numam-dpdk/drivers/net/qede/qede_rxtx.c
David Marchand ff3555d684 net/qede: limit Rx ring index read for debug
Caught by clang, this idx value is only used for a debug message when
the mbufs allocation fails.
No need to use idx as a temporary storage.

Fixes: 8f23124745 ("net/qede: fix performance bottleneck in Rx path")
Cc: stable@dpdk.org

Signed-off-by: David Marchand <david.marchand@redhat.com>
Acked-by: Rasesh Mody <rmody@marvell.com>
2019-10-08 12:14:31 +02:00

2463 lines
69 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) 2016 - 2018 Cavium Inc.
* All rights reserved.
* www.cavium.com
*/
#include <rte_net.h>
#include "qede_rxtx.h"
static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
{
struct rte_mbuf *new_mb = NULL;
struct eth_rx_bd *rx_bd;
dma_addr_t mapping;
uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
if (unlikely(!new_mb)) {
PMD_RX_LOG(ERR, rxq,
"Failed to allocate rx buffer "
"sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
rte_mempool_avail_count(rxq->mb_pool),
rte_mempool_in_use_count(rxq->mb_pool));
return -ENOMEM;
}
rxq->sw_rx_ring[idx].mbuf = new_mb;
rxq->sw_rx_ring[idx].page_offset = 0;
mapping = rte_mbuf_data_iova_default(new_mb);
/* Advance PROD and get BD pointer */
rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
rxq->sw_rx_prod++;
return 0;
}
#define QEDE_MAX_BULK_ALLOC_COUNT 512
static inline int qede_alloc_rx_bulk_mbufs(struct qede_rx_queue *rxq, int count)
{
void *obj_p[QEDE_MAX_BULK_ALLOC_COUNT] __rte_cache_aligned;
struct rte_mbuf *mbuf = NULL;
struct eth_rx_bd *rx_bd;
dma_addr_t mapping;
int i, ret = 0;
uint16_t idx;
if (count > QEDE_MAX_BULK_ALLOC_COUNT)
count = QEDE_MAX_BULK_ALLOC_COUNT;
ret = rte_mempool_get_bulk(rxq->mb_pool, obj_p, count);
if (unlikely(ret)) {
PMD_RX_LOG(ERR, rxq,
"Failed to allocate %d rx buffers "
"sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
count,
rxq->sw_rx_prod & NUM_RX_BDS(rxq),
rxq->sw_rx_cons & NUM_RX_BDS(rxq),
rte_mempool_avail_count(rxq->mb_pool),
rte_mempool_in_use_count(rxq->mb_pool));
return -ENOMEM;
}
for (i = 0; i < count; i++) {
mbuf = obj_p[i];
if (likely(i < count - 1))
rte_prefetch0(obj_p[i + 1]);
idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
rxq->sw_rx_ring[idx].mbuf = mbuf;
rxq->sw_rx_ring[idx].page_offset = 0;
mapping = rte_mbuf_data_iova_default(mbuf);
rx_bd = (struct eth_rx_bd *)
ecore_chain_produce(&rxq->rx_bd_ring);
rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
rxq->sw_rx_prod++;
}
return 0;
}
/* Criterias for calculating Rx buffer size -
* 1) rx_buf_size should not exceed the size of mbuf
* 2) In scattered_rx mode - minimum rx_buf_size should be
* (MTU + Maximum L2 Header Size + 2) / ETH_RX_MAX_BUFF_PER_PKT
* 3) In regular mode - minimum rx_buf_size should be
* (MTU + Maximum L2 Header Size + 2)
* In above cases +2 corrosponds to 2 bytes padding in front of L2
* header.
* 4) rx_buf_size should be cacheline-size aligned. So considering
* criteria 1, we need to adjust the size to floor instead of ceil,
* so that we don't exceed mbuf size while ceiling rx_buf_size.
*/
int
qede_calc_rx_buf_size(struct rte_eth_dev *dev, uint16_t mbufsz,
uint16_t max_frame_size)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
int rx_buf_size;
if (dev->data->scattered_rx) {
/* per HW limitation, only ETH_RX_MAX_BUFF_PER_PKT number of
* bufferes can be used for single packet. So need to make sure
* mbuf size is sufficient enough for this.
*/
if ((mbufsz * ETH_RX_MAX_BUFF_PER_PKT) <
(max_frame_size + QEDE_ETH_OVERHEAD)) {
DP_ERR(edev, "mbuf %d size is not enough to hold max fragments (%d) for max rx packet length (%d)\n",
mbufsz, ETH_RX_MAX_BUFF_PER_PKT, max_frame_size);
return -EINVAL;
}
rx_buf_size = RTE_MAX(mbufsz,
(max_frame_size + QEDE_ETH_OVERHEAD) /
ETH_RX_MAX_BUFF_PER_PKT);
} else {
rx_buf_size = max_frame_size + QEDE_ETH_OVERHEAD;
}
/* Align to cache-line size if needed */
return QEDE_FLOOR_TO_CACHE_LINE_SIZE(rx_buf_size);
}
static struct qede_rx_queue *
qede_alloc_rx_queue_mem(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
struct rte_mempool *mp,
uint16_t bufsz)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct qede_rx_queue *rxq;
size_t size;
int rc;
/* First allocate the rx queue data structure */
rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
RTE_CACHE_LINE_SIZE, socket_id);
if (!rxq) {
DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
socket_id);
return NULL;
}
rxq->qdev = qdev;
rxq->mb_pool = mp;
rxq->nb_rx_desc = nb_desc;
rxq->queue_id = queue_idx;
rxq->port_id = dev->data->port_id;
rxq->rx_buf_size = bufsz;
DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n",
qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx);
/* Allocate the parallel driver ring for Rx buffers */
size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
RTE_CACHE_LINE_SIZE, socket_id);
if (!rxq->sw_rx_ring) {
DP_ERR(edev, "Memory allocation fails for sw_rx_ring on"
" socket %u\n", socket_id);
rte_free(rxq);
return NULL;
}
/* Allocate FW Rx ring */
rc = qdev->ops->common->chain_alloc(edev,
ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
ECORE_CHAIN_MODE_NEXT_PTR,
ECORE_CHAIN_CNT_TYPE_U16,
rxq->nb_rx_desc,
sizeof(struct eth_rx_bd),
&rxq->rx_bd_ring,
NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Memory allocation fails for RX BD ring"
" on socket %u\n", socket_id);
rte_free(rxq->sw_rx_ring);
rte_free(rxq);
return NULL;
}
/* Allocate FW completion ring */
rc = qdev->ops->common->chain_alloc(edev,
ECORE_CHAIN_USE_TO_CONSUME,
ECORE_CHAIN_MODE_PBL,
ECORE_CHAIN_CNT_TYPE_U16,
rxq->nb_rx_desc,
sizeof(union eth_rx_cqe),
&rxq->rx_comp_ring,
NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Memory allocation fails for RX CQE ring"
" on socket %u\n", socket_id);
qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
rte_free(rxq->sw_rx_ring);
rte_free(rxq);
return NULL;
}
return rxq;
}
int
qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t qid,
uint16_t nb_desc, unsigned int socket_id,
__rte_unused const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
struct qede_rx_queue *rxq;
uint16_t max_rx_pkt_len;
uint16_t bufsz;
int rc;
PMD_INIT_FUNC_TRACE(edev);
/* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
if (!rte_is_power_of_2(nb_desc)) {
DP_ERR(edev, "Ring size %u is not power of 2\n",
nb_desc);
return -EINVAL;
}
/* Free memory prior to re-allocation if needed... */
if (dev->data->rx_queues[qid] != NULL) {
qede_rx_queue_release(dev->data->rx_queues[qid]);
dev->data->rx_queues[qid] = NULL;
}
max_rx_pkt_len = (uint16_t)rxmode->max_rx_pkt_len;
/* Fix up RX buffer size */
bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
/* cache align the mbuf size to simplfy rx_buf_size calculation */
bufsz = QEDE_FLOOR_TO_CACHE_LINE_SIZE(bufsz);
if ((rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) ||
(max_rx_pkt_len + QEDE_ETH_OVERHEAD) > bufsz) {
if (!dev->data->scattered_rx) {
DP_INFO(edev, "Forcing scatter-gather mode\n");
dev->data->scattered_rx = 1;
}
}
rc = qede_calc_rx_buf_size(dev, bufsz, max_rx_pkt_len);
if (rc < 0)
return rc;
bufsz = rc;
if (ECORE_IS_CMT(edev)) {
rxq = qede_alloc_rx_queue_mem(dev, qid * 2, nb_desc,
socket_id, mp, bufsz);
if (!rxq)
return -ENOMEM;
qdev->fp_array[qid * 2].rxq = rxq;
rxq = qede_alloc_rx_queue_mem(dev, qid * 2 + 1, nb_desc,
socket_id, mp, bufsz);
if (!rxq)
return -ENOMEM;
qdev->fp_array[qid * 2 + 1].rxq = rxq;
/* provide per engine fp struct as rx queue */
dev->data->rx_queues[qid] = &qdev->fp_array_cmt[qid];
} else {
rxq = qede_alloc_rx_queue_mem(dev, qid, nb_desc,
socket_id, mp, bufsz);
if (!rxq)
return -ENOMEM;
dev->data->rx_queues[qid] = rxq;
qdev->fp_array[qid].rxq = rxq;
}
DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
qid, nb_desc, rxq->rx_buf_size, socket_id);
return 0;
}
static void
qede_rx_queue_reset(__rte_unused struct qede_dev *qdev,
struct qede_rx_queue *rxq)
{
DP_INFO(&qdev->edev, "Reset RX queue %u\n", rxq->queue_id);
ecore_chain_reset(&rxq->rx_bd_ring);
ecore_chain_reset(&rxq->rx_comp_ring);
rxq->sw_rx_prod = 0;
rxq->sw_rx_cons = 0;
*rxq->hw_cons_ptr = 0;
}
static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
{
uint16_t i;
if (rxq->sw_rx_ring) {
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_rx_ring[i].mbuf) {
rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf);
rxq->sw_rx_ring[i].mbuf = NULL;
}
}
}
}
static void _qede_rx_queue_release(struct qede_dev *qdev,
struct ecore_dev *edev,
struct qede_rx_queue *rxq)
{
qede_rx_queue_release_mbufs(rxq);
qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
qdev->ops->common->chain_free(edev, &rxq->rx_comp_ring);
rte_free(rxq->sw_rx_ring);
rte_free(rxq);
}
void qede_rx_queue_release(void *rx_queue)
{
struct qede_rx_queue *rxq = rx_queue;
struct qede_fastpath_cmt *fp_cmt;
struct qede_dev *qdev;
struct ecore_dev *edev;
if (rxq) {
qdev = rxq->qdev;
edev = QEDE_INIT_EDEV(qdev);
PMD_INIT_FUNC_TRACE(edev);
if (ECORE_IS_CMT(edev)) {
fp_cmt = rx_queue;
_qede_rx_queue_release(qdev, edev, fp_cmt->fp0->rxq);
_qede_rx_queue_release(qdev, edev, fp_cmt->fp1->rxq);
} else {
_qede_rx_queue_release(qdev, edev, rxq);
}
}
}
/* Stops a given RX queue in the HW */
static int qede_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_hwfn *p_hwfn;
struct qede_rx_queue *rxq;
int hwfn_index;
int rc;
if (rx_queue_id < qdev->num_rx_queues) {
rxq = qdev->fp_array[rx_queue_id].rxq;
hwfn_index = rx_queue_id % edev->num_hwfns;
p_hwfn = &edev->hwfns[hwfn_index];
rc = ecore_eth_rx_queue_stop(p_hwfn, rxq->handle,
true, false);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "RX queue %u stop fails\n", rx_queue_id);
return -1;
}
qede_rx_queue_release_mbufs(rxq);
qede_rx_queue_reset(qdev, rxq);
eth_dev->data->rx_queue_state[rx_queue_id] =
RTE_ETH_QUEUE_STATE_STOPPED;
DP_INFO(edev, "RX queue %u stopped\n", rx_queue_id);
} else {
DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
rc = -EINVAL;
}
return rc;
}
static struct qede_tx_queue *
qede_alloc_tx_queue_mem(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct qede_dev *qdev = dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct qede_tx_queue *txq;
int rc;
txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq == NULL) {
DP_ERR(edev,
"Unable to allocate memory for txq on socket %u",
socket_id);
return NULL;
}
txq->nb_tx_desc = nb_desc;
txq->qdev = qdev;
txq->port_id = dev->data->port_id;
rc = qdev->ops->common->chain_alloc(edev,
ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
ECORE_CHAIN_MODE_PBL,
ECORE_CHAIN_CNT_TYPE_U16,
txq->nb_tx_desc,
sizeof(union eth_tx_bd_types),
&txq->tx_pbl,
NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev,
"Unable to allocate memory for txbd ring on socket %u",
socket_id);
qede_tx_queue_release(txq);
return NULL;
}
/* Allocate software ring */
txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
(sizeof(struct qede_tx_entry) *
txq->nb_tx_desc),
RTE_CACHE_LINE_SIZE, socket_id);
if (!txq->sw_tx_ring) {
DP_ERR(edev,
"Unable to allocate memory for txbd ring on socket %u",
socket_id);
qdev->ops->common->chain_free(edev, &txq->tx_pbl);
qede_tx_queue_release(txq);
return NULL;
}
txq->queue_id = queue_idx;
txq->nb_tx_avail = txq->nb_tx_desc;
txq->tx_free_thresh =
tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
(txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);
DP_INFO(edev,
"txq %u num_desc %u tx_free_thresh %u socket %u\n",
queue_idx, nb_desc, txq->tx_free_thresh, socket_id);
return txq;
}
int
qede_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct qede_dev *qdev = dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct qede_tx_queue *txq;
PMD_INIT_FUNC_TRACE(edev);
if (!rte_is_power_of_2(nb_desc)) {
DP_ERR(edev, "Ring size %u is not power of 2\n",
nb_desc);
return -EINVAL;
}
/* Free memory prior to re-allocation if needed... */
if (dev->data->tx_queues[queue_idx] != NULL) {
qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
dev->data->tx_queues[queue_idx] = NULL;
}
if (ECORE_IS_CMT(edev)) {
txq = qede_alloc_tx_queue_mem(dev, queue_idx * 2, nb_desc,
socket_id, tx_conf);
if (!txq)
return -ENOMEM;
qdev->fp_array[queue_idx * 2].txq = txq;
txq = qede_alloc_tx_queue_mem(dev, (queue_idx * 2) + 1, nb_desc,
socket_id, tx_conf);
if (!txq)
return -ENOMEM;
qdev->fp_array[(queue_idx * 2) + 1].txq = txq;
dev->data->tx_queues[queue_idx] =
&qdev->fp_array_cmt[queue_idx];
} else {
txq = qede_alloc_tx_queue_mem(dev, queue_idx, nb_desc,
socket_id, tx_conf);
if (!txq)
return -ENOMEM;
dev->data->tx_queues[queue_idx] = txq;
qdev->fp_array[queue_idx].txq = txq;
}
return 0;
}
static void
qede_tx_queue_reset(__rte_unused struct qede_dev *qdev,
struct qede_tx_queue *txq)
{
DP_INFO(&qdev->edev, "Reset TX queue %u\n", txq->queue_id);
ecore_chain_reset(&txq->tx_pbl);
txq->sw_tx_cons = 0;
txq->sw_tx_prod = 0;
*txq->hw_cons_ptr = 0;
}
static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
{
uint16_t i;
if (txq->sw_tx_ring) {
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_tx_ring[i].mbuf) {
rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf);
txq->sw_tx_ring[i].mbuf = NULL;
}
}
}
}
static void _qede_tx_queue_release(struct qede_dev *qdev,
struct ecore_dev *edev,
struct qede_tx_queue *txq)
{
qede_tx_queue_release_mbufs(txq);
qdev->ops->common->chain_free(edev, &txq->tx_pbl);
rte_free(txq->sw_tx_ring);
rte_free(txq);
}
void qede_tx_queue_release(void *tx_queue)
{
struct qede_tx_queue *txq = tx_queue;
struct qede_fastpath_cmt *fp_cmt;
struct qede_dev *qdev;
struct ecore_dev *edev;
if (txq) {
qdev = txq->qdev;
edev = QEDE_INIT_EDEV(qdev);
PMD_INIT_FUNC_TRACE(edev);
if (ECORE_IS_CMT(edev)) {
fp_cmt = tx_queue;
_qede_tx_queue_release(qdev, edev, fp_cmt->fp0->txq);
_qede_tx_queue_release(qdev, edev, fp_cmt->fp1->txq);
} else {
_qede_tx_queue_release(qdev, edev, txq);
}
}
}
/* This function allocates fast-path status block memory */
static int
qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
uint16_t sb_id)
{
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct status_block_e4 *sb_virt;
dma_addr_t sb_phys;
int rc;
sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys,
sizeof(struct status_block_e4));
if (!sb_virt) {
DP_ERR(edev, "Status block allocation failed\n");
return -ENOMEM;
}
rc = qdev->ops->common->sb_init(edev, sb_info, sb_virt,
sb_phys, sb_id);
if (rc) {
DP_ERR(edev, "Status block initialization failed\n");
OSAL_DMA_FREE_COHERENT(edev, sb_virt, sb_phys,
sizeof(struct status_block_e4));
return rc;
}
return 0;
}
int qede_alloc_fp_resc(struct qede_dev *qdev)
{
struct ecore_dev *edev = &qdev->edev;
struct qede_fastpath *fp;
uint32_t num_sbs;
uint16_t sb_idx;
int i;
if (IS_VF(edev))
ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs);
else
num_sbs = ecore_cxt_get_proto_cid_count
(ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL);
if (num_sbs == 0) {
DP_ERR(edev, "No status blocks available\n");
return -EINVAL;
}
qdev->fp_array = rte_calloc("fp", QEDE_RXTX_MAX(qdev),
sizeof(*qdev->fp_array), RTE_CACHE_LINE_SIZE);
if (!qdev->fp_array) {
DP_ERR(edev, "fp array allocation failed\n");
return -ENOMEM;
}
memset((void *)qdev->fp_array, 0, QEDE_RXTX_MAX(qdev) *
sizeof(*qdev->fp_array));
if (ECORE_IS_CMT(edev)) {
qdev->fp_array_cmt = rte_calloc("fp_cmt",
QEDE_RXTX_MAX(qdev) / 2,
sizeof(*qdev->fp_array_cmt),
RTE_CACHE_LINE_SIZE);
if (!qdev->fp_array_cmt) {
DP_ERR(edev, "fp array for CMT allocation failed\n");
return -ENOMEM;
}
memset((void *)qdev->fp_array_cmt, 0,
(QEDE_RXTX_MAX(qdev) / 2) * sizeof(*qdev->fp_array_cmt));
/* Establish the mapping of fp_array with fp_array_cmt */
for (i = 0; i < QEDE_RXTX_MAX(qdev) / 2; i++) {
qdev->fp_array_cmt[i].qdev = qdev;
qdev->fp_array_cmt[i].fp0 = &qdev->fp_array[i * 2];
qdev->fp_array_cmt[i].fp1 = &qdev->fp_array[i * 2 + 1];
}
}
for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
fp = &qdev->fp_array[sb_idx];
if (!fp)
continue;
fp->sb_info = rte_calloc("sb", 1, sizeof(struct ecore_sb_info),
RTE_CACHE_LINE_SIZE);
if (!fp->sb_info) {
DP_ERR(edev, "FP sb_info allocation fails\n");
return -1;
}
if (qede_alloc_mem_sb(qdev, fp->sb_info, sb_idx)) {
DP_ERR(edev, "FP status block allocation fails\n");
return -1;
}
DP_INFO(edev, "sb_info idx 0x%x initialized\n",
fp->sb_info->igu_sb_id);
}
return 0;
}
void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct qede_fastpath *fp;
uint16_t sb_idx;
uint8_t i;
PMD_INIT_FUNC_TRACE(edev);
for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
fp = &qdev->fp_array[sb_idx];
if (!fp)
continue;
DP_INFO(edev, "Free sb_info index 0x%x\n",
fp->sb_info->igu_sb_id);
if (fp->sb_info) {
OSAL_DMA_FREE_COHERENT(edev, fp->sb_info->sb_virt,
fp->sb_info->sb_phys,
sizeof(struct status_block_e4));
rte_free(fp->sb_info);
fp->sb_info = NULL;
}
}
/* Free packet buffers and ring memories */
for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
if (eth_dev->data->rx_queues[i]) {
qede_rx_queue_release(eth_dev->data->rx_queues[i]);
eth_dev->data->rx_queues[i] = NULL;
}
}
for (i = 0; i < eth_dev->data->nb_tx_queues; i++) {
if (eth_dev->data->tx_queues[i]) {
qede_tx_queue_release(eth_dev->data->tx_queues[i]);
eth_dev->data->tx_queues[i] = NULL;
}
}
if (qdev->fp_array)
rte_free(qdev->fp_array);
qdev->fp_array = NULL;
if (qdev->fp_array_cmt)
rte_free(qdev->fp_array_cmt);
qdev->fp_array_cmt = NULL;
}
static inline void
qede_update_rx_prod(__rte_unused struct qede_dev *edev,
struct qede_rx_queue *rxq)
{
uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
struct eth_rx_prod_data rx_prods = { 0 };
/* Update producers */
rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);
/* Make sure that the BD and SGE data is updated before updating the
* producers since FW might read the BD/SGE right after the producer
* is updated.
*/
rte_wmb();
internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
(uint32_t *)&rx_prods);
/* mmiowb is needed to synchronize doorbell writes from more than one
* processor. It guarantees that the write arrives to the device before
* the napi lock is released and another qede_poll is called (possibly
* on another CPU). Without this barrier, the next doorbell can bypass
* this doorbell. This is applicable to IA64/Altix systems.
*/
rte_wmb();
PMD_RX_LOG(DEBUG, rxq, "bd_prod %u cqe_prod %u", bd_prod, cqe_prod);
}
/* Starts a given RX queue in HW */
static int
qede_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_queue_start_common_params params;
struct ecore_rxq_start_ret_params ret_params;
struct qede_rx_queue *rxq;
struct qede_fastpath *fp;
struct ecore_hwfn *p_hwfn;
dma_addr_t p_phys_table;
uint16_t page_cnt;
uint16_t j;
int hwfn_index;
int rc;
if (rx_queue_id < qdev->num_rx_queues) {
fp = &qdev->fp_array[rx_queue_id];
rxq = fp->rxq;
/* Allocate buffers for the Rx ring */
for (j = 0; j < rxq->nb_rx_desc; j++) {
rc = qede_alloc_rx_buffer(rxq);
if (rc) {
DP_ERR(edev, "RX buffer allocation failed"
" for rxq = %u\n", rx_queue_id);
return -ENOMEM;
}
}
/* disable interrupts */
ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
/* Prepare ramrod */
memset(&params, 0, sizeof(params));
params.queue_id = rx_queue_id / edev->num_hwfns;
params.vport_id = 0;
params.stats_id = params.vport_id;
params.p_sb = fp->sb_info;
DP_INFO(edev, "rxq %u igu_sb_id 0x%x\n",
fp->rxq->queue_id, fp->sb_info->igu_sb_id);
params.sb_idx = RX_PI;
hwfn_index = rx_queue_id % edev->num_hwfns;
p_hwfn = &edev->hwfns[hwfn_index];
p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring);
page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring);
memset(&ret_params, 0, sizeof(ret_params));
rc = ecore_eth_rx_queue_start(p_hwfn,
p_hwfn->hw_info.opaque_fid,
&params, fp->rxq->rx_buf_size,
fp->rxq->rx_bd_ring.p_phys_addr,
p_phys_table, page_cnt,
&ret_params);
if (rc) {
DP_ERR(edev, "RX queue %u could not be started, rc = %d\n",
rx_queue_id, rc);
return -1;
}
/* Update with the returned parameters */
fp->rxq->hw_rxq_prod_addr = ret_params.p_prod;
fp->rxq->handle = ret_params.p_handle;
fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
qede_update_rx_prod(qdev, fp->rxq);
eth_dev->data->rx_queue_state[rx_queue_id] =
RTE_ETH_QUEUE_STATE_STARTED;
DP_INFO(edev, "RX queue %u started\n", rx_queue_id);
} else {
DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
rc = -EINVAL;
}
return rc;
}
static int
qede_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_queue_start_common_params params;
struct ecore_txq_start_ret_params ret_params;
struct ecore_hwfn *p_hwfn;
dma_addr_t p_phys_table;
struct qede_tx_queue *txq;
struct qede_fastpath *fp;
uint16_t page_cnt;
int hwfn_index;
int rc;
if (tx_queue_id < qdev->num_tx_queues) {
fp = &qdev->fp_array[tx_queue_id];
txq = fp->txq;
memset(&params, 0, sizeof(params));
params.queue_id = tx_queue_id / edev->num_hwfns;
params.vport_id = 0;
params.stats_id = params.vport_id;
params.p_sb = fp->sb_info;
DP_INFO(edev, "txq %u igu_sb_id 0x%x\n",
fp->txq->queue_id, fp->sb_info->igu_sb_id);
params.sb_idx = TX_PI(0); /* tc = 0 */
p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
hwfn_index = tx_queue_id % edev->num_hwfns;
p_hwfn = &edev->hwfns[hwfn_index];
if (qdev->dev_info.is_legacy)
fp->txq->is_legacy = true;
rc = ecore_eth_tx_queue_start(p_hwfn,
p_hwfn->hw_info.opaque_fid,
&params, 0 /* tc */,
p_phys_table, page_cnt,
&ret_params);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "TX queue %u couldn't be started, rc=%d\n",
tx_queue_id, rc);
return -1;
}
txq->doorbell_addr = ret_params.p_doorbell;
txq->handle = ret_params.p_handle;
txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[TX_PI(0)];
SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST,
DB_DEST_XCM);
SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
DB_AGG_CMD_SET);
SET_FIELD(txq->tx_db.data.params,
ETH_DB_DATA_AGG_VAL_SEL,
DQ_XCM_ETH_TX_BD_PROD_CMD);
txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
eth_dev->data->tx_queue_state[tx_queue_id] =
RTE_ETH_QUEUE_STATE_STARTED;
DP_INFO(edev, "TX queue %u started\n", tx_queue_id);
} else {
DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
rc = -EINVAL;
}
return rc;
}
static inline void
qede_free_tx_pkt(struct qede_tx_queue *txq)
{
struct rte_mbuf *mbuf;
uint16_t nb_segs;
uint16_t idx;
idx = TX_CONS(txq);
mbuf = txq->sw_tx_ring[idx].mbuf;
if (mbuf) {
nb_segs = mbuf->nb_segs;
PMD_TX_LOG(DEBUG, txq, "nb_segs to free %u\n", nb_segs);
while (nb_segs) {
/* It's like consuming rxbuf in recv() */
ecore_chain_consume(&txq->tx_pbl);
txq->nb_tx_avail++;
nb_segs--;
}
rte_pktmbuf_free(mbuf);
txq->sw_tx_ring[idx].mbuf = NULL;
txq->sw_tx_cons++;
PMD_TX_LOG(DEBUG, txq, "Freed tx packet\n");
} else {
ecore_chain_consume(&txq->tx_pbl);
txq->nb_tx_avail++;
}
}
static inline void
qede_process_tx_compl(__rte_unused struct ecore_dev *edev,
struct qede_tx_queue *txq)
{
uint16_t hw_bd_cons;
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
uint16_t sw_tx_cons;
#endif
rte_compiler_barrier();
hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
sw_tx_cons = ecore_chain_get_cons_idx(&txq->tx_pbl);
PMD_TX_LOG(DEBUG, txq, "Tx Completions = %u\n",
abs(hw_bd_cons - sw_tx_cons));
#endif
while (hw_bd_cons != ecore_chain_get_cons_idx(&txq->tx_pbl))
qede_free_tx_pkt(txq);
}
static int qede_drain_txq(struct qede_dev *qdev,
struct qede_tx_queue *txq, bool allow_drain)
{
struct ecore_dev *edev = &qdev->edev;
int rc, cnt = 1000;
while (txq->sw_tx_cons != txq->sw_tx_prod) {
qede_process_tx_compl(edev, txq);
if (!cnt) {
if (allow_drain) {
DP_ERR(edev, "Tx queue[%u] is stuck,"
"requesting MCP to drain\n",
txq->queue_id);
rc = qdev->ops->common->drain(edev);
if (rc)
return rc;
return qede_drain_txq(qdev, txq, false);
}
DP_ERR(edev, "Timeout waiting for tx queue[%d]:"
"PROD=%d, CONS=%d\n",
txq->queue_id, txq->sw_tx_prod,
txq->sw_tx_cons);
return -1;
}
cnt--;
DELAY(1000);
rte_compiler_barrier();
}
/* FW finished processing, wait for HW to transmit all tx packets */
DELAY(2000);
return 0;
}
/* Stops a given TX queue in the HW */
static int qede_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_hwfn *p_hwfn;
struct qede_tx_queue *txq;
int hwfn_index;
int rc;
if (tx_queue_id < qdev->num_tx_queues) {
txq = qdev->fp_array[tx_queue_id].txq;
/* Drain txq */
if (qede_drain_txq(qdev, txq, true))
return -1; /* For the lack of retcodes */
/* Stop txq */
hwfn_index = tx_queue_id % edev->num_hwfns;
p_hwfn = &edev->hwfns[hwfn_index];
rc = ecore_eth_tx_queue_stop(p_hwfn, txq->handle);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "TX queue %u stop fails\n", tx_queue_id);
return -1;
}
qede_tx_queue_release_mbufs(txq);
qede_tx_queue_reset(qdev, txq);
eth_dev->data->tx_queue_state[tx_queue_id] =
RTE_ETH_QUEUE_STATE_STOPPED;
DP_INFO(edev, "TX queue %u stopped\n", tx_queue_id);
} else {
DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
rc = -EINVAL;
}
return rc;
}
int qede_start_queues(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
uint8_t id;
int rc = -1;
for (id = 0; id < qdev->num_rx_queues; id++) {
rc = qede_rx_queue_start(eth_dev, id);
if (rc != ECORE_SUCCESS)
return -1;
}
for (id = 0; id < qdev->num_tx_queues; id++) {
rc = qede_tx_queue_start(eth_dev, id);
if (rc != ECORE_SUCCESS)
return -1;
}
return rc;
}
void qede_stop_queues(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
uint8_t id;
/* Stopping RX/TX queues */
for (id = 0; id < qdev->num_tx_queues; id++)
qede_tx_queue_stop(eth_dev, id);
for (id = 0; id < qdev->num_rx_queues; id++)
qede_rx_queue_stop(eth_dev, id);
}
static inline bool qede_tunn_exist(uint16_t flag)
{
return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
}
static inline uint8_t qede_check_tunn_csum_l3(uint16_t flag)
{
return !!((PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT) & flag);
}
/*
* qede_check_tunn_csum_l4:
* Returns:
* 1 : If L4 csum is enabled AND if the validation has failed.
* 0 : Otherwise
*/
static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag)
{
if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag);
return 0;
}
static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag)
{
if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag)
return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag);
return 0;
}
/* Returns outer L2, L3 and L4 packet_type for tunneled packets */
static inline uint32_t qede_rx_cqe_to_pkt_type_outer(struct rte_mbuf *m)
{
uint32_t packet_type = RTE_PTYPE_UNKNOWN;
struct rte_ether_hdr *eth_hdr;
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_ipv6_hdr *ipv6_hdr;
struct rte_vlan_hdr *vlan_hdr;
uint16_t ethertype;
bool vlan_tagged = 0;
uint16_t len;
eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
len = sizeof(struct rte_ether_hdr);
ethertype = rte_cpu_to_be_16(eth_hdr->ether_type);
/* Note: Valid only if VLAN stripping is disabled */
if (ethertype == RTE_ETHER_TYPE_VLAN) {
vlan_tagged = 1;
vlan_hdr = (struct rte_vlan_hdr *)(eth_hdr + 1);
len += sizeof(struct rte_vlan_hdr);
ethertype = rte_cpu_to_be_16(vlan_hdr->eth_proto);
}
if (ethertype == RTE_ETHER_TYPE_IPV4) {
packet_type |= RTE_PTYPE_L3_IPV4;
ipv4_hdr = rte_pktmbuf_mtod_offset(m,
struct rte_ipv4_hdr *, len);
if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
packet_type |= RTE_PTYPE_L4_TCP;
else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
packet_type |= RTE_PTYPE_L4_UDP;
} else if (ethertype == RTE_ETHER_TYPE_IPV6) {
packet_type |= RTE_PTYPE_L3_IPV6;
ipv6_hdr = rte_pktmbuf_mtod_offset(m,
struct rte_ipv6_hdr *, len);
if (ipv6_hdr->proto == IPPROTO_TCP)
packet_type |= RTE_PTYPE_L4_TCP;
else if (ipv6_hdr->proto == IPPROTO_UDP)
packet_type |= RTE_PTYPE_L4_UDP;
}
if (vlan_tagged)
packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
else
packet_type |= RTE_PTYPE_L2_ETHER;
return packet_type;
}
static inline uint32_t qede_rx_cqe_to_pkt_type_inner(uint16_t flags)
{
uint16_t val;
/* Lookup table */
static const uint32_t
ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
[QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_INNER_L3_IPV4 |
RTE_PTYPE_INNER_L2_ETHER,
[QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_INNER_L3_IPV6 |
RTE_PTYPE_INNER_L2_ETHER,
[QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_INNER_L3_IPV4 |
RTE_PTYPE_INNER_L4_TCP |
RTE_PTYPE_INNER_L2_ETHER,
[QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_INNER_L3_IPV6 |
RTE_PTYPE_INNER_L4_TCP |
RTE_PTYPE_INNER_L2_ETHER,
[QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_INNER_L3_IPV4 |
RTE_PTYPE_INNER_L4_UDP |
RTE_PTYPE_INNER_L2_ETHER,
[QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_INNER_L3_IPV6 |
RTE_PTYPE_INNER_L4_UDP |
RTE_PTYPE_INNER_L2_ETHER,
/* Frags with no VLAN */
[QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_INNER_L3_IPV4 |
RTE_PTYPE_INNER_L4_FRAG |
RTE_PTYPE_INNER_L2_ETHER,
[QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_INNER_L3_IPV6 |
RTE_PTYPE_INNER_L4_FRAG |
RTE_PTYPE_INNER_L2_ETHER,
/* VLANs */
[QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
RTE_PTYPE_INNER_L2_ETHER_VLAN,
[QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
RTE_PTYPE_INNER_L2_ETHER_VLAN,
[QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
RTE_PTYPE_INNER_L4_TCP |
RTE_PTYPE_INNER_L2_ETHER_VLAN,
[QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
RTE_PTYPE_INNER_L4_TCP |
RTE_PTYPE_INNER_L2_ETHER_VLAN,
[QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
RTE_PTYPE_INNER_L4_UDP |
RTE_PTYPE_INNER_L2_ETHER_VLAN,
[QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
RTE_PTYPE_INNER_L4_UDP |
RTE_PTYPE_INNER_L2_ETHER_VLAN,
/* Frags with VLAN */
[QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV4 |
RTE_PTYPE_INNER_L4_FRAG |
RTE_PTYPE_INNER_L2_ETHER_VLAN,
[QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV6 |
RTE_PTYPE_INNER_L4_FRAG |
RTE_PTYPE_INNER_L2_ETHER_VLAN,
};
/* Bits (0..3) provides L3/L4 protocol type */
/* Bits (4,5) provides frag and VLAN info */
val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
(PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
(PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
(PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
if (val < QEDE_PKT_TYPE_MAX)
return ptype_lkup_tbl[val];
return RTE_PTYPE_UNKNOWN;
}
static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
{
uint16_t val;
/* Lookup table */
static const uint32_t
ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
[QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER,
[QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L2_ETHER,
[QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_TCP |
RTE_PTYPE_L2_ETHER,
[QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_TCP |
RTE_PTYPE_L2_ETHER,
[QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_UDP |
RTE_PTYPE_L2_ETHER,
[QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_UDP |
RTE_PTYPE_L2_ETHER,
/* Frags with no VLAN */
[QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_FRAG |
RTE_PTYPE_L2_ETHER,
[QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_FRAG |
RTE_PTYPE_L2_ETHER,
/* VLANs */
[QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L2_ETHER_VLAN,
[QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L2_ETHER_VLAN,
[QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_TCP |
RTE_PTYPE_L2_ETHER_VLAN,
[QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_TCP |
RTE_PTYPE_L2_ETHER_VLAN,
[QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_UDP |
RTE_PTYPE_L2_ETHER_VLAN,
[QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_UDP |
RTE_PTYPE_L2_ETHER_VLAN,
/* Frags with VLAN */
[QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_FRAG |
RTE_PTYPE_L2_ETHER_VLAN,
[QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_FRAG |
RTE_PTYPE_L2_ETHER_VLAN,
};
/* Bits (0..3) provides L3/L4 protocol type */
/* Bits (4,5) provides frag and VLAN info */
val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
(PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
(PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
(PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
if (val < QEDE_PKT_TYPE_MAX)
return ptype_lkup_tbl[val];
return RTE_PTYPE_UNKNOWN;
}
static inline uint8_t
qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag)
{
struct rte_ipv4_hdr *ip;
uint16_t pkt_csum;
uint16_t calc_csum;
uint16_t val;
val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag);
if (unlikely(val)) {
m->packet_type = qede_rx_cqe_to_pkt_type(flag);
if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
ip = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
sizeof(struct rte_ether_hdr));
pkt_csum = ip->hdr_checksum;
ip->hdr_checksum = 0;
calc_csum = rte_ipv4_cksum(ip);
ip->hdr_checksum = pkt_csum;
return (calc_csum != pkt_csum);
} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
return 1;
}
}
return 0;
}
static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
{
ecore_chain_consume(&rxq->rx_bd_ring);
rxq->sw_rx_cons++;
}
static inline void
qede_reuse_page(__rte_unused struct qede_dev *qdev,
struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons)
{
struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
struct qede_rx_entry *curr_prod;
dma_addr_t new_mapping;
curr_prod = &rxq->sw_rx_ring[idx];
*curr_prod = *curr_cons;
new_mapping = rte_mbuf_data_iova_default(curr_prod->mbuf) +
curr_prod->page_offset;
rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));
rxq->sw_rx_prod++;
}
static inline void
qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
struct qede_dev *qdev, uint8_t count)
{
struct qede_rx_entry *curr_cons;
for (; count > 0; count--) {
curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
qede_reuse_page(qdev, rxq, curr_cons);
qede_rx_bd_ring_consume(rxq);
}
}
static inline void
qede_rx_process_tpa_cmn_cont_end_cqe(__rte_unused struct qede_dev *qdev,
struct qede_rx_queue *rxq,
uint8_t agg_index, uint16_t len)
{
struct qede_agg_info *tpa_info;
struct rte_mbuf *curr_frag; /* Pointer to currently filled TPA seg */
uint16_t cons_idx;
/* Under certain conditions it is possible that FW may not consume
* additional or new BD. So decision to consume the BD must be made
* based on len_list[0].
*/
if (rte_le_to_cpu_16(len)) {
tpa_info = &rxq->tpa_info[agg_index];
cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
curr_frag = rxq->sw_rx_ring[cons_idx].mbuf;
assert(curr_frag);
curr_frag->nb_segs = 1;
curr_frag->pkt_len = rte_le_to_cpu_16(len);
curr_frag->data_len = curr_frag->pkt_len;
tpa_info->tpa_tail->next = curr_frag;
tpa_info->tpa_tail = curr_frag;
qede_rx_bd_ring_consume(rxq);
if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
PMD_RX_LOG(ERR, rxq, "mbuf allocation fails\n");
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
rxq->rx_alloc_errors++;
}
}
}
static inline void
qede_rx_process_tpa_cont_cqe(struct qede_dev *qdev,
struct qede_rx_queue *rxq,
struct eth_fast_path_rx_tpa_cont_cqe *cqe)
{
PMD_RX_LOG(INFO, rxq, "TPA cont[%d] - len [%d]\n",
cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0]));
/* only len_list[0] will have value */
qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
cqe->len_list[0]);
}
static inline void
qede_rx_process_tpa_end_cqe(struct qede_dev *qdev,
struct qede_rx_queue *rxq,
struct eth_fast_path_rx_tpa_end_cqe *cqe)
{
struct rte_mbuf *rx_mb; /* Pointer to head of the chained agg */
qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
cqe->len_list[0]);
/* Update total length and frags based on end TPA */
rx_mb = rxq->tpa_info[cqe->tpa_agg_index].tpa_head;
/* TODO: Add Sanity Checks */
rx_mb->nb_segs = cqe->num_of_bds;
rx_mb->pkt_len = cqe->total_packet_len;
PMD_RX_LOG(INFO, rxq, "TPA End[%d] reason %d cqe_len %d nb_segs %d"
" pkt_len %d\n", cqe->tpa_agg_index, cqe->end_reason,
rte_le_to_cpu_16(cqe->len_list[0]), rx_mb->nb_segs,
rx_mb->pkt_len);
}
static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
{
uint32_t val;
/* Lookup table */
static const uint32_t
ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = {
[QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN,
[QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
[QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE,
[QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] =
RTE_PTYPE_TUNNEL_GENEVE,
[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] =
RTE_PTYPE_TUNNEL_GRE,
[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] =
RTE_PTYPE_TUNNEL_VXLAN,
[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] =
RTE_PTYPE_TUNNEL_GENEVE,
[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] =
RTE_PTYPE_TUNNEL_GRE,
[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] =
RTE_PTYPE_TUNNEL_VXLAN,
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] =
RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] =
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] =
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] =
RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] =
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] =
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] =
RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] =
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] =
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] =
RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] =
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] =
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
};
/* Cover bits[4-0] to include tunn_type and next protocol */
val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK <<
ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) |
(ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK <<
ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags;
if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE)
return ptype_tunn_lkup_tbl[val];
else
return RTE_PTYPE_UNKNOWN;
}
static inline int
qede_process_sg_pkts(void *p_rxq, struct rte_mbuf *rx_mb,
uint8_t num_segs, uint16_t pkt_len)
{
struct qede_rx_queue *rxq = p_rxq;
struct qede_dev *qdev = rxq->qdev;
register struct rte_mbuf *seg1 = NULL;
register struct rte_mbuf *seg2 = NULL;
uint16_t sw_rx_index;
uint16_t cur_size;
seg1 = rx_mb;
while (num_segs) {
cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
pkt_len;
if (unlikely(!cur_size)) {
PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs"
" left for mapping jumbo\n", num_segs);
qede_recycle_rx_bd_ring(rxq, qdev, num_segs);
return -EINVAL;
}
sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf;
qede_rx_bd_ring_consume(rxq);
pkt_len -= cur_size;
seg2->data_len = cur_size;
seg1->next = seg2;
seg1 = seg1->next;
num_segs--;
rxq->rx_segs++;
}
return 0;
}
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
static inline void
print_rx_bd_info(struct rte_mbuf *m, struct qede_rx_queue *rxq,
uint8_t bitfield)
{
PMD_RX_LOG(INFO, rxq,
"len 0x%04x bf 0x%04x hash_val 0x%x"
" ol_flags 0x%04lx l2=%s l3=%s l4=%s tunn=%s"
" inner_l2=%s inner_l3=%s inner_l4=%s\n",
m->data_len, bitfield, m->hash.rss,
(unsigned long)m->ol_flags,
rte_get_ptype_l2_name(m->packet_type),
rte_get_ptype_l3_name(m->packet_type),
rte_get_ptype_l4_name(m->packet_type),
rte_get_ptype_tunnel_name(m->packet_type),
rte_get_ptype_inner_l2_name(m->packet_type),
rte_get_ptype_inner_l3_name(m->packet_type),
rte_get_ptype_inner_l4_name(m->packet_type));
}
#endif
uint16_t
qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct qede_rx_queue *rxq = p_rxq;
struct qede_dev *qdev = rxq->qdev;
struct ecore_dev *edev = &qdev->edev;
uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
uint16_t rx_pkt = 0;
union eth_rx_cqe *cqe;
struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
register struct rte_mbuf *rx_mb = NULL;
register struct rte_mbuf *seg1 = NULL;
enum eth_rx_cqe_type cqe_type;
uint16_t pkt_len = 0; /* Sum of all BD segments */
uint16_t len; /* Length of first BD */
uint8_t num_segs = 1;
uint16_t preload_idx;
uint16_t parse_flag;
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
uint8_t bitfield_val;
#endif
uint8_t tunn_parse_flag;
struct eth_fast_path_rx_tpa_start_cqe *cqe_start_tpa;
uint64_t ol_flags;
uint32_t packet_type;
uint16_t vlan_tci;
bool tpa_start_flg;
uint8_t offset, tpa_agg_idx, flags;
struct qede_agg_info *tpa_info = NULL;
uint32_t rss_hash;
int rx_alloc_count = 0;
/* Allocate buffers that we used in previous loop */
if (rxq->rx_alloc_count) {
if (unlikely(qede_alloc_rx_bulk_mbufs(rxq,
rxq->rx_alloc_count))) {
struct rte_eth_dev *dev;
PMD_RX_LOG(ERR, rxq,
"New buffer allocation failed,"
"dropping incoming packetn");
dev = &rte_eth_devices[rxq->port_id];
dev->data->rx_mbuf_alloc_failed +=
rxq->rx_alloc_count;
rxq->rx_alloc_errors += rxq->rx_alloc_count;
return 0;
}
qede_update_rx_prod(qdev, rxq);
rxq->rx_alloc_count = 0;
}
hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
rte_rmb();
if (hw_comp_cons == sw_comp_cons)
return 0;
while (sw_comp_cons != hw_comp_cons) {
ol_flags = 0;
packet_type = RTE_PTYPE_UNKNOWN;
vlan_tci = 0;
tpa_start_flg = false;
rss_hash = 0;
/* Get the CQE from the completion ring */
cqe =
(union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
cqe_type = cqe->fast_path_regular.type;
PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
switch (cqe_type) {
case ETH_RX_CQE_TYPE_REGULAR:
fp_cqe = &cqe->fast_path_regular;
break;
case ETH_RX_CQE_TYPE_TPA_START:
cqe_start_tpa = &cqe->fast_path_tpa_start;
tpa_info = &rxq->tpa_info[cqe_start_tpa->tpa_agg_index];
tpa_start_flg = true;
/* Mark it as LRO packet */
ol_flags |= PKT_RX_LRO;
/* In split mode, seg_len is same as len_on_first_bd
* and ext_bd_len_list will be empty since there are
* no additional buffers
*/
PMD_RX_LOG(INFO, rxq,
"TPA start[%d] - len_on_first_bd %d header %d"
" [bd_list[0] %d], [seg_len %d]\n",
cqe_start_tpa->tpa_agg_index,
rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd),
cqe_start_tpa->header_len,
rte_le_to_cpu_16(cqe_start_tpa->ext_bd_len_list[0]),
rte_le_to_cpu_16(cqe_start_tpa->seg_len));
break;
case ETH_RX_CQE_TYPE_TPA_CONT:
qede_rx_process_tpa_cont_cqe(qdev, rxq,
&cqe->fast_path_tpa_cont);
goto next_cqe;
case ETH_RX_CQE_TYPE_TPA_END:
qede_rx_process_tpa_end_cqe(qdev, rxq,
&cqe->fast_path_tpa_end);
tpa_agg_idx = cqe->fast_path_tpa_end.tpa_agg_index;
tpa_info = &rxq->tpa_info[tpa_agg_idx];
rx_mb = rxq->tpa_info[tpa_agg_idx].tpa_head;
goto tpa_end;
case ETH_RX_CQE_TYPE_SLOW_PATH:
PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
ecore_eth_cqe_completion(
&edev->hwfns[rxq->queue_id % edev->num_hwfns],
(struct eth_slow_path_rx_cqe *)cqe);
/* fall-thru */
default:
goto next_cqe;
}
/* Get the data from the SW ring */
sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
assert(rx_mb != NULL);
/* Handle regular CQE or TPA start CQE */
if (!tpa_start_flg) {
parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
offset = fp_cqe->placement_offset;
len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
bitfield_val = fp_cqe->bitfields;
#endif
} else {
parse_flag =
rte_le_to_cpu_16(cqe_start_tpa->pars_flags.flags);
offset = cqe_start_tpa->placement_offset;
/* seg_len = len_on_first_bd */
len = rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd);
vlan_tci = rte_le_to_cpu_16(cqe_start_tpa->vlan_tag);
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
bitfield_val = cqe_start_tpa->bitfields;
#endif
rss_hash = rte_le_to_cpu_32(cqe_start_tpa->rss_hash);
}
if (qede_tunn_exist(parse_flag)) {
PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
PMD_RX_LOG(ERR, rxq,
"L4 csum failed, flags = 0x%x\n",
parse_flag);
rxq->rx_hw_errors++;
ol_flags |= PKT_RX_L4_CKSUM_BAD;
} else {
ol_flags |= PKT_RX_L4_CKSUM_GOOD;
}
if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
PMD_RX_LOG(ERR, rxq,
"Outer L3 csum failed, flags = 0x%x\n",
parse_flag);
rxq->rx_hw_errors++;
ol_flags |= PKT_RX_EIP_CKSUM_BAD;
} else {
ol_flags |= PKT_RX_IP_CKSUM_GOOD;
}
if (tpa_start_flg)
flags = cqe_start_tpa->tunnel_pars_flags.flags;
else
flags = fp_cqe->tunnel_pars_flags.flags;
tunn_parse_flag = flags;
/* Tunnel_type */
packet_type =
qede_rx_cqe_to_tunn_pkt_type(tunn_parse_flag);
/* Inner header */
packet_type |=
qede_rx_cqe_to_pkt_type_inner(parse_flag);
/* Outer L3/L4 types is not available in CQE */
packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
/* Outer L3/L4 types is not available in CQE.
* Need to add offset to parse correctly,
*/
rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
} else {
packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
}
/* Common handling for non-tunnel packets and for inner
* headers in the case of tunnel.
*/
if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
PMD_RX_LOG(ERR, rxq,
"L4 csum failed, flags = 0x%x\n",
parse_flag);
rxq->rx_hw_errors++;
ol_flags |= PKT_RX_L4_CKSUM_BAD;
} else {
ol_flags |= PKT_RX_L4_CKSUM_GOOD;
}
if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
parse_flag);
rxq->rx_hw_errors++;
ol_flags |= PKT_RX_IP_CKSUM_BAD;
} else {
ol_flags |= PKT_RX_IP_CKSUM_GOOD;
}
if (CQE_HAS_VLAN(parse_flag) ||
CQE_HAS_OUTER_VLAN(parse_flag)) {
/* Note: FW doesn't indicate Q-in-Q packet */
ol_flags |= PKT_RX_VLAN;
if (qdev->vlan_strip_flg) {
ol_flags |= PKT_RX_VLAN_STRIPPED;
rx_mb->vlan_tci = vlan_tci;
}
}
/* RSS Hash */
if (qdev->rss_enable) {
ol_flags |= PKT_RX_RSS_HASH;
rx_mb->hash.rss = rss_hash;
}
rx_alloc_count++;
qede_rx_bd_ring_consume(rxq);
if (!tpa_start_flg && fp_cqe->bd_num > 1) {
PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs"
" len on first: %04x Total Len: %04x",
fp_cqe->bd_num, len, pkt_len);
num_segs = fp_cqe->bd_num - 1;
seg1 = rx_mb;
if (qede_process_sg_pkts(p_rxq, seg1, num_segs,
pkt_len - len))
goto next_cqe;
rx_alloc_count += num_segs;
rxq->rx_segs += num_segs;
}
rxq->rx_segs++; /* for the first segment */
/* Prefetch next mbuf while processing current one. */
preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
/* Update rest of the MBUF fields */
rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
rx_mb->port = rxq->port_id;
rx_mb->ol_flags = ol_flags;
rx_mb->data_len = len;
rx_mb->packet_type = packet_type;
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
print_rx_bd_info(rx_mb, rxq, bitfield_val);
#endif
if (!tpa_start_flg) {
rx_mb->nb_segs = fp_cqe->bd_num;
rx_mb->pkt_len = pkt_len;
} else {
/* store ref to the updated mbuf */
tpa_info->tpa_head = rx_mb;
tpa_info->tpa_tail = tpa_info->tpa_head;
}
rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
tpa_end:
if (!tpa_start_flg) {
rx_pkts[rx_pkt] = rx_mb;
rx_pkt++;
}
next_cqe:
ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
if (rx_pkt == nb_pkts) {
PMD_RX_LOG(DEBUG, rxq,
"Budget reached nb_pkts=%u received=%u",
rx_pkt, nb_pkts);
break;
}
}
/* Request number of bufferes to be allocated in next loop */
rxq->rx_alloc_count = rx_alloc_count;
rxq->rcv_pkts += rx_pkt;
PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
return rx_pkt;
}
uint16_t
qede_recv_pkts_cmt(void *p_fp_cmt, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct qede_fastpath_cmt *fp_cmt = p_fp_cmt;
uint16_t eng0_pkts, eng1_pkts;
eng0_pkts = nb_pkts / 2;
eng0_pkts = qede_recv_pkts(fp_cmt->fp0->rxq, rx_pkts, eng0_pkts);
eng1_pkts = nb_pkts - eng0_pkts;
eng1_pkts = qede_recv_pkts(fp_cmt->fp1->rxq, rx_pkts + eng0_pkts,
eng1_pkts);
return eng0_pkts + eng1_pkts;
}
/* Populate scatter gather buffer descriptor fields */
static inline uint16_t
qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
struct eth_tx_2nd_bd **bd2, struct eth_tx_3rd_bd **bd3,
uint16_t start_seg)
{
struct qede_tx_queue *txq = p_txq;
struct eth_tx_bd *tx_bd = NULL;
dma_addr_t mapping;
uint16_t nb_segs = 0;
/* Check for scattered buffers */
while (m_seg) {
if (start_seg == 0) {
if (!*bd2) {
*bd2 = (struct eth_tx_2nd_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(*bd2, 0, sizeof(struct eth_tx_2nd_bd));
nb_segs++;
}
mapping = rte_mbuf_data_iova(m_seg);
QEDE_BD_SET_ADDR_LEN(*bd2, mapping, m_seg->data_len);
PMD_TX_LOG(DEBUG, txq, "BD2 len %04x", m_seg->data_len);
} else if (start_seg == 1) {
if (!*bd3) {
*bd3 = (struct eth_tx_3rd_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(*bd3, 0, sizeof(struct eth_tx_3rd_bd));
nb_segs++;
}
mapping = rte_mbuf_data_iova(m_seg);
QEDE_BD_SET_ADDR_LEN(*bd3, mapping, m_seg->data_len);
PMD_TX_LOG(DEBUG, txq, "BD3 len %04x", m_seg->data_len);
} else {
tx_bd = (struct eth_tx_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(tx_bd, 0, sizeof(*tx_bd));
nb_segs++;
mapping = rte_mbuf_data_iova(m_seg);
QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len);
PMD_TX_LOG(DEBUG, txq, "BD len %04x", m_seg->data_len);
}
start_seg++;
m_seg = m_seg->next;
}
/* Return total scattered buffers */
return nb_segs;
}
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
static inline void
print_tx_bd_info(struct qede_tx_queue *txq,
struct eth_tx_1st_bd *bd1,
struct eth_tx_2nd_bd *bd2,
struct eth_tx_3rd_bd *bd3,
uint64_t tx_ol_flags)
{
char ol_buf[256] = { 0 }; /* for verbose prints */
if (bd1)
PMD_TX_LOG(INFO, txq,
"BD1: nbytes=0x%04x nbds=0x%04x bd_flags=0x%04x bf=0x%04x",
rte_cpu_to_le_16(bd1->nbytes), bd1->data.nbds,
bd1->data.bd_flags.bitfields,
rte_cpu_to_le_16(bd1->data.bitfields));
if (bd2)
PMD_TX_LOG(INFO, txq,
"BD2: nbytes=0x%04x bf1=0x%04x bf2=0x%04x tunn_ip=0x%04x\n",
rte_cpu_to_le_16(bd2->nbytes), bd2->data.bitfields1,
bd2->data.bitfields2, bd2->data.tunn_ip_size);
if (bd3)
PMD_TX_LOG(INFO, txq,
"BD3: nbytes=0x%04x bf=0x%04x MSS=0x%04x "
"tunn_l4_hdr_start_offset_w=0x%04x tunn_hdr_size=0x%04x\n",
rte_cpu_to_le_16(bd3->nbytes),
rte_cpu_to_le_16(bd3->data.bitfields),
rte_cpu_to_le_16(bd3->data.lso_mss),
bd3->data.tunn_l4_hdr_start_offset_w,
bd3->data.tunn_hdr_size_w);
rte_get_tx_ol_flag_list(tx_ol_flags, ol_buf, sizeof(ol_buf));
PMD_TX_LOG(INFO, txq, "TX offloads = %s\n", ol_buf);
}
#endif
/* TX prepare to check packets meets TX conditions */
uint16_t
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct qede_tx_queue *txq = p_txq;
#else
qede_xmit_prep_pkts(__rte_unused void *p_txq, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
#endif
uint64_t ol_flags;
struct rte_mbuf *m;
uint16_t i;
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
int ret;
#endif
for (i = 0; i < nb_pkts; i++) {
m = tx_pkts[i];
ol_flags = m->ol_flags;
if (ol_flags & PKT_TX_TCP_SEG) {
if (m->nb_segs >= ETH_TX_MAX_BDS_PER_LSO_PACKET) {
rte_errno = EINVAL;
break;
}
/* TBD: confirm its ~9700B for both ? */
if (m->tso_segsz > ETH_TX_MAX_NON_LSO_PKT_LEN) {
rte_errno = EINVAL;
break;
}
} else {
if (m->nb_segs >= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) {
rte_errno = EINVAL;
break;
}
}
if (ol_flags & QEDE_TX_OFFLOAD_NOTSUP_MASK) {
/* We support only limited tunnel protocols */
if (ol_flags & PKT_TX_TUNNEL_MASK) {
uint64_t temp;
temp = ol_flags & PKT_TX_TUNNEL_MASK;
if (temp == PKT_TX_TUNNEL_VXLAN ||
temp == PKT_TX_TUNNEL_GENEVE ||
temp == PKT_TX_TUNNEL_MPLSINUDP ||
temp == PKT_TX_TUNNEL_GRE)
continue;
}
rte_errno = ENOTSUP;
break;
}
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = -ret;
break;
}
#endif
}
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
if (unlikely(i != nb_pkts))
PMD_TX_LOG(ERR, txq, "TX prepare failed for %u\n",
nb_pkts - i);
#endif
return i;
}
#define MPLSINUDP_HDR_SIZE (12)
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
static inline void
qede_mpls_tunn_tx_sanity_check(struct rte_mbuf *mbuf,
struct qede_tx_queue *txq)
{
if (((mbuf->outer_l2_len + mbuf->outer_l3_len) / 2) > 0xff)
PMD_TX_LOG(ERR, txq, "tunn_l4_hdr_start_offset overflow\n");
if (((mbuf->outer_l2_len + mbuf->outer_l3_len +
MPLSINUDP_HDR_SIZE) / 2) > 0xff)
PMD_TX_LOG(ERR, txq, "tunn_hdr_size overflow\n");
if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE) / 2) >
ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK)
PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2) >
ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
}
#endif
uint16_t
qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct qede_tx_queue *txq = p_txq;
struct qede_dev *qdev = txq->qdev;
struct ecore_dev *edev = &qdev->edev;
struct rte_mbuf *mbuf;
struct rte_mbuf *m_seg = NULL;
uint16_t nb_tx_pkts;
uint16_t bd_prod;
uint16_t idx;
uint16_t nb_frags;
uint16_t nb_pkt_sent = 0;
uint8_t nbds;
bool lso_flg;
bool mplsoudp_flg;
__rte_unused bool tunn_flg;
bool tunn_ipv6_ext_flg;
struct eth_tx_1st_bd *bd1;
struct eth_tx_2nd_bd *bd2;
struct eth_tx_3rd_bd *bd3;
uint64_t tx_ol_flags;
uint16_t hdr_size;
/* BD1 */
uint16_t bd1_bf;
uint8_t bd1_bd_flags_bf;
uint16_t vlan;
/* BD2 */
uint16_t bd2_bf1;
uint16_t bd2_bf2;
/* BD3 */
uint16_t mss;
uint16_t bd3_bf;
uint8_t tunn_l4_hdr_start_offset;
uint8_t tunn_hdr_size;
uint8_t inner_l2_hdr_size;
uint16_t inner_l4_hdr_offset;
if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
qede_process_tx_compl(edev, txq);
}
nb_tx_pkts = nb_pkts;
bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
while (nb_tx_pkts--) {
/* Init flags/values */
tunn_flg = false;
lso_flg = false;
nbds = 0;
vlan = 0;
bd1 = NULL;
bd2 = NULL;
bd3 = NULL;
hdr_size = 0;
bd1_bf = 0;
bd1_bd_flags_bf = 0;
bd2_bf1 = 0;
bd2_bf2 = 0;
mss = 0;
bd3_bf = 0;
mplsoudp_flg = false;
tunn_ipv6_ext_flg = false;
tunn_hdr_size = 0;
tunn_l4_hdr_start_offset = 0;
mbuf = *tx_pkts++;
assert(mbuf);
/* Check minimum TX BDS availability against available BDs */
if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
break;
tx_ol_flags = mbuf->ol_flags;
bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
/* TX prepare would have already checked supported tunnel Tx
* offloads. Don't rely on pkt_type marked by Rx, instead use
* tx_ol_flags to decide.
*/
tunn_flg = !!(tx_ol_flags & PKT_TX_TUNNEL_MASK);
if (tunn_flg) {
/* Check against max which is Tunnel IPv6 + ext */
if (unlikely(txq->nb_tx_avail <
ETH_TX_MIN_BDS_PER_TUNN_IPV6_WITH_EXT_PKT))
break;
/* First indicate its a tunnel pkt */
bd1_bf |= ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
/* Legacy FW had flipped behavior in regard to this bit
* i.e. it needed to set to prevent FW from touching
* encapsulated packets when it didn't need to.
*/
if (unlikely(txq->is_legacy)) {
bd1_bf ^= 1 <<
ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
}
/* Outer IP checksum offload */
if (tx_ol_flags & (PKT_TX_OUTER_IP_CKSUM |
PKT_TX_OUTER_IPV4)) {
bd1_bd_flags_bf |=
ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
}
/**
* Currently, only inner checksum offload in MPLS-in-UDP
* tunnel with one MPLS label is supported. Both outer
* and inner layers lengths need to be provided in
* mbuf.
*/
if ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
PKT_TX_TUNNEL_MPLSINUDP) {
mplsoudp_flg = true;
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
qede_mpls_tunn_tx_sanity_check(mbuf, txq);
#endif
/* Outer L4 offset in two byte words */
tunn_l4_hdr_start_offset =
(mbuf->outer_l2_len + mbuf->outer_l3_len) / 2;
/* Tunnel header size in two byte words */
tunn_hdr_size = (mbuf->outer_l2_len +
mbuf->outer_l3_len +
MPLSINUDP_HDR_SIZE) / 2;
/* Inner L2 header size in two byte words */
inner_l2_hdr_size = (mbuf->l2_len -
MPLSINUDP_HDR_SIZE) / 2;
/* Inner L4 header offset from the beggining
* of inner packet in two byte words
*/
inner_l4_hdr_offset = (mbuf->l2_len -
MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2;
/* Inner L2 size and address type */
bd2_bf1 |= (inner_l2_hdr_size &
ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) <<
ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_SHIFT;
bd2_bf1 |= (UNICAST_ADDRESS &
ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_MASK) <<
ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_SHIFT;
/* Treated as IPv6+Ext */
bd2_bf1 |=
1 << ETH_TX_DATA_2ND_BD_TUNN_IPV6_EXT_SHIFT;
/* Mark inner IPv6 if present */
if (tx_ol_flags & PKT_TX_IPV6)
bd2_bf1 |=
1 << ETH_TX_DATA_2ND_BD_TUNN_INNER_IPV6_SHIFT;
/* Inner L4 offsets */
if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
(tx_ol_flags & (PKT_TX_UDP_CKSUM |
PKT_TX_TCP_CKSUM))) {
/* Determines if BD3 is needed */
tunn_ipv6_ext_flg = true;
if ((tx_ol_flags & PKT_TX_L4_MASK) ==
PKT_TX_UDP_CKSUM) {
bd2_bf1 |=
1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
}
/* TODO other pseudo checksum modes are
* not supported
*/
bd2_bf1 |=
ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT;
bd2_bf2 |= (inner_l4_hdr_offset &
ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) <<
ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
}
} /* End MPLSoUDP */
} /* End Tunnel handling */
if (tx_ol_flags & PKT_TX_TCP_SEG) {
lso_flg = true;
if (unlikely(txq->nb_tx_avail <
ETH_TX_MIN_BDS_PER_LSO_PKT))
break;
/* For LSO, packet header and payload must reside on
* buffers pointed by different BDs. Using BD1 for HDR
* and BD2 onwards for data.
*/
hdr_size = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
if (tunn_flg)
hdr_size += mbuf->outer_l2_len +
mbuf->outer_l3_len;
bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT;
bd1_bd_flags_bf |=
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
/* PKT_TX_TCP_SEG implies PKT_TX_TCP_CKSUM */
bd1_bd_flags_bf |=
1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
mss = rte_cpu_to_le_16(mbuf->tso_segsz);
/* Using one header BD */
bd3_bf |= rte_cpu_to_le_16(1 <<
ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
} else {
if (unlikely(txq->nb_tx_avail <
ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
break;
bd1_bf |=
(mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
<< ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
}
/* Descriptor based VLAN insertion */
if (tx_ol_flags & PKT_TX_VLAN_PKT) {
vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
bd1_bd_flags_bf |=
1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
}
/* Offload the IP checksum in the hardware */
if (tx_ol_flags & PKT_TX_IP_CKSUM) {
bd1_bd_flags_bf |=
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
/* There's no DPDK flag to request outer-L4 csum
* offload. But in the case of tunnel if inner L3 or L4
* csum offload is requested then we need to force
* recalculation of L4 tunnel header csum also.
*/
if (tunn_flg && ((tx_ol_flags & PKT_TX_TUNNEL_MASK) !=
PKT_TX_TUNNEL_GRE)) {
bd1_bd_flags_bf |=
ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
}
}
/* L4 checksum offload (tcp or udp) */
if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
(tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) {
bd1_bd_flags_bf |=
1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
/* There's no DPDK flag to request outer-L4 csum
* offload. But in the case of tunnel if inner L3 or L4
* csum offload is requested then we need to force
* recalculation of L4 tunnel header csum also.
*/
if (tunn_flg) {
bd1_bd_flags_bf |=
ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
}
}
/* Fill the entry in the SW ring and the BDs in the FW ring */
idx = TX_PROD(txq);
txq->sw_tx_ring[idx].mbuf = mbuf;
/* BD1 */
bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
nbds++;
/* Map MBUF linear data for DMA and set in the BD1 */
QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
mbuf->data_len);
bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
bd1->data.vlan = vlan;
if (lso_flg || mplsoudp_flg) {
bd2 = (struct eth_tx_2nd_bd *)ecore_chain_produce
(&txq->tx_pbl);
memset(bd2, 0, sizeof(struct eth_tx_2nd_bd));
nbds++;
/* BD1 */
QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
hdr_size);
/* BD2 */
QEDE_BD_SET_ADDR_LEN(bd2, (hdr_size +
rte_mbuf_data_iova(mbuf)),
mbuf->data_len - hdr_size);
bd2->data.bitfields1 = rte_cpu_to_le_16(bd2_bf1);
if (mplsoudp_flg) {
bd2->data.bitfields2 =
rte_cpu_to_le_16(bd2_bf2);
/* Outer L3 size */
bd2->data.tunn_ip_size =
rte_cpu_to_le_16(mbuf->outer_l3_len);
}
/* BD3 */
if (lso_flg || (mplsoudp_flg && tunn_ipv6_ext_flg)) {
bd3 = (struct eth_tx_3rd_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(bd3, 0, sizeof(struct eth_tx_3rd_bd));
nbds++;
bd3->data.bitfields = rte_cpu_to_le_16(bd3_bf);
if (lso_flg)
bd3->data.lso_mss = mss;
if (mplsoudp_flg) {
bd3->data.tunn_l4_hdr_start_offset_w =
tunn_l4_hdr_start_offset;
bd3->data.tunn_hdr_size_w =
tunn_hdr_size;
}
}
}
/* Handle fragmented MBUF */
m_seg = mbuf->next;
/* Encode scatter gather buffer descriptors if required */
nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, nbds - 1);
bd1->data.nbds = nbds + nb_frags;
txq->nb_tx_avail -= bd1->data.nbds;
txq->sw_tx_prod++;
bd_prod =
rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
#endif
nb_pkt_sent++;
txq->xmit_pkts++;
}
/* Write value of prod idx into bd_prod */
txq->tx_db.data.bd_prod = bd_prod;
rte_wmb();
rte_compiler_barrier();
DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
rte_wmb();
/* Check again for Tx completions */
qede_process_tx_compl(edev, txq);
PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
return nb_pkt_sent;
}
uint16_t
qede_xmit_pkts_cmt(void *p_fp_cmt, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct qede_fastpath_cmt *fp_cmt = p_fp_cmt;
uint16_t eng0_pkts, eng1_pkts;
eng0_pkts = nb_pkts / 2;
eng0_pkts = qede_xmit_pkts(fp_cmt->fp0->txq, tx_pkts, eng0_pkts);
eng1_pkts = nb_pkts - eng0_pkts;
eng1_pkts = qede_xmit_pkts(fp_cmt->fp1->txq, tx_pkts + eng0_pkts,
eng1_pkts);
return eng0_pkts + eng1_pkts;
}
uint16_t
qede_rxtx_pkts_dummy(__rte_unused void *p_rxq,
__rte_unused struct rte_mbuf **pkts,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
/* this function does a fake walk through over completion queue
* to calculate number of BDs used by HW.
* At the end, it restores the state of completion queue.
*/
static uint16_t
qede_parse_fp_cqe(struct qede_rx_queue *rxq)
{
uint16_t hw_comp_cons, sw_comp_cons, bd_count = 0;
union eth_rx_cqe *cqe, *orig_cqe = NULL;
hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
if (hw_comp_cons == sw_comp_cons)
return 0;
/* Get the CQE from the completion ring */
cqe = (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
orig_cqe = cqe;
while (sw_comp_cons != hw_comp_cons) {
switch (cqe->fast_path_regular.type) {
case ETH_RX_CQE_TYPE_REGULAR:
bd_count += cqe->fast_path_regular.bd_num;
break;
case ETH_RX_CQE_TYPE_TPA_END:
bd_count += cqe->fast_path_tpa_end.num_of_bds;
break;
default:
break;
}
cqe =
(union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
}
/* revert comp_ring to original state */
ecore_chain_set_cons(&rxq->rx_comp_ring, sw_comp_cons, orig_cqe);
return bd_count;
}
int
qede_rx_descriptor_status(void *p_rxq, uint16_t offset)
{
uint16_t hw_bd_cons, sw_bd_cons, sw_bd_prod;
uint16_t produced, consumed;
struct qede_rx_queue *rxq = p_rxq;
if (offset > rxq->nb_rx_desc)
return -EINVAL;
sw_bd_cons = ecore_chain_get_cons_idx(&rxq->rx_bd_ring);
sw_bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
/* find BDs used by HW from completion queue elements */
hw_bd_cons = sw_bd_cons + qede_parse_fp_cqe(rxq);
if (hw_bd_cons < sw_bd_cons)
/* wraparound case */
consumed = (0xffff - sw_bd_cons) + hw_bd_cons;
else
consumed = hw_bd_cons - sw_bd_cons;
if (offset <= consumed)
return RTE_ETH_RX_DESC_DONE;
if (sw_bd_prod < sw_bd_cons)
/* wraparound case */
produced = (0xffff - sw_bd_cons) + sw_bd_prod;
else
produced = sw_bd_prod - sw_bd_cons;
if (offset <= produced)
return RTE_ETH_RX_DESC_AVAIL;
return RTE_ETH_RX_DESC_UNAVAIL;
}