numam-dpdk/drivers/net/bnxt/bnxt_rxr.c
Olivier Matz 35b2d13fd6 net: add rte prefix to ether defines
Add 'RTE_' prefix to defines:
- rename ETHER_ADDR_LEN as RTE_ETHER_ADDR_LEN.
- rename ETHER_TYPE_LEN as RTE_ETHER_TYPE_LEN.
- rename ETHER_CRC_LEN as RTE_ETHER_CRC_LEN.
- rename ETHER_HDR_LEN as RTE_ETHER_HDR_LEN.
- rename ETHER_MIN_LEN as RTE_ETHER_MIN_LEN.
- rename ETHER_MAX_LEN as RTE_ETHER_MAX_LEN.
- rename ETHER_MTU as RTE_ETHER_MTU.
- rename ETHER_MAX_VLAN_FRAME_LEN as RTE_ETHER_MAX_VLAN_FRAME_LEN.
- rename ETHER_MAX_VLAN_ID as RTE_ETHER_MAX_VLAN_ID.
- rename ETHER_MAX_JUMBO_FRAME_LEN as RTE_ETHER_MAX_JUMBO_FRAME_LEN.
- rename ETHER_MIN_MTU as RTE_ETHER_MIN_MTU.
- rename ETHER_LOCAL_ADMIN_ADDR as RTE_ETHER_LOCAL_ADMIN_ADDR.
- rename ETHER_GROUP_ADDR as RTE_ETHER_GROUP_ADDR.
- rename ETHER_TYPE_IPv4 as RTE_ETHER_TYPE_IPv4.
- rename ETHER_TYPE_IPv6 as RTE_ETHER_TYPE_IPv6.
- rename ETHER_TYPE_ARP as RTE_ETHER_TYPE_ARP.
- rename ETHER_TYPE_VLAN as RTE_ETHER_TYPE_VLAN.
- rename ETHER_TYPE_RARP as RTE_ETHER_TYPE_RARP.
- rename ETHER_TYPE_QINQ as RTE_ETHER_TYPE_QINQ.
- rename ETHER_TYPE_ETAG as RTE_ETHER_TYPE_ETAG.
- rename ETHER_TYPE_1588 as RTE_ETHER_TYPE_1588.
- rename ETHER_TYPE_SLOW as RTE_ETHER_TYPE_SLOW.
- rename ETHER_TYPE_TEB as RTE_ETHER_TYPE_TEB.
- rename ETHER_TYPE_LLDP as RTE_ETHER_TYPE_LLDP.
- rename ETHER_TYPE_MPLS as RTE_ETHER_TYPE_MPLS.
- rename ETHER_TYPE_MPLSM as RTE_ETHER_TYPE_MPLSM.
- rename ETHER_VXLAN_HLEN as RTE_ETHER_VXLAN_HLEN.
- rename ETHER_ADDR_FMT_SIZE as RTE_ETHER_ADDR_FMT_SIZE.
- rename VXLAN_GPE_TYPE_IPV4 as RTE_VXLAN_GPE_TYPE_IPV4.
- rename VXLAN_GPE_TYPE_IPV6 as RTE_VXLAN_GPE_TYPE_IPV6.
- rename VXLAN_GPE_TYPE_ETH as RTE_VXLAN_GPE_TYPE_ETH.
- rename VXLAN_GPE_TYPE_NSH as RTE_VXLAN_GPE_TYPE_NSH.
- rename VXLAN_GPE_TYPE_MPLS as RTE_VXLAN_GPE_TYPE_MPLS.
- rename VXLAN_GPE_TYPE_GBP as RTE_VXLAN_GPE_TYPE_GBP.
- rename VXLAN_GPE_TYPE_VBNG as RTE_VXLAN_GPE_TYPE_VBNG.
- rename ETHER_VXLAN_GPE_HLEN as RTE_ETHER_VXLAN_GPE_HLEN.

Do not update the command line library to avoid adding a dependency to
librte_net.

Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
Reviewed-by: Stephen Hemminger <stephen@networkplumber.org>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2019-05-24 13:34:45 +02:00

782 lines
20 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2014-2018 Broadcom
* All rights reserved.
*/
#include <inttypes.h>
#include <stdbool.h>
#include <rte_bitmap.h>
#include <rte_byteorder.h>
#include <rte_malloc.h>
#include <rte_memory.h>
#include "bnxt.h"
#include "bnxt_cpr.h"
#include "bnxt_ring.h"
#include "bnxt_rxr.h"
#include "bnxt_rxq.h"
#include "hsi_struct_def_dpdk.h"
/*
* RX Ring handling
*/
static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
{
struct rte_mbuf *data;
data = rte_mbuf_raw_alloc(mb);
return data;
}
static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
struct bnxt_rx_ring_info *rxr,
uint16_t prod)
{
struct rx_prod_pkt_bd *rxbd = &rxr->rx_desc_ring[prod];
struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
struct rte_mbuf *mbuf;
mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
if (!mbuf) {
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
return -ENOMEM;
}
rx_buf->mbuf = mbuf;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
return 0;
}
static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
struct bnxt_rx_ring_info *rxr,
uint16_t prod)
{
struct rx_prod_pkt_bd *rxbd = &rxr->ag_desc_ring[prod];
struct bnxt_sw_rx_bd *rx_buf = &rxr->ag_buf_ring[prod];
struct rte_mbuf *mbuf;
mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
if (!mbuf) {
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
return -ENOMEM;
}
if (rxbd == NULL)
PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
if (rx_buf == NULL)
PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
rx_buf->mbuf = mbuf;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
return 0;
}
static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
struct rte_mbuf *mbuf)
{
uint16_t prod = RING_NEXT(rxr->rx_ring_struct, rxr->rx_prod);
struct bnxt_sw_rx_bd *prod_rx_buf;
struct rx_prod_pkt_bd *prod_bd;
prod_rx_buf = &rxr->rx_buf_ring[prod];
RTE_ASSERT(prod_rx_buf->mbuf == NULL);
RTE_ASSERT(mbuf != NULL);
prod_rx_buf->mbuf = mbuf;
prod_bd = &rxr->rx_desc_ring[prod];
prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxr->rx_prod = prod;
}
static inline
struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
uint16_t cons)
{
struct bnxt_sw_rx_bd *cons_rx_buf;
struct rte_mbuf *mbuf;
cons_rx_buf = &rxr->rx_buf_ring[cons];
RTE_ASSERT(cons_rx_buf->mbuf != NULL);
mbuf = cons_rx_buf->mbuf;
cons_rx_buf->mbuf = NULL;
return mbuf;
}
static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
struct rx_tpa_start_cmpl *tpa_start,
struct rx_tpa_start_cmpl_hi *tpa_start1)
{
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint8_t agg_id = rte_le_to_cpu_32(tpa_start->agg_id &
RX_TPA_START_CMPL_AGG_ID_MASK) >> RX_TPA_START_CMPL_AGG_ID_SFT;
uint16_t data_cons;
struct bnxt_tpa_info *tpa_info;
struct rte_mbuf *mbuf;
data_cons = tpa_start->opaque;
tpa_info = &rxr->tpa_info[agg_id];
mbuf = bnxt_consume_rx_buf(rxr, data_cons);
bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
tpa_info->mbuf = mbuf;
tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
mbuf->nb_segs = 1;
mbuf->next = NULL;
mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
mbuf->data_len = mbuf->pkt_len;
mbuf->port = rxq->port_id;
mbuf->ol_flags = PKT_RX_LRO;
if (likely(tpa_start->flags_type &
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
mbuf->ol_flags |= PKT_RX_RSS_HASH;
} else {
mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
}
if (tpa_start1->flags2 &
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
}
if (likely(tpa_start1->flags2 &
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
/* recycle next mbuf */
data_cons = RING_NEXT(rxr->rx_ring_struct, data_cons);
bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
}
static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
uint8_t agg_bufs, uint32_t raw_cp_cons)
{
uint16_t last_cp_cons;
struct rx_pkt_cmpl *agg_cmpl;
raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
cpr->valid = FLIP_VALID(raw_cp_cons,
cpr->cp_ring_struct->ring_mask,
cpr->valid);
return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
}
/* TPA consume agg buffer out of order, allocate connected data only */
static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
{
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint16_t next = RING_NEXT(rxr->ag_ring_struct, rxr->ag_prod);
/* TODO batch allocation for better performance */
while (rte_bitmap_get(rxr->ag_bitmap, next)) {
if (unlikely(bnxt_alloc_ag_data(rxq, rxr, next))) {
PMD_DRV_LOG(ERR,
"agg mbuf alloc failed: prod=0x%x\n", next);
break;
}
rte_bitmap_clear(rxr->ag_bitmap, next);
rxr->ag_prod = next;
next = RING_NEXT(rxr->ag_ring_struct, next);
}
return 0;
}
static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
uint8_t agg_buf)
{
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
int i;
uint16_t cp_cons, ag_cons;
struct rx_pkt_cmpl *rxcmp;
struct rte_mbuf *last = mbuf;
for (i = 0; i < agg_buf; i++) {
struct bnxt_sw_rx_bd *ag_buf;
struct rte_mbuf *ag_mbuf;
*tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
rxcmp = (struct rx_pkt_cmpl *)
&cpr->cp_desc_ring[cp_cons];
#ifdef BNXT_DEBUG
bnxt_dump_cmpl(cp_cons, rxcmp);
#endif
ag_cons = rxcmp->opaque;
RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
ag_buf = &rxr->ag_buf_ring[ag_cons];
ag_mbuf = ag_buf->mbuf;
RTE_ASSERT(ag_mbuf != NULL);
ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
mbuf->nb_segs++;
mbuf->pkt_len += ag_mbuf->data_len;
last->next = ag_mbuf;
last = ag_mbuf;
ag_buf->mbuf = NULL;
/*
* As aggregation buffer consumed out of order in TPA module,
* use bitmap to track freed slots to be allocated and notified
* to NIC
*/
rte_bitmap_set(rxr->ag_bitmap, ag_cons);
}
bnxt_prod_ag_mbuf(rxq);
return 0;
}
static inline struct rte_mbuf *bnxt_tpa_end(
struct bnxt_rx_queue *rxq,
uint32_t *raw_cp_cons,
struct rx_tpa_end_cmpl *tpa_end,
struct rx_tpa_end_cmpl_hi *tpa_end1 __rte_unused)
{
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint8_t agg_id = (tpa_end->agg_id & RX_TPA_END_CMPL_AGG_ID_MASK)
>> RX_TPA_END_CMPL_AGG_ID_SFT;
struct rte_mbuf *mbuf;
uint8_t agg_bufs;
struct bnxt_tpa_info *tpa_info;
tpa_info = &rxr->tpa_info[agg_id];
mbuf = tpa_info->mbuf;
RTE_ASSERT(mbuf != NULL);
rte_prefetch0(mbuf);
agg_bufs = (rte_le_to_cpu_32(tpa_end->agg_bufs_v1) &
RX_TPA_END_CMPL_AGG_BUFS_MASK) >> RX_TPA_END_CMPL_AGG_BUFS_SFT;
if (agg_bufs) {
if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
return NULL;
bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs);
}
mbuf->l4_len = tpa_end->payload_offset;
struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
RTE_ASSERT(new_data != NULL);
if (!new_data) {
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
return NULL;
}
tpa_info->mbuf = new_data;
return mbuf;
}
static uint32_t
bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
{
uint32_t l3, pkt_type = 0;
uint32_t t_ipcs = 0, ip6 = 0, vlan = 0;
uint32_t flags_type;
vlan = !!(rxcmp1->flags2 &
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN));
pkt_type |= vlan ? RTE_PTYPE_L2_ETHER_VLAN : RTE_PTYPE_L2_ETHER;
t_ipcs = !!(rxcmp1->flags2 &
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC));
ip6 = !!(rxcmp1->flags2 &
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_IP_TYPE));
flags_type = rxcmp->flags_type &
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
if (!t_ipcs && !ip6)
l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
else if (!t_ipcs && ip6)
l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
else if (t_ipcs && !ip6)
l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
else
l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
switch (flags_type) {
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_ICMP):
if (!t_ipcs)
pkt_type |= l3 | RTE_PTYPE_L4_ICMP;
else
pkt_type |= l3 | RTE_PTYPE_INNER_L4_ICMP;
break;
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_TCP):
if (!t_ipcs)
pkt_type |= l3 | RTE_PTYPE_L4_TCP;
else
pkt_type |= l3 | RTE_PTYPE_INNER_L4_TCP;
break;
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_UDP):
if (!t_ipcs)
pkt_type |= l3 | RTE_PTYPE_L4_UDP;
else
pkt_type |= l3 | RTE_PTYPE_INNER_L4_UDP;
break;
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_IP):
pkt_type |= l3;
break;
}
return pkt_type;
}
static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
{
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
struct rx_pkt_cmpl *rxcmp;
struct rx_pkt_cmpl_hi *rxcmp1;
uint32_t tmp_raw_cons = *raw_cons;
uint16_t cons, prod, cp_cons =
RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
struct rte_mbuf *mbuf;
int rc = 0;
uint8_t agg_buf = 0;
uint16_t cmp_type;
rxcmp = (struct rx_pkt_cmpl *)
&cpr->cp_desc_ring[cp_cons];
tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
return -EBUSY;
cpr->valid = FLIP_VALID(cp_cons,
cpr->cp_ring_struct->ring_mask,
cpr->valid);
cmp_type = CMP_TYPE(rxcmp);
if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
(struct rx_tpa_start_cmpl_hi *)rxcmp1);
rc = -EINVAL; /* Continue w/o new mbuf */
goto next_rx;
} else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
(struct rx_tpa_end_cmpl *)rxcmp,
(struct rx_tpa_end_cmpl_hi *)rxcmp1);
if (unlikely(!mbuf))
return -EBUSY;
*rx_pkt = mbuf;
goto next_rx;
} else if (cmp_type != 0x11) {
rc = -EINVAL;
goto next_rx;
}
agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
>> RX_PKT_CMPL_AGG_BUFS_SFT;
if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
return -EBUSY;
prod = rxr->rx_prod;
cons = rxcmp->opaque;
mbuf = bnxt_consume_rx_buf(rxr, cons);
if (mbuf == NULL)
return -EBUSY;
rte_prefetch0(mbuf);
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->next = NULL;
mbuf->pkt_len = rxcmp->len;
mbuf->data_len = mbuf->pkt_len;
mbuf->port = rxq->port_id;
mbuf->ol_flags = 0;
if (rxcmp->flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
mbuf->hash.rss = rxcmp->rss_hash;
mbuf->ol_flags |= PKT_RX_RSS_HASH;
} else {
mbuf->hash.fdir.id = rxcmp1->cfa_code;
mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
}
if ((rxcmp->flags_type & rte_cpu_to_le_16(RX_PKT_CMPL_FLAGS_MASK)) ==
RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)
mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
if (agg_buf)
bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf);
if (rxcmp1->flags2 & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
mbuf->vlan_tci = rxcmp1->metadata &
(RX_PKT_CMPL_METADATA_VID_MASK |
RX_PKT_CMPL_METADATA_DE |
RX_PKT_CMPL_METADATA_PRI_MASK);
mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
}
if (likely(RX_CMP_IP_CS_OK(rxcmp1)))
mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
else if (likely(RX_CMP_IP_CS_UNKNOWN(rxcmp1)))
mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
else
mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
if (likely(RX_CMP_L4_CS_OK(rxcmp1)))
mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
else if (likely(RX_CMP_L4_CS_UNKNOWN(rxcmp1)))
mbuf->ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
else
mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
#ifdef BNXT_DEBUG
if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
/* Re-install the mbuf back to the rx ring */
bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
rc = -EIO;
goto next_rx;
}
#endif
/*
* TODO: Redesign this....
* If the allocation fails, the packet does not get received.
* Simply returning this will result in slowly falling behind
* on the producer ring buffers.
* Instead, "filling up" the producer just before ringing the
* doorbell could be a better solution since it will let the
* producer ring starve until memory is available again pushing
* the drops into hardware and getting them out of the driver
* allowing recovery to a full producer ring.
*
* This could also help with cache usage by preventing per-packet
* calls in favour of a tight loop with the same function being called
* in it.
*/
prod = RING_NEXT(rxr->rx_ring_struct, prod);
if (bnxt_alloc_rx_data(rxq, rxr, prod)) {
PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n", prod);
rc = -ENOMEM;
goto rx;
}
rxr->rx_prod = prod;
/*
* All MBUFs are allocated with the same size under DPDK,
* no optimization for rx_copy_thresh
*/
rx:
*rx_pkt = mbuf;
next_rx:
*raw_cons = tmp_raw_cons;
return rc;
}
uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct bnxt_rx_queue *rxq = rx_queue;
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint32_t raw_cons = cpr->cp_raw_cons;
uint32_t cons;
int nb_rx_pkts = 0;
struct rx_pkt_cmpl *rxcmp;
uint16_t prod = rxr->rx_prod;
uint16_t ag_prod = rxr->ag_prod;
int rc = 0;
bool evt = false;
/* If Rx Q was stopped return. RxQ0 cannot be stopped. */
if (unlikely(((rxq->rx_deferred_start ||
!rte_spinlock_trylock(&rxq->lock)) &&
rxq->queue_id)))
return 0;
/* Handle RX burst request */
while (1) {
cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
rte_prefetch0(&cpr->cp_desc_ring[cons]);
rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
break;
cpr->valid = FLIP_VALID(cons,
cpr->cp_ring_struct->ring_mask,
cpr->valid);
/* TODO: Avoid magic numbers... */
if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
if (likely(!rc) || rc == -ENOMEM)
nb_rx_pkts++;
if (rc == -EBUSY) /* partial completion */
break;
} else {
evt =
bnxt_event_hwrm_resp_handler(rxq->bp,
(struct cmpl_base *)rxcmp);
}
raw_cons = NEXT_RAW_CMP(raw_cons);
if (nb_rx_pkts == nb_pkts || evt)
break;
/* Post some Rx buf early in case of larger burst processing */
if (nb_rx_pkts == BNXT_RX_POST_THRESH)
B_RX_DB(rxr->rx_doorbell, rxr->rx_prod);
}
cpr->cp_raw_cons = raw_cons;
if (!nb_rx_pkts && !evt) {
/*
* For PMD, there is no need to keep on pushing to REARM
* the doorbell if there are no new completions
*/
goto done;
}
if (prod != rxr->rx_prod)
B_RX_DB(rxr->rx_doorbell, rxr->rx_prod);
/* Ring the AGG ring DB */
if (ag_prod != rxr->ag_prod)
B_RX_DB(rxr->ag_doorbell, rxr->ag_prod);
B_CP_DIS_DB(cpr, cpr->cp_raw_cons);
/* Attempt to alloc Rx buf in case of a previous allocation failure. */
if (rc == -ENOMEM) {
int i;
for (i = prod; i <= nb_rx_pkts;
i = RING_NEXT(rxr->rx_ring_struct, i)) {
struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
/* Buffer already allocated for this index. */
if (rx_buf->mbuf != NULL)
continue;
/* This slot is empty. Alloc buffer for Rx */
if (!bnxt_alloc_rx_data(rxq, rxr, i)) {
rxr->rx_prod = i;
B_RX_DB(rxr->rx_doorbell, rxr->rx_prod);
} else {
PMD_DRV_LOG(ERR, "Alloc mbuf failed\n");
break;
}
}
}
done:
rte_spinlock_unlock(&rxq->lock);
return nb_rx_pkts;
}
void bnxt_free_rx_rings(struct bnxt *bp)
{
int i;
struct bnxt_rx_queue *rxq;
if (!bp->rx_queues)
return;
for (i = 0; i < (int)bp->rx_nr_rings; i++) {
rxq = bp->rx_queues[i];
if (!rxq)
continue;
bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
rte_free(rxq->rx_ring->rx_ring_struct);
/* Free the Aggregator ring */
bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
rte_free(rxq->rx_ring->ag_ring_struct);
rxq->rx_ring->ag_ring_struct = NULL;
rte_free(rxq->rx_ring);
bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
rte_free(rxq->cp_ring->cp_ring_struct);
rte_free(rxq->cp_ring);
rte_free(rxq);
bp->rx_queues[i] = NULL;
}
}
int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
{
struct bnxt_cp_ring_info *cpr;
struct bnxt_rx_ring_info *rxr;
struct bnxt_ring *ring;
rxq->rx_buf_use_size = BNXT_MAX_MTU + RTE_ETHER_HDR_LEN +
RTE_ETHER_CRC_LEN + (2 * VLAN_TAG_SIZE);
rxq->rx_buf_size = rxq->rx_buf_use_size + sizeof(struct rte_mbuf);
rxr = rte_zmalloc_socket("bnxt_rx_ring",
sizeof(struct bnxt_rx_ring_info),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxr == NULL)
return -ENOMEM;
rxq->rx_ring = rxr;
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
sizeof(struct bnxt_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (ring == NULL)
return -ENOMEM;
rxr->rx_ring_struct = ring;
ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
ring->ring_mask = ring->ring_size - 1;
ring->bd = (void *)rxr->rx_desc_ring;
ring->bd_dma = rxr->rx_desc_mapping;
ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
ring->vmem = (void **)&rxr->rx_buf_ring;
cpr = rte_zmalloc_socket("bnxt_rx_ring",
sizeof(struct bnxt_cp_ring_info),
RTE_CACHE_LINE_SIZE, socket_id);
if (cpr == NULL)
return -ENOMEM;
rxq->cp_ring = cpr;
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
sizeof(struct bnxt_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (ring == NULL)
return -ENOMEM;
cpr->cp_ring_struct = ring;
ring->ring_size = rte_align32pow2(rxr->rx_ring_struct->ring_size *
(2 + AGG_RING_SIZE_FACTOR));
ring->ring_mask = ring->ring_size - 1;
ring->bd = (void *)cpr->cp_desc_ring;
ring->bd_dma = cpr->cp_desc_mapping;
ring->vmem_size = 0;
ring->vmem = NULL;
/* Allocate Aggregator rings */
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
sizeof(struct bnxt_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (ring == NULL)
return -ENOMEM;
rxr->ag_ring_struct = ring;
ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
AGG_RING_SIZE_FACTOR);
ring->ring_mask = ring->ring_size - 1;
ring->bd = (void *)rxr->ag_desc_ring;
ring->bd_dma = rxr->ag_desc_mapping;
ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
ring->vmem = (void **)&rxr->ag_buf_ring;
return 0;
}
static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
uint16_t len)
{
uint32_t j;
struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
if (!rx_bd_ring)
return;
for (j = 0; j < ring->ring_size; j++) {
rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
rx_bd_ring[j].len = rte_cpu_to_le_16(len);
rx_bd_ring[j].opaque = j;
}
}
int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
{
struct bnxt_rx_ring_info *rxr;
struct bnxt_ring *ring;
uint32_t prod, type;
unsigned int i;
uint16_t size;
size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
if (rxq->rx_buf_use_size <= size)
size = rxq->rx_buf_use_size;
type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT | RX_PROD_PKT_BD_FLAGS_EOP_PAD;
rxr = rxq->rx_ring;
ring = rxr->rx_ring_struct;
bnxt_init_rxbds(ring, type, size);
prod = rxr->rx_prod;
for (i = 0; i < ring->ring_size; i++) {
if (bnxt_alloc_rx_data(rxq, rxr, prod) != 0) {
PMD_DRV_LOG(WARNING,
"init'ed rx ring %d with %d/%d mbufs only\n",
rxq->queue_id, i, ring->ring_size);
break;
}
rxr->rx_prod = prod;
prod = RING_NEXT(rxr->rx_ring_struct, prod);
}
ring = rxr->ag_ring_struct;
type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
bnxt_init_rxbds(ring, type, size);
prod = rxr->ag_prod;
for (i = 0; i < ring->ring_size; i++) {
if (bnxt_alloc_ag_data(rxq, rxr, prod) != 0) {
PMD_DRV_LOG(WARNING,
"init'ed AG ring %d with %d/%d mbufs only\n",
rxq->queue_id, i, ring->ring_size);
break;
}
rxr->ag_prod = prod;
prod = RING_NEXT(rxr->ag_ring_struct, prod);
}
PMD_DRV_LOG(DEBUG, "AGG Done!\n");
if (rxr->tpa_info) {
for (i = 0; i < BNXT_TPA_MAX; i++) {
rxr->tpa_info[i].mbuf =
__bnxt_alloc_rx_data(rxq->mb_pool);
if (!rxr->tpa_info[i].mbuf) {
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
return -ENOMEM;
}
}
}
PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
return 0;
}