af4f2c5feb
Fix alignment issues, lengthy lines, misordered type and other coding style issues. Signed-off-by: Huawei Xie <huawei.xie@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
731 lines
20 KiB
C
731 lines
20 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <linux/virtio_net.h>
|
|
|
|
#include <rte_mbuf.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_virtio_net.h>
|
|
|
|
#include "vhost-net-cdev.h"
|
|
|
|
#define MAX_PKT_BURST 32
|
|
|
|
/**
|
|
* This function adds buffers to the virtio devices RX virtqueue. Buffers can
|
|
* be received from the physical port or from another virtio device. A packet
|
|
* count is returned to indicate the number of packets that are succesfully
|
|
* added to the RX queue. This function works when mergeable is disabled.
|
|
*/
|
|
static inline uint32_t __attribute__((always_inline))
|
|
virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
|
|
struct rte_mbuf **pkts, uint32_t count)
|
|
{
|
|
struct vhost_virtqueue *vq;
|
|
struct vring_desc *desc;
|
|
struct rte_mbuf *buff;
|
|
/* The virtio_hdr is initialised to 0. */
|
|
struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
|
|
uint64_t buff_addr = 0;
|
|
uint64_t buff_hdr_addr = 0;
|
|
uint32_t head[MAX_PKT_BURST], packet_len = 0;
|
|
uint32_t head_idx, packet_success = 0;
|
|
uint16_t avail_idx, res_cur_idx;
|
|
uint16_t res_base_idx, res_end_idx;
|
|
uint16_t free_entries;
|
|
uint8_t success = 0;
|
|
|
|
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") virtio_dev_rx()\n", dev->device_fh);
|
|
if (unlikely(queue_id != VIRTIO_RXQ)) {
|
|
LOG_DEBUG(VHOST_DATA, "mq isn't supported in this version.\n");
|
|
return 0;
|
|
}
|
|
|
|
vq = dev->virtqueue[VIRTIO_RXQ];
|
|
count = (count > MAX_PKT_BURST) ? MAX_PKT_BURST : count;
|
|
|
|
/*
|
|
* As many data cores may want access to available buffers,
|
|
* they need to be reserved.
|
|
*/
|
|
do {
|
|
res_base_idx = vq->last_used_idx_res;
|
|
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
|
|
|
|
free_entries = (avail_idx - res_base_idx);
|
|
/*check that we have enough buffers*/
|
|
if (unlikely(count > free_entries))
|
|
count = free_entries;
|
|
|
|
if (count == 0)
|
|
return 0;
|
|
|
|
res_end_idx = res_base_idx + count;
|
|
/* vq->last_used_idx_res is atomically updated. */
|
|
/* TODO: Allow to disable cmpset if no concurrency in application. */
|
|
success = rte_atomic16_cmpset(&vq->last_used_idx_res,
|
|
res_base_idx, res_end_idx);
|
|
} while (unlikely(success == 0));
|
|
res_cur_idx = res_base_idx;
|
|
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") Current Index %d| End Index %d\n",
|
|
dev->device_fh, res_cur_idx, res_end_idx);
|
|
|
|
/* Prefetch available ring to retrieve indexes. */
|
|
rte_prefetch0(&vq->avail->ring[res_cur_idx & (vq->size - 1)]);
|
|
|
|
/* Retrieve all of the head indexes first to avoid caching issues. */
|
|
for (head_idx = 0; head_idx < count; head_idx++)
|
|
head[head_idx] = vq->avail->ring[(res_cur_idx + head_idx) &
|
|
(vq->size - 1)];
|
|
|
|
/*Prefetch descriptor index. */
|
|
rte_prefetch0(&vq->desc[head[packet_success]]);
|
|
|
|
while (res_cur_idx != res_end_idx) {
|
|
/* Get descriptor from available ring */
|
|
desc = &vq->desc[head[packet_success]];
|
|
|
|
buff = pkts[packet_success];
|
|
|
|
/* Convert from gpa to vva (guest physical addr -> vhost virtual addr) */
|
|
buff_addr = gpa_to_vva(dev, desc->addr);
|
|
/* Prefetch buffer address. */
|
|
rte_prefetch0((void *)(uintptr_t)buff_addr);
|
|
|
|
/* Copy virtio_hdr to packet and increment buffer address */
|
|
buff_hdr_addr = buff_addr;
|
|
packet_len = rte_pktmbuf_data_len(buff) + vq->vhost_hlen;
|
|
|
|
/*
|
|
* If the descriptors are chained the header and data are
|
|
* placed in separate buffers.
|
|
*/
|
|
if (desc->flags & VRING_DESC_F_NEXT) {
|
|
desc->len = vq->vhost_hlen;
|
|
desc = &vq->desc[desc->next];
|
|
/* Buffer address translation. */
|
|
buff_addr = gpa_to_vva(dev, desc->addr);
|
|
desc->len = rte_pktmbuf_data_len(buff);
|
|
} else {
|
|
buff_addr += vq->vhost_hlen;
|
|
desc->len = packet_len;
|
|
}
|
|
|
|
/* Update used ring with desc information */
|
|
vq->used->ring[res_cur_idx & (vq->size - 1)].id =
|
|
head[packet_success];
|
|
vq->used->ring[res_cur_idx & (vq->size - 1)].len = packet_len;
|
|
|
|
/* Copy mbuf data to buffer */
|
|
/* FIXME for sg mbuf and the case that desc couldn't hold the mbuf data */
|
|
rte_memcpy((void *)(uintptr_t)buff_addr,
|
|
rte_pktmbuf_mtod(buff, const void *),
|
|
rte_pktmbuf_data_len(buff));
|
|
PRINT_PACKET(dev, (uintptr_t)buff_addr,
|
|
rte_pktmbuf_data_len(buff), 0);
|
|
|
|
res_cur_idx++;
|
|
packet_success++;
|
|
|
|
rte_memcpy((void *)(uintptr_t)buff_hdr_addr,
|
|
(const void *)&virtio_hdr, vq->vhost_hlen);
|
|
|
|
PRINT_PACKET(dev, (uintptr_t)buff_hdr_addr, vq->vhost_hlen, 1);
|
|
|
|
if (res_cur_idx < res_end_idx) {
|
|
/* Prefetch descriptor index. */
|
|
rte_prefetch0(&vq->desc[head[packet_success]]);
|
|
}
|
|
}
|
|
|
|
rte_compiler_barrier();
|
|
|
|
/* Wait until it's our turn to add our buffer to the used ring. */
|
|
while (unlikely(vq->last_used_idx != res_base_idx))
|
|
rte_pause();
|
|
|
|
*(volatile uint16_t *)&vq->used->idx += count;
|
|
vq->last_used_idx = res_end_idx;
|
|
|
|
/* Kick the guest if necessary. */
|
|
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT))
|
|
eventfd_write((int)vq->kickfd, 1);
|
|
return count;
|
|
}
|
|
|
|
static inline uint32_t __attribute__((always_inline))
|
|
copy_from_mbuf_to_vring(struct virtio_net *dev, uint16_t res_base_idx,
|
|
uint16_t res_end_idx, struct rte_mbuf *pkt)
|
|
{
|
|
uint32_t vec_idx = 0;
|
|
uint32_t entry_success = 0;
|
|
struct vhost_virtqueue *vq;
|
|
/* The virtio_hdr is initialised to 0. */
|
|
struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {
|
|
{0, 0, 0, 0, 0, 0}, 0};
|
|
uint16_t cur_idx = res_base_idx;
|
|
uint64_t vb_addr = 0;
|
|
uint64_t vb_hdr_addr = 0;
|
|
uint32_t seg_offset = 0;
|
|
uint32_t vb_offset = 0;
|
|
uint32_t seg_avail;
|
|
uint32_t vb_avail;
|
|
uint32_t cpy_len, entry_len;
|
|
|
|
if (pkt == NULL)
|
|
return 0;
|
|
|
|
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") Current Index %d| "
|
|
"End Index %d\n",
|
|
dev->device_fh, cur_idx, res_end_idx);
|
|
|
|
/*
|
|
* Convert from gpa to vva
|
|
* (guest physical addr -> vhost virtual addr)
|
|
*/
|
|
vq = dev->virtqueue[VIRTIO_RXQ];
|
|
vb_addr =
|
|
gpa_to_vva(dev, vq->buf_vec[vec_idx].buf_addr);
|
|
vb_hdr_addr = vb_addr;
|
|
|
|
/* Prefetch buffer address. */
|
|
rte_prefetch0((void *)(uintptr_t)vb_addr);
|
|
|
|
virtio_hdr.num_buffers = res_end_idx - res_base_idx;
|
|
|
|
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") RX: Num merge buffers %d\n",
|
|
dev->device_fh, virtio_hdr.num_buffers);
|
|
|
|
rte_memcpy((void *)(uintptr_t)vb_hdr_addr,
|
|
(const void *)&virtio_hdr, vq->vhost_hlen);
|
|
|
|
PRINT_PACKET(dev, (uintptr_t)vb_hdr_addr, vq->vhost_hlen, 1);
|
|
|
|
seg_avail = rte_pktmbuf_data_len(pkt);
|
|
vb_offset = vq->vhost_hlen;
|
|
vb_avail =
|
|
vq->buf_vec[vec_idx].buf_len - vq->vhost_hlen;
|
|
|
|
entry_len = vq->vhost_hlen;
|
|
|
|
if (vb_avail == 0) {
|
|
uint32_t desc_idx =
|
|
vq->buf_vec[vec_idx].desc_idx;
|
|
vq->desc[desc_idx].len = vq->vhost_hlen;
|
|
|
|
if ((vq->desc[desc_idx].flags
|
|
& VRING_DESC_F_NEXT) == 0) {
|
|
/* Update used ring with desc information */
|
|
vq->used->ring[cur_idx & (vq->size - 1)].id
|
|
= vq->buf_vec[vec_idx].desc_idx;
|
|
vq->used->ring[cur_idx & (vq->size - 1)].len
|
|
= entry_len;
|
|
|
|
entry_len = 0;
|
|
cur_idx++;
|
|
entry_success++;
|
|
}
|
|
|
|
vec_idx++;
|
|
vb_addr =
|
|
gpa_to_vva(dev, vq->buf_vec[vec_idx].buf_addr);
|
|
|
|
/* Prefetch buffer address. */
|
|
rte_prefetch0((void *)(uintptr_t)vb_addr);
|
|
vb_offset = 0;
|
|
vb_avail = vq->buf_vec[vec_idx].buf_len;
|
|
}
|
|
|
|
cpy_len = RTE_MIN(vb_avail, seg_avail);
|
|
|
|
while (cpy_len > 0) {
|
|
/* Copy mbuf data to vring buffer */
|
|
rte_memcpy((void *)(uintptr_t)(vb_addr + vb_offset),
|
|
(const void *)(rte_pktmbuf_mtod(pkt, char*) + seg_offset),
|
|
cpy_len);
|
|
|
|
PRINT_PACKET(dev,
|
|
(uintptr_t)(vb_addr + vb_offset),
|
|
cpy_len, 0);
|
|
|
|
seg_offset += cpy_len;
|
|
vb_offset += cpy_len;
|
|
seg_avail -= cpy_len;
|
|
vb_avail -= cpy_len;
|
|
entry_len += cpy_len;
|
|
|
|
if (seg_avail != 0) {
|
|
/*
|
|
* The virtio buffer in this vring
|
|
* entry reach to its end.
|
|
* But the segment doesn't complete.
|
|
*/
|
|
if ((vq->desc[vq->buf_vec[vec_idx].desc_idx].flags &
|
|
VRING_DESC_F_NEXT) == 0) {
|
|
/* Update used ring with desc information */
|
|
vq->used->ring[cur_idx & (vq->size - 1)].id
|
|
= vq->buf_vec[vec_idx].desc_idx;
|
|
vq->used->ring[cur_idx & (vq->size - 1)].len
|
|
= entry_len;
|
|
entry_len = 0;
|
|
cur_idx++;
|
|
entry_success++;
|
|
}
|
|
|
|
vec_idx++;
|
|
vb_addr = gpa_to_vva(dev,
|
|
vq->buf_vec[vec_idx].buf_addr);
|
|
vb_offset = 0;
|
|
vb_avail = vq->buf_vec[vec_idx].buf_len;
|
|
cpy_len = RTE_MIN(vb_avail, seg_avail);
|
|
} else {
|
|
/*
|
|
* This current segment complete, need continue to
|
|
* check if the whole packet complete or not.
|
|
*/
|
|
pkt = pkt->next;
|
|
if (pkt != NULL) {
|
|
/*
|
|
* There are more segments.
|
|
*/
|
|
if (vb_avail == 0) {
|
|
/*
|
|
* This current buffer from vring is
|
|
* used up, need fetch next buffer
|
|
* from buf_vec.
|
|
*/
|
|
uint32_t desc_idx =
|
|
vq->buf_vec[vec_idx].desc_idx;
|
|
vq->desc[desc_idx].len = vb_offset;
|
|
|
|
if ((vq->desc[desc_idx].flags &
|
|
VRING_DESC_F_NEXT) == 0) {
|
|
uint16_t wrapped_idx =
|
|
cur_idx & (vq->size - 1);
|
|
/*
|
|
* Update used ring with the
|
|
* descriptor information
|
|
*/
|
|
vq->used->ring[wrapped_idx].id
|
|
= desc_idx;
|
|
vq->used->ring[wrapped_idx].len
|
|
= entry_len;
|
|
entry_success++;
|
|
entry_len = 0;
|
|
cur_idx++;
|
|
}
|
|
|
|
/* Get next buffer from buf_vec. */
|
|
vec_idx++;
|
|
vb_addr = gpa_to_vva(dev,
|
|
vq->buf_vec[vec_idx].buf_addr);
|
|
vb_avail =
|
|
vq->buf_vec[vec_idx].buf_len;
|
|
vb_offset = 0;
|
|
}
|
|
|
|
seg_offset = 0;
|
|
seg_avail = rte_pktmbuf_data_len(pkt);
|
|
cpy_len = RTE_MIN(vb_avail, seg_avail);
|
|
} else {
|
|
/*
|
|
* This whole packet completes.
|
|
*/
|
|
uint32_t desc_idx =
|
|
vq->buf_vec[vec_idx].desc_idx;
|
|
vq->desc[desc_idx].len = vb_offset;
|
|
|
|
while (vq->desc[desc_idx].flags &
|
|
VRING_DESC_F_NEXT) {
|
|
desc_idx = vq->desc[desc_idx].next;
|
|
vq->desc[desc_idx].len = 0;
|
|
}
|
|
|
|
/* Update used ring with desc information */
|
|
vq->used->ring[cur_idx & (vq->size - 1)].id
|
|
= vq->buf_vec[vec_idx].desc_idx;
|
|
vq->used->ring[cur_idx & (vq->size - 1)].len
|
|
= entry_len;
|
|
entry_len = 0;
|
|
cur_idx++;
|
|
entry_success++;
|
|
seg_avail = 0;
|
|
cpy_len = RTE_MIN(vb_avail, seg_avail);
|
|
}
|
|
}
|
|
}
|
|
|
|
return entry_success;
|
|
}
|
|
|
|
/*
|
|
* This function works for mergeable RX.
|
|
*/
|
|
static inline uint32_t __attribute__((always_inline))
|
|
virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
|
|
struct rte_mbuf **pkts, uint32_t count)
|
|
{
|
|
struct vhost_virtqueue *vq;
|
|
uint32_t pkt_idx = 0, entry_success = 0;
|
|
uint16_t avail_idx, res_cur_idx;
|
|
uint16_t res_base_idx, res_end_idx;
|
|
uint8_t success = 0;
|
|
|
|
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") virtio_dev_merge_rx()\n",
|
|
dev->device_fh);
|
|
if (unlikely(queue_id != VIRTIO_RXQ)) {
|
|
LOG_DEBUG(VHOST_DATA, "mq isn't supported in this version.\n");
|
|
}
|
|
|
|
vq = dev->virtqueue[VIRTIO_RXQ];
|
|
count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
|
|
|
|
if (count == 0)
|
|
return 0;
|
|
|
|
for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
|
|
uint32_t secure_len = 0;
|
|
uint16_t need_cnt;
|
|
uint32_t vec_idx = 0;
|
|
uint32_t pkt_len = pkts[pkt_idx]->pkt_len + vq->vhost_hlen;
|
|
uint16_t i, id;
|
|
|
|
do {
|
|
/*
|
|
* As many data cores may want access to available
|
|
* buffers, they need to be reserved.
|
|
*/
|
|
res_base_idx = vq->last_used_idx_res;
|
|
res_cur_idx = res_base_idx;
|
|
|
|
do {
|
|
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
|
|
if (unlikely(res_cur_idx == avail_idx)) {
|
|
LOG_DEBUG(VHOST_DATA,
|
|
"(%"PRIu64") Failed "
|
|
"to get enough desc from "
|
|
"vring\n",
|
|
dev->device_fh);
|
|
return pkt_idx;
|
|
} else {
|
|
uint16_t wrapped_idx =
|
|
(res_cur_idx) & (vq->size - 1);
|
|
uint32_t idx =
|
|
vq->avail->ring[wrapped_idx];
|
|
uint8_t next_desc;
|
|
|
|
do {
|
|
next_desc = 0;
|
|
secure_len += vq->desc[idx].len;
|
|
if (vq->desc[idx].flags &
|
|
VRING_DESC_F_NEXT) {
|
|
idx = vq->desc[idx].next;
|
|
next_desc = 1;
|
|
}
|
|
} while (next_desc);
|
|
|
|
res_cur_idx++;
|
|
}
|
|
} while (pkt_len > secure_len);
|
|
|
|
/* vq->last_used_idx_res is atomically updated. */
|
|
success = rte_atomic16_cmpset(&vq->last_used_idx_res,
|
|
res_base_idx,
|
|
res_cur_idx);
|
|
} while (success == 0);
|
|
|
|
id = res_base_idx;
|
|
need_cnt = res_cur_idx - res_base_idx;
|
|
|
|
for (i = 0; i < need_cnt; i++, id++) {
|
|
uint16_t wrapped_idx = id & (vq->size - 1);
|
|
uint32_t idx = vq->avail->ring[wrapped_idx];
|
|
uint8_t next_desc;
|
|
do {
|
|
next_desc = 0;
|
|
vq->buf_vec[vec_idx].buf_addr =
|
|
vq->desc[idx].addr;
|
|
vq->buf_vec[vec_idx].buf_len =
|
|
vq->desc[idx].len;
|
|
vq->buf_vec[vec_idx].desc_idx = idx;
|
|
vec_idx++;
|
|
|
|
if (vq->desc[idx].flags & VRING_DESC_F_NEXT) {
|
|
idx = vq->desc[idx].next;
|
|
next_desc = 1;
|
|
}
|
|
} while (next_desc);
|
|
}
|
|
|
|
res_end_idx = res_cur_idx;
|
|
|
|
entry_success = copy_from_mbuf_to_vring(dev, res_base_idx,
|
|
res_end_idx, pkts[pkt_idx]);
|
|
|
|
rte_compiler_barrier();
|
|
|
|
/*
|
|
* Wait until it's our turn to add our buffer
|
|
* to the used ring.
|
|
*/
|
|
while (unlikely(vq->last_used_idx != res_base_idx))
|
|
rte_pause();
|
|
|
|
*(volatile uint16_t *)&vq->used->idx += entry_success;
|
|
vq->last_used_idx = res_end_idx;
|
|
|
|
/* Kick the guest if necessary. */
|
|
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT))
|
|
eventfd_write((int)vq->kickfd, 1);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
uint16_t
|
|
rte_vhost_enqueue_burst(struct virtio_net *dev, uint16_t queue_id,
|
|
struct rte_mbuf **pkts, uint16_t count)
|
|
{
|
|
if (unlikely(dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF)))
|
|
return virtio_dev_merge_rx(dev, queue_id, pkts, count);
|
|
else
|
|
return virtio_dev_rx(dev, queue_id, pkts, count);
|
|
}
|
|
|
|
uint16_t
|
|
rte_vhost_dequeue_burst(struct virtio_net *dev, uint16_t queue_id,
|
|
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
|
|
{
|
|
struct rte_mbuf *m, *prev;
|
|
struct vhost_virtqueue *vq;
|
|
struct vring_desc *desc;
|
|
uint64_t vb_addr = 0;
|
|
uint32_t head[MAX_PKT_BURST];
|
|
uint32_t used_idx;
|
|
uint32_t i;
|
|
uint16_t free_entries, entry_success = 0;
|
|
uint16_t avail_idx;
|
|
|
|
if (unlikely(queue_id != VIRTIO_TXQ)) {
|
|
LOG_DEBUG(VHOST_DATA, "mq isn't supported in this version.\n");
|
|
return 0;
|
|
}
|
|
|
|
vq = dev->virtqueue[VIRTIO_TXQ];
|
|
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
|
|
|
|
/* If there are no available buffers then return. */
|
|
if (vq->last_used_idx == avail_idx)
|
|
return 0;
|
|
|
|
LOG_DEBUG(VHOST_DATA, "%s (%"PRIu64")\n", __func__,
|
|
dev->device_fh);
|
|
|
|
/* Prefetch available ring to retrieve head indexes. */
|
|
rte_prefetch0(&vq->avail->ring[vq->last_used_idx & (vq->size - 1)]);
|
|
|
|
/*get the number of free entries in the ring*/
|
|
free_entries = (avail_idx - vq->last_used_idx);
|
|
|
|
free_entries = RTE_MIN(free_entries, count);
|
|
/* Limit to MAX_PKT_BURST. */
|
|
free_entries = RTE_MIN(free_entries, MAX_PKT_BURST);
|
|
|
|
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") Buffers available %d\n",
|
|
dev->device_fh, free_entries);
|
|
/* Retrieve all of the head indexes first to avoid caching issues. */
|
|
for (i = 0; i < free_entries; i++)
|
|
head[i] = vq->avail->ring[(vq->last_used_idx + i) & (vq->size - 1)];
|
|
|
|
/* Prefetch descriptor index. */
|
|
rte_prefetch0(&vq->desc[head[entry_success]]);
|
|
rte_prefetch0(&vq->used->ring[vq->last_used_idx & (vq->size - 1)]);
|
|
|
|
while (entry_success < free_entries) {
|
|
uint32_t vb_avail, vb_offset;
|
|
uint32_t seg_avail, seg_offset;
|
|
uint32_t cpy_len;
|
|
uint32_t seg_num = 0;
|
|
struct rte_mbuf *cur;
|
|
uint8_t alloc_err = 0;
|
|
|
|
desc = &vq->desc[head[entry_success]];
|
|
|
|
/* Discard first buffer as it is the virtio header */
|
|
desc = &vq->desc[desc->next];
|
|
|
|
/* Buffer address translation. */
|
|
vb_addr = gpa_to_vva(dev, desc->addr);
|
|
/* Prefetch buffer address. */
|
|
rte_prefetch0((void *)(uintptr_t)vb_addr);
|
|
|
|
used_idx = vq->last_used_idx & (vq->size - 1);
|
|
|
|
if (entry_success < (free_entries - 1)) {
|
|
/* Prefetch descriptor index. */
|
|
rte_prefetch0(&vq->desc[head[entry_success+1]]);
|
|
rte_prefetch0(&vq->used->ring[(used_idx + 1) & (vq->size - 1)]);
|
|
}
|
|
|
|
/* Update used index buffer information. */
|
|
vq->used->ring[used_idx].id = head[entry_success];
|
|
vq->used->ring[used_idx].len = 0;
|
|
|
|
vb_offset = 0;
|
|
vb_avail = desc->len;
|
|
/* Allocate an mbuf and populate the structure. */
|
|
m = rte_pktmbuf_alloc(mbuf_pool);
|
|
if (unlikely(m == NULL)) {
|
|
RTE_LOG(ERR, VHOST_DATA,
|
|
"Failed to allocate memory for mbuf.\n");
|
|
return entry_success;
|
|
}
|
|
seg_offset = 0;
|
|
seg_avail = m->buf_len - RTE_PKTMBUF_HEADROOM;
|
|
cpy_len = RTE_MIN(vb_avail, seg_avail);
|
|
|
|
PRINT_PACKET(dev, (uintptr_t)vb_addr, desc->len, 0);
|
|
|
|
seg_num++;
|
|
cur = m;
|
|
prev = m;
|
|
while (cpy_len != 0) {
|
|
rte_memcpy((void *)(rte_pktmbuf_mtod(cur, char *) + seg_offset),
|
|
(void *)((uintptr_t)(vb_addr + vb_offset)),
|
|
cpy_len);
|
|
|
|
seg_offset += cpy_len;
|
|
vb_offset += cpy_len;
|
|
vb_avail -= cpy_len;
|
|
seg_avail -= cpy_len;
|
|
|
|
if (vb_avail != 0) {
|
|
/*
|
|
* The segment reachs to its end,
|
|
* while the virtio buffer in TX vring has
|
|
* more data to be copied.
|
|
*/
|
|
cur->data_len = seg_offset;
|
|
m->pkt_len += seg_offset;
|
|
/* Allocate mbuf and populate the structure. */
|
|
cur = rte_pktmbuf_alloc(mbuf_pool);
|
|
if (unlikely(cur == NULL)) {
|
|
RTE_LOG(ERR, VHOST_DATA, "Failed to "
|
|
"allocate memory for mbuf.\n");
|
|
rte_pktmbuf_free(m);
|
|
alloc_err = 1;
|
|
break;
|
|
}
|
|
|
|
seg_num++;
|
|
prev->next = cur;
|
|
prev = cur;
|
|
seg_offset = 0;
|
|
seg_avail = cur->buf_len - RTE_PKTMBUF_HEADROOM;
|
|
} else {
|
|
if (desc->flags & VRING_DESC_F_NEXT) {
|
|
/*
|
|
* There are more virtio buffers in
|
|
* same vring entry need to be copied.
|
|
*/
|
|
if (seg_avail == 0) {
|
|
/*
|
|
* The current segment hasn't
|
|
* room to accomodate more
|
|
* data.
|
|
*/
|
|
cur->data_len = seg_offset;
|
|
m->pkt_len += seg_offset;
|
|
/*
|
|
* Allocate an mbuf and
|
|
* populate the structure.
|
|
*/
|
|
cur = rte_pktmbuf_alloc(mbuf_pool);
|
|
if (unlikely(cur == NULL)) {
|
|
RTE_LOG(ERR,
|
|
VHOST_DATA,
|
|
"Failed to "
|
|
"allocate memory "
|
|
"for mbuf\n");
|
|
rte_pktmbuf_free(m);
|
|
alloc_err = 1;
|
|
break;
|
|
}
|
|
seg_num++;
|
|
prev->next = cur;
|
|
prev = cur;
|
|
seg_offset = 0;
|
|
seg_avail = cur->buf_len - RTE_PKTMBUF_HEADROOM;
|
|
}
|
|
|
|
desc = &vq->desc[desc->next];
|
|
|
|
/* Buffer address translation. */
|
|
vb_addr = gpa_to_vva(dev, desc->addr);
|
|
/* Prefetch buffer address. */
|
|
rte_prefetch0((void *)(uintptr_t)vb_addr);
|
|
vb_offset = 0;
|
|
vb_avail = desc->len;
|
|
|
|
PRINT_PACKET(dev, (uintptr_t)vb_addr,
|
|
desc->len, 0);
|
|
} else {
|
|
/* The whole packet completes. */
|
|
cur->data_len = seg_offset;
|
|
m->pkt_len += seg_offset;
|
|
vb_avail = 0;
|
|
}
|
|
}
|
|
|
|
cpy_len = RTE_MIN(vb_avail, seg_avail);
|
|
}
|
|
|
|
if (unlikely(alloc_err == 1))
|
|
break;
|
|
|
|
m->nb_segs = seg_num;
|
|
|
|
pkts[entry_success] = m;
|
|
vq->last_used_idx++;
|
|
entry_success++;
|
|
}
|
|
|
|
rte_compiler_barrier();
|
|
vq->used->idx += entry_success;
|
|
/* Kick guest if required. */
|
|
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT))
|
|
eventfd_write((int)vq->kickfd, 1);
|
|
return entry_success;
|
|
}
|