite);
}
static int
test_event_inline_ipsec(void)
{
inline_ipsec_testsuite.setup = event_inline_ipsec_testsuite_setup;
inline_ipsec_testsuite.teardown = event_inline_ipsec_testsuite_teardown;
return unit_test_suite_runner(&inline_ipsec_testsuite);
}
#endif /* !RTE_EXEC_ENV_WINDOWS */
REGISTER_TEST_COMMAND(inline_ipsec_autotest, test_inline_ipsec);
REGISTER_TEST_COMMAND(event_inline_ipsec_autotest, test_event_inline_ipsec);