numam-dpdk/lib/librte_bpf/bpf_jit_arm64.c
Ruifeng Wang bb2a9973c0 bpf/arm: fix clang build
Clang has different prototype for __builtin___clear_cache().
It requires 'char *' parameters while gcc requires 'void *'.

Clang version 8.0 was used.
Warning messages during build:
../lib/librte_bpf/bpf_jit_arm64.c:1438:26: warning: incompatible pointer
types passing 'uint32_t *' (aka 'unsigned int *') to parameter of type
'char *' [-Wincompatible-pointer-types]
        __builtin___clear_cache(ctx.ins, ctx.ins + ctx.idx);
                                ^~~~~~~
../lib/librte_bpf/bpf_jit_arm64.c:1438:35: warning: incompatible pointer
types passing 'uint32_t *' (aka 'unsigned int *') to parameter of type
'char *' [-Wincompatible-pointer-types]
        __builtin___clear_cache(ctx.ins, ctx.ins + ctx.idx);
                                         ^~~~~~~~~~~~~~~~~

Fixes: f3e516772464 ("bpf/arm: add prologue and epilogue")
Cc: jerinj@marvell.com

Signed-off-by: Ruifeng Wang <ruifeng.wang@arm.com>
Reviewed-by: Phil Yang <phil.yang@arm.com>
Reviewed-by: Gavin Hu <gavin.hu@arm.com>
Acked-by: Jerin Jacob <jerinj@marvell.com>
2019-11-21 00:30:39 +01:00

1452 lines
33 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#include <errno.h>
#include <stdbool.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include "bpf_impl.h"
#define A64_REG_MASK(r) ((r) & 0x1f)
#define A64_INVALID_OP_CODE (0xffffffff)
#define TMP_REG_1 (EBPF_REG_10 + 1)
#define TMP_REG_2 (EBPF_REG_10 + 2)
#define TMP_REG_3 (EBPF_REG_10 + 3)
#define EBPF_FP (EBPF_REG_10)
#define EBPF_OP_GET(op) (BPF_OP(op) >> 4)
#define A64_R(x) x
#define A64_FP 29
#define A64_LR 30
#define A64_SP 31
#define A64_ZR 31
#define check_imm(n, val) (((val) >= 0) ? !!((val) >> (n)) : !!((~val) >> (n)))
#define mask_imm(n, val) ((val) & ((1 << (n)) - 1))
struct ebpf_a64_map {
uint32_t off; /* eBPF to arm64 insn offset mapping for jump */
uint8_t off_to_b; /* Offset to branch instruction delta */
};
struct a64_jit_ctx {
size_t stack_sz; /* Stack size */
uint32_t *ins; /* ARM64 instructions. NULL if first pass */
struct ebpf_a64_map *map; /* eBPF to arm64 insn mapping for jump */
uint32_t idx; /* Current instruction index */
uint32_t program_start; /* Program index, Just after prologue */
uint32_t program_sz; /* Program size. Found in first pass */
uint8_t foundcall; /* Found EBPF_CALL class code in eBPF pgm */
};
static int
check_immr_imms(bool is64, uint8_t immr, uint8_t imms)
{
const unsigned int width = is64 ? 64 : 32;
if (immr >= width || imms >= width)
return 1;
return 0;
}
static int
check_mov_hw(bool is64, const uint8_t val)
{
if (val == 16 || val == 0)
return 0;
else if (is64 && val != 64 && val != 48 && val != 32)
return 1;
return 0;
}
static int
check_ls_sz(uint8_t sz)
{
if (sz == BPF_B || sz == BPF_H || sz == BPF_W || sz == EBPF_DW)
return 0;
return 1;
}
static int
check_reg(uint8_t r)
{
return (r > 31) ? 1 : 0;
}
static int
is_first_pass(struct a64_jit_ctx *ctx)
{
return (ctx->ins == NULL);
}
static int
check_invalid_args(struct a64_jit_ctx *ctx, uint32_t limit)
{
uint32_t idx;
if (is_first_pass(ctx))
return 0;
for (idx = 0; idx < limit; idx++) {
if (rte_le_to_cpu_32(ctx->ins[idx]) == A64_INVALID_OP_CODE) {
RTE_BPF_LOG(ERR,
"%s: invalid opcode at %u;\n", __func__, idx);
return -EINVAL;
}
}
return 0;
}
static int
jump_offset_init(struct a64_jit_ctx *ctx, struct rte_bpf *bpf)
{
uint32_t i;
ctx->map = malloc(bpf->prm.nb_ins * sizeof(ctx->map[0]));
if (ctx->map == NULL)
return -ENOMEM;
/* Fill with fake offsets */
for (i = 0; i != bpf->prm.nb_ins; i++) {
ctx->map[i].off = INT32_MAX;
ctx->map[i].off_to_b = 0;
}
return 0;
}
static void
jump_offset_fini(struct a64_jit_ctx *ctx)
{
free(ctx->map);
}
static void
jump_offset_update(struct a64_jit_ctx *ctx, uint32_t ebpf_idx)
{
if (is_first_pass(ctx))
ctx->map[ebpf_idx].off = ctx->idx;
}
static void
jump_offset_to_branch_update(struct a64_jit_ctx *ctx, uint32_t ebpf_idx)
{
if (is_first_pass(ctx))
ctx->map[ebpf_idx].off_to_b = ctx->idx - ctx->map[ebpf_idx].off;
}
static int32_t
jump_offset_get(struct a64_jit_ctx *ctx, uint32_t from, int16_t offset)
{
int32_t a64_from, a64_to;
a64_from = ctx->map[from].off + ctx->map[from].off_to_b;
a64_to = ctx->map[from + offset + 1].off;
if (a64_to == INT32_MAX)
return a64_to;
return a64_to - a64_from;
}
enum a64_cond_e {
A64_EQ = 0x0, /* == */
A64_NE = 0x1, /* != */
A64_CS = 0x2, /* Unsigned >= */
A64_CC = 0x3, /* Unsigned < */
A64_MI = 0x4, /* < 0 */
A64_PL = 0x5, /* >= 0 */
A64_VS = 0x6, /* Overflow */
A64_VC = 0x7, /* No overflow */
A64_HI = 0x8, /* Unsigned > */
A64_LS = 0x9, /* Unsigned <= */
A64_GE = 0xa, /* Signed >= */
A64_LT = 0xb, /* Signed < */
A64_GT = 0xc, /* Signed > */
A64_LE = 0xd, /* Signed <= */
A64_AL = 0xe, /* Always */
};
static int
check_cond(uint8_t cond)
{
return (cond >= A64_AL) ? 1 : 0;
}
static uint8_t
ebpf_to_a64_cond(uint8_t op)
{
switch (BPF_OP(op)) {
case BPF_JEQ:
return A64_EQ;
case BPF_JGT:
return A64_HI;
case EBPF_JLT:
return A64_CC;
case BPF_JGE:
return A64_CS;
case EBPF_JLE:
return A64_LS;
case BPF_JSET:
case EBPF_JNE:
return A64_NE;
case EBPF_JSGT:
return A64_GT;
case EBPF_JSLT:
return A64_LT;
case EBPF_JSGE:
return A64_GE;
case EBPF_JSLE:
return A64_LE;
default:
return UINT8_MAX;
}
}
/* Emit an instruction */
static inline void
emit_insn(struct a64_jit_ctx *ctx, uint32_t insn, int error)
{
if (error)
insn = A64_INVALID_OP_CODE;
if (ctx->ins)
ctx->ins[ctx->idx] = rte_cpu_to_le_32(insn);
ctx->idx++;
}
static void
emit_ret(struct a64_jit_ctx *ctx)
{
emit_insn(ctx, 0xd65f03c0, 0);
}
static void
emit_add_sub_imm(struct a64_jit_ctx *ctx, bool is64, bool sub, uint8_t rd,
uint8_t rn, int16_t imm12)
{
uint32_t insn, imm;
imm = mask_imm(12, imm12);
insn = (!!is64) << 31;
insn |= (!!sub) << 30;
insn |= 0x11000000;
insn |= rd;
insn |= rn << 5;
insn |= imm << 10;
emit_insn(ctx, insn,
check_reg(rd) || check_reg(rn) || check_imm(12, imm12));
}
static void
emit_add_imm_64(struct a64_jit_ctx *ctx, uint8_t rd, uint8_t rn, uint16_t imm12)
{
emit_add_sub_imm(ctx, 1, 0, rd, rn, imm12);
}
static void
emit_sub_imm_64(struct a64_jit_ctx *ctx, uint8_t rd, uint8_t rn, uint16_t imm12)
{
emit_add_sub_imm(ctx, 1, 1, rd, rn, imm12);
}
static void
emit_mov(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rn)
{
emit_add_sub_imm(ctx, is64, 0, rd, rn, 0);
}
static void
emit_mov_64(struct a64_jit_ctx *ctx, uint8_t rd, uint8_t rn)
{
emit_mov(ctx, 1, rd, rn);
}
static void
emit_ls_pair_64(struct a64_jit_ctx *ctx, uint8_t rt, uint8_t rt2, uint8_t rn,
bool push, bool load, bool pre_index)
{
uint32_t insn;
insn = (!!load) << 22;
insn |= (!!pre_index) << 24;
insn |= 0xa8800000;
insn |= rt;
insn |= rn << 5;
insn |= rt2 << 10;
if (push)
insn |= 0x7e << 15; /* 0x7e means -2 with imm7 */
else
insn |= 0x2 << 15;
emit_insn(ctx, insn, check_reg(rn) || check_reg(rt) || check_reg(rt2));
}
/* Emit stp rt, rt2, [sp, #-16]! */
static void
emit_stack_push(struct a64_jit_ctx *ctx, uint8_t rt, uint8_t rt2)
{
emit_ls_pair_64(ctx, rt, rt2, A64_SP, 1, 0, 1);
}
/* Emit ldp rt, rt2, [sp, #16] */
static void
emit_stack_pop(struct a64_jit_ctx *ctx, uint8_t rt, uint8_t rt2)
{
emit_ls_pair_64(ctx, rt, rt2, A64_SP, 0, 1, 0);
}
#define A64_MOVN 0
#define A64_MOVZ 2
#define A64_MOVK 3
static void
mov_imm(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t type,
uint16_t imm16, uint8_t shift)
{
uint32_t insn;
insn = (!!is64) << 31;
insn |= type << 29;
insn |= 0x25 << 23;
insn |= (shift/16) << 21;
insn |= imm16 << 5;
insn |= rd;
emit_insn(ctx, insn, check_reg(rd) || check_mov_hw(is64, shift));
}
static void
emit_mov_imm32(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint32_t val)
{
uint16_t upper = val >> 16;
uint16_t lower = val & 0xffff;
/* Positive number */
if ((val & 1UL << 31) == 0) {
mov_imm(ctx, is64, rd, A64_MOVZ, lower, 0);
if (upper)
mov_imm(ctx, is64, rd, A64_MOVK, upper, 16);
} else { /* Negative number */
if (upper == 0xffff) {
mov_imm(ctx, is64, rd, A64_MOVN, ~lower, 0);
} else {
mov_imm(ctx, is64, rd, A64_MOVN, ~upper, 16);
if (lower != 0xffff)
mov_imm(ctx, is64, rd, A64_MOVK, lower, 0);
}
}
}
static int
u16_blocks_weight(const uint64_t val, bool one)
{
return (((val >> 0) & 0xffff) == (one ? 0xffff : 0x0000)) +
(((val >> 16) & 0xffff) == (one ? 0xffff : 0x0000)) +
(((val >> 32) & 0xffff) == (one ? 0xffff : 0x0000)) +
(((val >> 48) & 0xffff) == (one ? 0xffff : 0x0000));
}
static void
emit_mov_imm(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint64_t val)
{
uint64_t nval = ~val;
int movn, sr;
if (is64 == 0)
return emit_mov_imm32(ctx, 0, rd, (uint32_t)(val & 0xffffffff));
/* Find MOVN or MOVZ first */
movn = u16_blocks_weight(val, true) > u16_blocks_weight(val, false);
/* Find shift right value */
sr = movn ? rte_fls_u64(nval) - 1 : rte_fls_u64(val) - 1;
sr = RTE_ALIGN_FLOOR(sr, 16);
sr = RTE_MAX(sr, 0);
if (movn)
mov_imm(ctx, 1, rd, A64_MOVN, (nval >> sr) & 0xffff, sr);
else
mov_imm(ctx, 1, rd, A64_MOVZ, (val >> sr) & 0xffff, sr);
sr -= 16;
while (sr >= 0) {
if (((val >> sr) & 0xffff) != (movn ? 0xffff : 0x0000))
mov_imm(ctx, 1, rd, A64_MOVK, (val >> sr) & 0xffff, sr);
sr -= 16;
}
}
static void
emit_ls(struct a64_jit_ctx *ctx, uint8_t sz, uint8_t rt, uint8_t rn, uint8_t rm,
bool load)
{
uint32_t insn;
insn = 0x1c1 << 21;
if (load)
insn |= 1 << 22;
if (sz == BPF_B)
insn |= 0 << 30;
else if (sz == BPF_H)
insn |= 1 << 30;
else if (sz == BPF_W)
insn |= 2 << 30;
else if (sz == EBPF_DW)
insn |= 3 << 30;
insn |= rm << 16;
insn |= 0x1a << 10; /* LSL and S = 0 */
insn |= rn << 5;
insn |= rt;
emit_insn(ctx, insn, check_reg(rt) || check_reg(rn) || check_reg(rm) ||
check_ls_sz(sz));
}
static void
emit_str(struct a64_jit_ctx *ctx, uint8_t sz, uint8_t rt, uint8_t rn,
uint8_t rm)
{
emit_ls(ctx, sz, rt, rn, rm, 0);
}
static void
emit_ldr(struct a64_jit_ctx *ctx, uint8_t sz, uint8_t rt, uint8_t rn,
uint8_t rm)
{
emit_ls(ctx, sz, rt, rn, rm, 1);
}
#define A64_ADD 0x58
#define A64_SUB 0x258
static void
emit_add_sub(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rn,
uint8_t rm, uint16_t op)
{
uint32_t insn;
insn = (!!is64) << 31;
insn |= op << 21; /* shift == 0 */
insn |= rm << 16;
insn |= rn << 5;
insn |= rd;
emit_insn(ctx, insn, check_reg(rd) || check_reg(rm));
}
static void
emit_add(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
{
emit_add_sub(ctx, is64, rd, rd, rm, A64_ADD);
}
static void
emit_sub(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
{
emit_add_sub(ctx, is64, rd, rd, rm, A64_SUB);
}
static void
emit_neg(struct a64_jit_ctx *ctx, bool is64, uint8_t rd)
{
emit_add_sub(ctx, is64, rd, A64_ZR, rd, A64_SUB);
}
static void
emit_mul(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
{
uint32_t insn;
insn = (!!is64) << 31;
insn |= 0xd8 << 21;
insn |= rm << 16;
insn |= A64_ZR << 10;
insn |= rd << 5;
insn |= rd;
emit_insn(ctx, insn, check_reg(rd) || check_reg(rm));
}
#define A64_UDIV 0x2
#define A64_LSLV 0x8
#define A64_LSRV 0x9
#define A64_ASRV 0xA
static void
emit_data_process_two_src(struct a64_jit_ctx *ctx, bool is64, uint8_t rd,
uint8_t rn, uint8_t rm, uint16_t op)
{
uint32_t insn;
insn = (!!is64) << 31;
insn |= 0xd6 << 21;
insn |= rm << 16;
insn |= op << 10;
insn |= rn << 5;
insn |= rd;
emit_insn(ctx, insn, check_reg(rd) || check_reg(rm));
}
static void
emit_div(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
{
emit_data_process_two_src(ctx, is64, rd, rd, rm, A64_UDIV);
}
static void
emit_lslv(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
{
emit_data_process_two_src(ctx, is64, rd, rd, rm, A64_LSLV);
}
static void
emit_lsrv(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
{
emit_data_process_two_src(ctx, is64, rd, rd, rm, A64_LSRV);
}
static void
emit_asrv(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
{
emit_data_process_two_src(ctx, is64, rd, rd, rm, A64_ASRV);
}
#define A64_UBFM 0x2
#define A64_SBFM 0x0
static void
emit_bitfield(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rn,
uint8_t immr, uint8_t imms, uint16_t op)
{
uint32_t insn;
insn = (!!is64) << 31;
if (insn)
insn |= 1 << 22; /* Set N bit when is64 is set */
insn |= op << 29;
insn |= 0x26 << 23;
insn |= immr << 16;
insn |= imms << 10;
insn |= rn << 5;
insn |= rd;
emit_insn(ctx, insn, check_reg(rd) || check_reg(rn) ||
check_immr_imms(is64, immr, imms));
}
static void
emit_lsl(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t imm)
{
const unsigned int width = is64 ? 64 : 32;
uint8_t imms, immr;
immr = (width - imm) & (width - 1);
imms = width - 1 - imm;
emit_bitfield(ctx, is64, rd, rd, immr, imms, A64_UBFM);
}
static void
emit_lsr(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t imm)
{
emit_bitfield(ctx, is64, rd, rd, imm, is64 ? 63 : 31, A64_UBFM);
}
static void
emit_asr(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t imm)
{
emit_bitfield(ctx, is64, rd, rd, imm, is64 ? 63 : 31, A64_SBFM);
}
#define A64_AND 0
#define A64_OR 1
#define A64_XOR 2
static void
emit_logical(struct a64_jit_ctx *ctx, bool is64, uint8_t rd,
uint8_t rm, uint16_t op)
{
uint32_t insn;
insn = (!!is64) << 31;
insn |= op << 29;
insn |= 0x50 << 21;
insn |= rm << 16;
insn |= rd << 5;
insn |= rd;
emit_insn(ctx, insn, check_reg(rd) || check_reg(rm));
}
static void
emit_or(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
{
emit_logical(ctx, is64, rd, rm, A64_OR);
}
static void
emit_and(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
{
emit_logical(ctx, is64, rd, rm, A64_AND);
}
static void
emit_xor(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
{
emit_logical(ctx, is64, rd, rm, A64_XOR);
}
static void
emit_msub(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rn,
uint8_t rm, uint8_t ra)
{
uint32_t insn;
insn = (!!is64) << 31;
insn |= 0xd8 << 21;
insn |= rm << 16;
insn |= 0x1 << 15;
insn |= ra << 10;
insn |= rn << 5;
insn |= rd;
emit_insn(ctx, insn, check_reg(rd) || check_reg(rn) || check_reg(rm) ||
check_reg(ra));
}
static void
emit_mod(struct a64_jit_ctx *ctx, bool is64, uint8_t tmp, uint8_t rd,
uint8_t rm)
{
emit_data_process_two_src(ctx, is64, tmp, rd, rm, A64_UDIV);
emit_msub(ctx, is64, rd, tmp, rm, rd);
}
static void
emit_blr(struct a64_jit_ctx *ctx, uint8_t rn)
{
uint32_t insn;
insn = 0xd63f0000;
insn |= rn << 5;
emit_insn(ctx, insn, check_reg(rn));
}
static void
emit_zero_extend(struct a64_jit_ctx *ctx, uint8_t rd, int32_t imm)
{
switch (imm) {
case 16:
/* Zero-extend 16 bits into 64 bits */
emit_bitfield(ctx, 1, rd, rd, 0, 15, A64_UBFM);
break;
case 32:
/* Zero-extend 32 bits into 64 bits */
emit_bitfield(ctx, 1, rd, rd, 0, 31, A64_UBFM);
break;
case 64:
break;
default:
/* Generate error */
emit_insn(ctx, 0, 1);
}
}
static void
emit_rev(struct a64_jit_ctx *ctx, uint8_t rd, int32_t imm)
{
uint32_t insn;
insn = 0xdac00000;
insn |= rd << 5;
insn |= rd;
switch (imm) {
case 16:
insn |= 1 << 10;
emit_insn(ctx, insn, check_reg(rd));
emit_zero_extend(ctx, rd, 16);
break;
case 32:
insn |= 2 << 10;
emit_insn(ctx, insn, check_reg(rd));
/* Upper 32 bits already cleared */
break;
case 64:
insn |= 3 << 10;
emit_insn(ctx, insn, check_reg(rd));
break;
default:
/* Generate error */
emit_insn(ctx, insn, 1);
}
}
static int
is_be(void)
{
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
return 1;
#else
return 0;
#endif
}
static void
emit_be(struct a64_jit_ctx *ctx, uint8_t rd, int32_t imm)
{
if (is_be())
emit_zero_extend(ctx, rd, imm);
else
emit_rev(ctx, rd, imm);
}
static void
emit_le(struct a64_jit_ctx *ctx, uint8_t rd, int32_t imm)
{
if (is_be())
emit_rev(ctx, rd, imm);
else
emit_zero_extend(ctx, rd, imm);
}
static uint8_t
ebpf_to_a64_reg(struct a64_jit_ctx *ctx, uint8_t reg)
{
const uint32_t ebpf2a64_has_call[] = {
/* Map A64 R7 register as EBPF return register */
[EBPF_REG_0] = A64_R(7),
/* Map A64 arguments register as EBPF arguments register */
[EBPF_REG_1] = A64_R(0),
[EBPF_REG_2] = A64_R(1),
[EBPF_REG_3] = A64_R(2),
[EBPF_REG_4] = A64_R(3),
[EBPF_REG_5] = A64_R(4),
/* Map A64 callee save register as EBPF callee save register */
[EBPF_REG_6] = A64_R(19),
[EBPF_REG_7] = A64_R(20),
[EBPF_REG_8] = A64_R(21),
[EBPF_REG_9] = A64_R(22),
[EBPF_FP] = A64_R(25),
/* Map A64 scratch registers as temporary storage */
[TMP_REG_1] = A64_R(9),
[TMP_REG_2] = A64_R(10),
[TMP_REG_3] = A64_R(11),
};
const uint32_t ebpf2a64_no_call[] = {
/* Map A64 R7 register as EBPF return register */
[EBPF_REG_0] = A64_R(7),
/* Map A64 arguments register as EBPF arguments register */
[EBPF_REG_1] = A64_R(0),
[EBPF_REG_2] = A64_R(1),
[EBPF_REG_3] = A64_R(2),
[EBPF_REG_4] = A64_R(3),
[EBPF_REG_5] = A64_R(4),
/*
* EBPF program does not have EBPF_CALL op code,
* Map A64 scratch registers as EBPF callee save registers.
*/
[EBPF_REG_6] = A64_R(9),
[EBPF_REG_7] = A64_R(10),
[EBPF_REG_8] = A64_R(11),
[EBPF_REG_9] = A64_R(12),
/* Map A64 FP register as EBPF FP register */
[EBPF_FP] = A64_FP,
/* Map remaining A64 scratch registers as temporary storage */
[TMP_REG_1] = A64_R(13),
[TMP_REG_2] = A64_R(14),
[TMP_REG_3] = A64_R(15),
};
if (ctx->foundcall)
return ebpf2a64_has_call[reg];
else
return ebpf2a64_no_call[reg];
}
/*
* Procedure call standard for the arm64
* -------------------------------------
* R0..R7 - Parameter/result registers
* R8 - Indirect result location register
* R9..R15 - Scratch registers
* R15 - Platform Register
* R16 - First intra-procedure-call scratch register
* R17 - Second intra-procedure-call temporary register
* R19-R28 - Callee saved registers
* R29 - Frame pointer
* R30 - Link register
* R31 - Stack pointer
*/
static void
emit_prologue_has_call(struct a64_jit_ctx *ctx)
{
uint8_t r6, r7, r8, r9, fp;
r6 = ebpf_to_a64_reg(ctx, EBPF_REG_6);
r7 = ebpf_to_a64_reg(ctx, EBPF_REG_7);
r8 = ebpf_to_a64_reg(ctx, EBPF_REG_8);
r9 = ebpf_to_a64_reg(ctx, EBPF_REG_9);
fp = ebpf_to_a64_reg(ctx, EBPF_FP);
/*
* eBPF prog stack layout
*
* high
* eBPF prologue 0:+-----+ <= original A64_SP
* |FP/LR|
* -16:+-----+ <= current A64_FP
* Callee saved registers | ... |
* EBPF_FP => -64:+-----+
* | |
* eBPF prog stack | ... |
* | |
* (EBPF_FP - bpf->stack_sz)=> +-----+
* Pad for A64_SP 16B alignment| PAD |
* (EBPF_FP - ctx->stack_sz)=> +-----+ <= current A64_SP
* | |
* | ... | Function call stack
* | |
* +-----+
* low
*/
emit_stack_push(ctx, A64_FP, A64_LR);
emit_mov_64(ctx, A64_FP, A64_SP);
emit_stack_push(ctx, r6, r7);
emit_stack_push(ctx, r8, r9);
/*
* There is no requirement to save A64_R(28) in stack. Doing it here,
* because, A64_SP needs be to 16B aligned and STR vs STP
* takes same number of cycles(typically).
*/
emit_stack_push(ctx, fp, A64_R(28));
emit_mov_64(ctx, fp, A64_SP);
if (ctx->stack_sz)
emit_sub_imm_64(ctx, A64_SP, A64_SP, ctx->stack_sz);
}
static void
emit_epilogue_has_call(struct a64_jit_ctx *ctx)
{
uint8_t r6, r7, r8, r9, fp, r0;
r6 = ebpf_to_a64_reg(ctx, EBPF_REG_6);
r7 = ebpf_to_a64_reg(ctx, EBPF_REG_7);
r8 = ebpf_to_a64_reg(ctx, EBPF_REG_8);
r9 = ebpf_to_a64_reg(ctx, EBPF_REG_9);
fp = ebpf_to_a64_reg(ctx, EBPF_FP);
r0 = ebpf_to_a64_reg(ctx, EBPF_REG_0);
if (ctx->stack_sz)
emit_add_imm_64(ctx, A64_SP, A64_SP, ctx->stack_sz);
emit_stack_pop(ctx, fp, A64_R(28));
emit_stack_pop(ctx, r8, r9);
emit_stack_pop(ctx, r6, r7);
emit_stack_pop(ctx, A64_FP, A64_LR);
emit_mov_64(ctx, A64_R(0), r0);
emit_ret(ctx);
}
static void
emit_prologue_no_call(struct a64_jit_ctx *ctx)
{
/*
* eBPF prog stack layout without EBPF_CALL opcode
*
* high
* eBPF prologue(EBPF_FP) 0:+-----+ <= original A64_SP/current A64_FP
* | |
* | ... |
* eBPF prog stack | |
* | |
* (EBPF_FP - bpf->stack_sz)=> +-----+
* Pad for A64_SP 16B alignment| PAD |
* (EBPF_FP - ctx->stack_sz)=> +-----+ <= current A64_SP
* | |
* | ... | Function call stack
* | |
* +-----+
* low
*/
if (ctx->stack_sz) {
emit_mov_64(ctx, A64_FP, A64_SP);
emit_sub_imm_64(ctx, A64_SP, A64_SP, ctx->stack_sz);
}
}
static void
emit_epilogue_no_call(struct a64_jit_ctx *ctx)
{
if (ctx->stack_sz)
emit_add_imm_64(ctx, A64_SP, A64_SP, ctx->stack_sz);
emit_mov_64(ctx, A64_R(0), ebpf_to_a64_reg(ctx, EBPF_REG_0));
emit_ret(ctx);
}
static void
emit_prologue(struct a64_jit_ctx *ctx)
{
if (ctx->foundcall)
emit_prologue_has_call(ctx);
else
emit_prologue_no_call(ctx);
ctx->program_start = ctx->idx;
}
static void
emit_epilogue(struct a64_jit_ctx *ctx)
{
ctx->program_sz = ctx->idx - ctx->program_start;
if (ctx->foundcall)
emit_epilogue_has_call(ctx);
else
emit_epilogue_no_call(ctx);
}
static void
emit_call(struct a64_jit_ctx *ctx, uint8_t tmp, void *func)
{
uint8_t r0 = ebpf_to_a64_reg(ctx, EBPF_REG_0);
emit_mov_imm(ctx, 1, tmp, (uint64_t)func);
emit_blr(ctx, tmp);
emit_mov_64(ctx, r0, A64_R(0));
}
static void
emit_cbnz(struct a64_jit_ctx *ctx, bool is64, uint8_t rt, int32_t imm19)
{
uint32_t insn, imm;
imm = mask_imm(19, imm19);
insn = (!!is64) << 31;
insn |= 0x35 << 24;
insn |= imm << 5;
insn |= rt;
emit_insn(ctx, insn, check_reg(rt) || check_imm(19, imm19));
}
static void
emit_b(struct a64_jit_ctx *ctx, int32_t imm26)
{
uint32_t insn, imm;
imm = mask_imm(26, imm26);
insn = 0x5 << 26;
insn |= imm;
emit_insn(ctx, insn, check_imm(26, imm26));
}
static void
emit_return_zero_if_src_zero(struct a64_jit_ctx *ctx, bool is64, uint8_t src)
{
uint8_t r0 = ebpf_to_a64_reg(ctx, EBPF_REG_0);
uint16_t jump_to_epilogue;
emit_cbnz(ctx, is64, src, 3);
emit_mov_imm(ctx, is64, r0, 0);
jump_to_epilogue = (ctx->program_start + ctx->program_sz) - ctx->idx;
emit_b(ctx, jump_to_epilogue);
}
static void
emit_stadd(struct a64_jit_ctx *ctx, bool is64, uint8_t rs, uint8_t rn)
{
uint32_t insn;
insn = 0xb820001f;
insn |= (!!is64) << 30;
insn |= rs << 16;
insn |= rn << 5;
emit_insn(ctx, insn, check_reg(rs) || check_reg(rn));
}
static void
emit_ldxr(struct a64_jit_ctx *ctx, bool is64, uint8_t rt, uint8_t rn)
{
uint32_t insn;
insn = 0x885f7c00;
insn |= (!!is64) << 30;
insn |= rn << 5;
insn |= rt;
emit_insn(ctx, insn, check_reg(rt) || check_reg(rn));
}
static void
emit_stxr(struct a64_jit_ctx *ctx, bool is64, uint8_t rs, uint8_t rt,
uint8_t rn)
{
uint32_t insn;
insn = 0x88007c00;
insn |= (!!is64) << 30;
insn |= rs << 16;
insn |= rn << 5;
insn |= rt;
emit_insn(ctx, insn, check_reg(rs) || check_reg(rt) || check_reg(rn));
}
static int
has_atomics(void)
{
int rc = 0;
#if defined(__ARM_FEATURE_ATOMICS) || defined(RTE_ARM_FEATURE_ATOMICS)
rc = 1;
#endif
return rc;
}
static void
emit_xadd(struct a64_jit_ctx *ctx, uint8_t op, uint8_t tmp1, uint8_t tmp2,
uint8_t tmp3, uint8_t dst, int16_t off, uint8_t src)
{
bool is64 = (BPF_SIZE(op) == EBPF_DW);
uint8_t rn;
if (off) {
emit_mov_imm(ctx, 1, tmp1, off);
emit_add(ctx, 1, tmp1, dst);
rn = tmp1;
} else {
rn = dst;
}
if (has_atomics()) {
emit_stadd(ctx, is64, src, rn);
} else {
emit_ldxr(ctx, is64, tmp2, rn);
emit_add(ctx, is64, tmp2, src);
emit_stxr(ctx, is64, tmp3, tmp2, rn);
emit_cbnz(ctx, is64, tmp3, -3);
}
}
#define A64_CMP 0x6b00000f
#define A64_TST 0x6a00000f
static void
emit_cmp_tst(struct a64_jit_ctx *ctx, bool is64, uint8_t rn, uint8_t rm,
uint32_t opc)
{
uint32_t insn;
insn = opc;
insn |= (!!is64) << 31;
insn |= rm << 16;
insn |= rn << 5;
emit_insn(ctx, insn, check_reg(rn) || check_reg(rm));
}
static void
emit_cmp(struct a64_jit_ctx *ctx, bool is64, uint8_t rn, uint8_t rm)
{
emit_cmp_tst(ctx, is64, rn, rm, A64_CMP);
}
static void
emit_tst(struct a64_jit_ctx *ctx, bool is64, uint8_t rn, uint8_t rm)
{
emit_cmp_tst(ctx, is64, rn, rm, A64_TST);
}
static void
emit_b_cond(struct a64_jit_ctx *ctx, uint8_t cond, int32_t imm19)
{
uint32_t insn, imm;
imm = mask_imm(19, imm19);
insn = 0x15 << 26;
insn |= imm << 5;
insn |= cond;
emit_insn(ctx, insn, check_cond(cond) || check_imm(19, imm19));
}
static void
emit_branch(struct a64_jit_ctx *ctx, uint8_t op, uint32_t i, int16_t off)
{
jump_offset_to_branch_update(ctx, i);
emit_b_cond(ctx, ebpf_to_a64_cond(op), jump_offset_get(ctx, i, off));
}
static void
check_program_has_call(struct a64_jit_ctx *ctx, struct rte_bpf *bpf)
{
const struct ebpf_insn *ins;
uint8_t op;
uint32_t i;
for (i = 0; i != bpf->prm.nb_ins; i++) {
ins = bpf->prm.ins + i;
op = ins->code;
switch (op) {
/* Call imm */
case (BPF_JMP | EBPF_CALL):
ctx->foundcall = 1;
return;
}
}
}
/*
* Walk through eBPF code and translate them to arm64 one.
*/
static int
emit(struct a64_jit_ctx *ctx, struct rte_bpf *bpf)
{
uint8_t op, dst, src, tmp1, tmp2, tmp3;
const struct ebpf_insn *ins;
uint64_t u64;
int16_t off;
int32_t imm;
uint32_t i;
bool is64;
int rc;
/* Reset context fields */
ctx->idx = 0;
/* arm64 SP must be aligned to 16 */
ctx->stack_sz = RTE_ALIGN_MUL_CEIL(bpf->stack_sz, 16);
tmp1 = ebpf_to_a64_reg(ctx, TMP_REG_1);
tmp2 = ebpf_to_a64_reg(ctx, TMP_REG_2);
tmp3 = ebpf_to_a64_reg(ctx, TMP_REG_3);
emit_prologue(ctx);
for (i = 0; i != bpf->prm.nb_ins; i++) {
jump_offset_update(ctx, i);
ins = bpf->prm.ins + i;
op = ins->code;
off = ins->off;
imm = ins->imm;
dst = ebpf_to_a64_reg(ctx, ins->dst_reg);
src = ebpf_to_a64_reg(ctx, ins->src_reg);
is64 = (BPF_CLASS(op) == EBPF_ALU64);
switch (op) {
/* dst = src */
case (BPF_ALU | EBPF_MOV | BPF_X):
case (EBPF_ALU64 | EBPF_MOV | BPF_X):
emit_mov(ctx, is64, dst, src);
break;
/* dst = imm */
case (BPF_ALU | EBPF_MOV | BPF_K):
case (EBPF_ALU64 | EBPF_MOV | BPF_K):
emit_mov_imm(ctx, is64, dst, imm);
break;
/* dst += src */
case (BPF_ALU | BPF_ADD | BPF_X):
case (EBPF_ALU64 | BPF_ADD | BPF_X):
emit_add(ctx, is64, dst, src);
break;
/* dst += imm */
case (BPF_ALU | BPF_ADD | BPF_K):
case (EBPF_ALU64 | BPF_ADD | BPF_K):
emit_mov_imm(ctx, is64, tmp1, imm);
emit_add(ctx, is64, dst, tmp1);
break;
/* dst -= src */
case (BPF_ALU | BPF_SUB | BPF_X):
case (EBPF_ALU64 | BPF_SUB | BPF_X):
emit_sub(ctx, is64, dst, src);
break;
/* dst -= imm */
case (BPF_ALU | BPF_SUB | BPF_K):
case (EBPF_ALU64 | BPF_SUB | BPF_K):
emit_mov_imm(ctx, is64, tmp1, imm);
emit_sub(ctx, is64, dst, tmp1);
break;
/* dst *= src */
case (BPF_ALU | BPF_MUL | BPF_X):
case (EBPF_ALU64 | BPF_MUL | BPF_X):
emit_mul(ctx, is64, dst, src);
break;
/* dst *= imm */
case (BPF_ALU | BPF_MUL | BPF_K):
case (EBPF_ALU64 | BPF_MUL | BPF_K):
emit_mov_imm(ctx, is64, tmp1, imm);
emit_mul(ctx, is64, dst, tmp1);
break;
/* dst /= src */
case (BPF_ALU | BPF_DIV | BPF_X):
case (EBPF_ALU64 | BPF_DIV | BPF_X):
emit_return_zero_if_src_zero(ctx, is64, src);
emit_div(ctx, is64, dst, src);
break;
/* dst /= imm */
case (BPF_ALU | BPF_DIV | BPF_K):
case (EBPF_ALU64 | BPF_DIV | BPF_K):
emit_mov_imm(ctx, is64, tmp1, imm);
emit_div(ctx, is64, dst, tmp1);
break;
/* dst %= src */
case (BPF_ALU | BPF_MOD | BPF_X):
case (EBPF_ALU64 | BPF_MOD | BPF_X):
emit_return_zero_if_src_zero(ctx, is64, src);
emit_mod(ctx, is64, tmp1, dst, src);
break;
/* dst %= imm */
case (BPF_ALU | BPF_MOD | BPF_K):
case (EBPF_ALU64 | BPF_MOD | BPF_K):
emit_mov_imm(ctx, is64, tmp1, imm);
emit_mod(ctx, is64, tmp2, dst, tmp1);
break;
/* dst |= src */
case (BPF_ALU | BPF_OR | BPF_X):
case (EBPF_ALU64 | BPF_OR | BPF_X):
emit_or(ctx, is64, dst, src);
break;
/* dst |= imm */
case (BPF_ALU | BPF_OR | BPF_K):
case (EBPF_ALU64 | BPF_OR | BPF_K):
emit_mov_imm(ctx, is64, tmp1, imm);
emit_or(ctx, is64, dst, tmp1);
break;
/* dst &= src */
case (BPF_ALU | BPF_AND | BPF_X):
case (EBPF_ALU64 | BPF_AND | BPF_X):
emit_and(ctx, is64, dst, src);
break;
/* dst &= imm */
case (BPF_ALU | BPF_AND | BPF_K):
case (EBPF_ALU64 | BPF_AND | BPF_K):
emit_mov_imm(ctx, is64, tmp1, imm);
emit_and(ctx, is64, dst, tmp1);
break;
/* dst ^= src */
case (BPF_ALU | BPF_XOR | BPF_X):
case (EBPF_ALU64 | BPF_XOR | BPF_X):
emit_xor(ctx, is64, dst, src);
break;
/* dst ^= imm */
case (BPF_ALU | BPF_XOR | BPF_K):
case (EBPF_ALU64 | BPF_XOR | BPF_K):
emit_mov_imm(ctx, is64, tmp1, imm);
emit_xor(ctx, is64, dst, tmp1);
break;
/* dst = -dst */
case (BPF_ALU | BPF_NEG):
case (EBPF_ALU64 | BPF_NEG):
emit_neg(ctx, is64, dst);
break;
/* dst <<= src */
case BPF_ALU | BPF_LSH | BPF_X:
case EBPF_ALU64 | BPF_LSH | BPF_X:
emit_lslv(ctx, is64, dst, src);
break;
/* dst <<= imm */
case BPF_ALU | BPF_LSH | BPF_K:
case EBPF_ALU64 | BPF_LSH | BPF_K:
emit_lsl(ctx, is64, dst, imm);
break;
/* dst >>= src */
case BPF_ALU | BPF_RSH | BPF_X:
case EBPF_ALU64 | BPF_RSH | BPF_X:
emit_lsrv(ctx, is64, dst, src);
break;
/* dst >>= imm */
case BPF_ALU | BPF_RSH | BPF_K:
case EBPF_ALU64 | BPF_RSH | BPF_K:
emit_lsr(ctx, is64, dst, imm);
break;
/* dst >>= src (arithmetic) */
case BPF_ALU | EBPF_ARSH | BPF_X:
case EBPF_ALU64 | EBPF_ARSH | BPF_X:
emit_asrv(ctx, is64, dst, src);
break;
/* dst >>= imm (arithmetic) */
case BPF_ALU | EBPF_ARSH | BPF_K:
case EBPF_ALU64 | EBPF_ARSH | BPF_K:
emit_asr(ctx, is64, dst, imm);
break;
/* dst = be##imm(dst) */
case (BPF_ALU | EBPF_END | EBPF_TO_BE):
emit_be(ctx, dst, imm);
break;
/* dst = le##imm(dst) */
case (BPF_ALU | EBPF_END | EBPF_TO_LE):
emit_le(ctx, dst, imm);
break;
/* dst = *(size *) (src + off) */
case (BPF_LDX | BPF_MEM | BPF_B):
case (BPF_LDX | BPF_MEM | BPF_H):
case (BPF_LDX | BPF_MEM | BPF_W):
case (BPF_LDX | BPF_MEM | EBPF_DW):
emit_mov_imm(ctx, 1, tmp1, off);
emit_ldr(ctx, BPF_SIZE(op), dst, src, tmp1);
break;
/* dst = imm64 */
case (BPF_LD | BPF_IMM | EBPF_DW):
u64 = ((uint64_t)ins[1].imm << 32) | (uint32_t)imm;
emit_mov_imm(ctx, 1, dst, u64);
i++;
break;
/* *(size *)(dst + off) = src */
case (BPF_STX | BPF_MEM | BPF_B):
case (BPF_STX | BPF_MEM | BPF_H):
case (BPF_STX | BPF_MEM | BPF_W):
case (BPF_STX | BPF_MEM | EBPF_DW):
emit_mov_imm(ctx, 1, tmp1, off);
emit_str(ctx, BPF_SIZE(op), src, dst, tmp1);
break;
/* *(size *)(dst + off) = imm */
case (BPF_ST | BPF_MEM | BPF_B):
case (BPF_ST | BPF_MEM | BPF_H):
case (BPF_ST | BPF_MEM | BPF_W):
case (BPF_ST | BPF_MEM | EBPF_DW):
emit_mov_imm(ctx, 1, tmp1, imm);
emit_mov_imm(ctx, 1, tmp2, off);
emit_str(ctx, BPF_SIZE(op), tmp1, dst, tmp2);
break;
/* STX XADD: lock *(size *)(dst + off) += src */
case (BPF_STX | EBPF_XADD | BPF_W):
case (BPF_STX | EBPF_XADD | EBPF_DW):
emit_xadd(ctx, op, tmp1, tmp2, tmp3, dst, off, src);
break;
/* PC += off */
case (BPF_JMP | BPF_JA):
emit_b(ctx, jump_offset_get(ctx, i, off));
break;
/* PC += off if dst COND imm */
case (BPF_JMP | BPF_JEQ | BPF_K):
case (BPF_JMP | EBPF_JNE | BPF_K):
case (BPF_JMP | BPF_JGT | BPF_K):
case (BPF_JMP | EBPF_JLT | BPF_K):
case (BPF_JMP | BPF_JGE | BPF_K):
case (BPF_JMP | EBPF_JLE | BPF_K):
case (BPF_JMP | EBPF_JSGT | BPF_K):
case (BPF_JMP | EBPF_JSLT | BPF_K):
case (BPF_JMP | EBPF_JSGE | BPF_K):
case (BPF_JMP | EBPF_JSLE | BPF_K):
emit_mov_imm(ctx, 1, tmp1, imm);
emit_cmp(ctx, 1, dst, tmp1);
emit_branch(ctx, op, i, off);
break;
case (BPF_JMP | BPF_JSET | BPF_K):
emit_mov_imm(ctx, 1, tmp1, imm);
emit_tst(ctx, 1, dst, tmp1);
emit_branch(ctx, op, i, off);
break;
/* PC += off if dst COND src */
case (BPF_JMP | BPF_JEQ | BPF_X):
case (BPF_JMP | EBPF_JNE | BPF_X):
case (BPF_JMP | BPF_JGT | BPF_X):
case (BPF_JMP | EBPF_JLT | BPF_X):
case (BPF_JMP | BPF_JGE | BPF_X):
case (BPF_JMP | EBPF_JLE | BPF_X):
case (BPF_JMP | EBPF_JSGT | BPF_X):
case (BPF_JMP | EBPF_JSLT | BPF_X):
case (BPF_JMP | EBPF_JSGE | BPF_X):
case (BPF_JMP | EBPF_JSLE | BPF_X):
emit_cmp(ctx, 1, dst, src);
emit_branch(ctx, op, i, off);
break;
case (BPF_JMP | BPF_JSET | BPF_X):
emit_tst(ctx, 1, dst, src);
emit_branch(ctx, op, i, off);
break;
/* Call imm */
case (BPF_JMP | EBPF_CALL):
emit_call(ctx, tmp1, bpf->prm.xsym[ins->imm].func.val);
break;
/* Return r0 */
case (BPF_JMP | EBPF_EXIT):
emit_epilogue(ctx);
break;
default:
RTE_BPF_LOG(ERR,
"%s(%p): invalid opcode %#x at pc: %u;\n",
__func__, bpf, ins->code, i);
return -EINVAL;
}
}
rc = check_invalid_args(ctx, ctx->idx);
return rc;
}
/*
* Produce a native ISA version of the given BPF code.
*/
int
bpf_jit_arm64(struct rte_bpf *bpf)
{
struct a64_jit_ctx ctx;
size_t size;
int rc;
/* Init JIT context */
memset(&ctx, 0, sizeof(ctx));
/* Initialize the memory for eBPF to a64 insn offset map for jump */
rc = jump_offset_init(&ctx, bpf);
if (rc)
goto error;
/* Find eBPF program has call class or not */
check_program_has_call(&ctx, bpf);
/* First pass to calculate total code size and valid jump offsets */
rc = emit(&ctx, bpf);
if (rc)
goto finish;
size = ctx.idx * sizeof(uint32_t);
/* Allocate JIT program memory */
ctx.ins = mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (ctx.ins == MAP_FAILED) {
rc = -ENOMEM;
goto finish;
}
/* Second pass to generate code */
rc = emit(&ctx, bpf);
if (rc)
goto munmap;
rc = mprotect(ctx.ins, size, PROT_READ | PROT_EXEC) != 0;
if (rc) {
rc = -errno;
goto munmap;
}
/* Flush the icache */
__builtin___clear_cache((char *)ctx.ins, (char *)(ctx.ins + ctx.idx));
bpf->jit.func = (void *)ctx.ins;
bpf->jit.sz = size;
goto finish;
munmap:
munmap(ctx.ins, size);
finish:
jump_offset_fini(&ctx);
error:
return rc;
}