Thomas Monjalon f2fc83b40f replace unused attributes
There is a common macro __rte_unused, avoiding warnings,
which is now used where appropriate for consistency.

Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
2020-04-16 18:30:58 +02:00

945 lines
26 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation.
* Copyright 2014 6WIND S.A.
*/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdarg.h>
#include <inttypes.h>
#include <errno.h>
#include <ctype.h>
#include <sys/queue.h>
#include <rte_compat.h>
#include <rte_debug.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_mbuf_pool_ops.h>
#include <rte_string_fns.h>
#include <rte_hexdump.h>
#include <rte_errno.h>
#include <rte_memcpy.h>
/*
* pktmbuf pool constructor, given as a callback function to
* rte_mempool_create(), or called directly if using
* rte_mempool_create_empty()/rte_mempool_populate()
*/
void
rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg)
{
struct rte_pktmbuf_pool_private *user_mbp_priv, *mbp_priv;
struct rte_pktmbuf_pool_private default_mbp_priv;
uint16_t roomsz;
RTE_ASSERT(mp->elt_size >= sizeof(struct rte_mbuf));
/* if no structure is provided, assume no mbuf private area */
user_mbp_priv = opaque_arg;
if (user_mbp_priv == NULL) {
memset(&default_mbp_priv, 0, sizeof(default_mbp_priv));
if (mp->elt_size > sizeof(struct rte_mbuf))
roomsz = mp->elt_size - sizeof(struct rte_mbuf);
else
roomsz = 0;
default_mbp_priv.mbuf_data_room_size = roomsz;
user_mbp_priv = &default_mbp_priv;
}
RTE_ASSERT(mp->elt_size >= sizeof(struct rte_mbuf) +
((user_mbp_priv->flags & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) ?
sizeof(struct rte_mbuf_ext_shared_info) :
user_mbp_priv->mbuf_data_room_size) +
user_mbp_priv->mbuf_priv_size);
RTE_ASSERT((user_mbp_priv->flags &
~RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) == 0);
mbp_priv = rte_mempool_get_priv(mp);
memcpy(mbp_priv, user_mbp_priv, sizeof(*mbp_priv));
}
/*
* pktmbuf constructor, given as a callback function to
* rte_mempool_obj_iter() or rte_mempool_create().
* Set the fields of a packet mbuf to their default values.
*/
void
rte_pktmbuf_init(struct rte_mempool *mp,
__rte_unused void *opaque_arg,
void *_m,
__rte_unused unsigned i)
{
struct rte_mbuf *m = _m;
uint32_t mbuf_size, buf_len, priv_size;
priv_size = rte_pktmbuf_priv_size(mp);
mbuf_size = sizeof(struct rte_mbuf) + priv_size;
buf_len = rte_pktmbuf_data_room_size(mp);
RTE_ASSERT(RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) == priv_size);
RTE_ASSERT(mp->elt_size >= mbuf_size);
RTE_ASSERT(buf_len <= UINT16_MAX);
memset(m, 0, mbuf_size);
/* start of buffer is after mbuf structure and priv data */
m->priv_size = priv_size;
m->buf_addr = (char *)m + mbuf_size;
m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
m->buf_len = (uint16_t)buf_len;
/* keep some headroom between start of buffer and data */
m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);
/* init some constant fields */
m->pool = mp;
m->nb_segs = 1;
m->port = MBUF_INVALID_PORT;
rte_mbuf_refcnt_set(m, 1);
m->next = NULL;
}
/*
* @internal The callback routine called when reference counter in shinfo
* for mbufs with pinned external buffer reaches zero. It means there is
* no more reference to buffer backing mbuf and this one should be freed.
* This routine is called for the regular (not with pinned external or
* indirect buffer) mbufs on detaching from the mbuf with pinned external
* buffer.
*/
static void
rte_pktmbuf_free_pinned_extmem(void *addr, void *opaque)
{
struct rte_mbuf *m = opaque;
RTE_SET_USED(addr);
RTE_ASSERT(RTE_MBUF_HAS_EXTBUF(m));
RTE_ASSERT(RTE_MBUF_HAS_PINNED_EXTBUF(m));
RTE_ASSERT(m->shinfo->fcb_opaque == m);
rte_mbuf_ext_refcnt_set(m->shinfo, 1);
m->ol_flags = EXT_ATTACHED_MBUF;
if (m->next != NULL) {
m->next = NULL;
m->nb_segs = 1;
}
rte_mbuf_raw_free(m);
}
/** The context to initialize the mbufs with pinned external buffers. */
struct rte_pktmbuf_extmem_init_ctx {
const struct rte_pktmbuf_extmem *ext_mem; /* descriptor array. */
unsigned int ext_num; /* number of descriptors in array. */
unsigned int ext; /* loop descriptor index. */
size_t off; /* loop buffer offset. */
};
/**
* @internal Packet mbuf constructor for pools with pinned external memory.
*
* This function initializes some fields in the mbuf structure that are
* not modified by the user once created (origin pool, buffer start
* address, and so on). This function is given as a callback function to
* rte_mempool_obj_iter() called from rte_mempool_create_extmem().
*
* @param mp
* The mempool from which mbufs originate.
* @param opaque_arg
* A pointer to the rte_pktmbuf_extmem_init_ctx - initialization
* context structure
* @param m
* The mbuf to initialize.
* @param i
* The index of the mbuf in the pool table.
*/
static void
__rte_pktmbuf_init_extmem(struct rte_mempool *mp,
void *opaque_arg,
void *_m,
__rte_unused unsigned int i)
{
struct rte_mbuf *m = _m;
struct rte_pktmbuf_extmem_init_ctx *ctx = opaque_arg;
const struct rte_pktmbuf_extmem *ext_mem;
uint32_t mbuf_size, buf_len, priv_size;
struct rte_mbuf_ext_shared_info *shinfo;
priv_size = rte_pktmbuf_priv_size(mp);
mbuf_size = sizeof(struct rte_mbuf) + priv_size;
buf_len = rte_pktmbuf_data_room_size(mp);
RTE_ASSERT(RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) == priv_size);
RTE_ASSERT(mp->elt_size >= mbuf_size);
RTE_ASSERT(buf_len <= UINT16_MAX);
memset(m, 0, mbuf_size);
m->priv_size = priv_size;
m->buf_len = (uint16_t)buf_len;
/* set the data buffer pointers to external memory */
ext_mem = ctx->ext_mem + ctx->ext;
RTE_ASSERT(ctx->ext < ctx->ext_num);
RTE_ASSERT(ctx->off < ext_mem->buf_len);
m->buf_addr = RTE_PTR_ADD(ext_mem->buf_ptr, ctx->off);
m->buf_iova = ext_mem->buf_iova == RTE_BAD_IOVA ?
RTE_BAD_IOVA : (ext_mem->buf_iova + ctx->off);
ctx->off += ext_mem->elt_size;
if (ctx->off >= ext_mem->buf_len) {
ctx->off = 0;
++ctx->ext;
}
/* keep some headroom between start of buffer and data */
m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);
/* init some constant fields */
m->pool = mp;
m->nb_segs = 1;
m->port = MBUF_INVALID_PORT;
m->ol_flags = EXT_ATTACHED_MBUF;
rte_mbuf_refcnt_set(m, 1);
m->next = NULL;
/* init external buffer shared info items */
shinfo = RTE_PTR_ADD(m, mbuf_size);
m->shinfo = shinfo;
shinfo->free_cb = rte_pktmbuf_free_pinned_extmem;
shinfo->fcb_opaque = m;
rte_mbuf_ext_refcnt_set(shinfo, 1);
}
/* Helper to create a mbuf pool with given mempool ops name*/
struct rte_mempool *
rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n,
unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
int socket_id, const char *ops_name)
{
struct rte_mempool *mp;
struct rte_pktmbuf_pool_private mbp_priv;
const char *mp_ops_name = ops_name;
unsigned elt_size;
int ret;
if (RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) != priv_size) {
RTE_LOG(ERR, MBUF, "mbuf priv_size=%u is not aligned\n",
priv_size);
rte_errno = EINVAL;
return NULL;
}
elt_size = sizeof(struct rte_mbuf) + (unsigned)priv_size +
(unsigned)data_room_size;
memset(&mbp_priv, 0, sizeof(mbp_priv));
mbp_priv.mbuf_data_room_size = data_room_size;
mbp_priv.mbuf_priv_size = priv_size;
mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
sizeof(struct rte_pktmbuf_pool_private), socket_id, 0);
if (mp == NULL)
return NULL;
if (mp_ops_name == NULL)
mp_ops_name = rte_mbuf_best_mempool_ops();
ret = rte_mempool_set_ops_byname(mp, mp_ops_name, NULL);
if (ret != 0) {
RTE_LOG(ERR, MBUF, "error setting mempool handler\n");
rte_mempool_free(mp);
rte_errno = -ret;
return NULL;
}
rte_pktmbuf_pool_init(mp, &mbp_priv);
ret = rte_mempool_populate_default(mp);
if (ret < 0) {
rte_mempool_free(mp);
rte_errno = -ret;
return NULL;
}
rte_mempool_obj_iter(mp, rte_pktmbuf_init, NULL);
return mp;
}
/* helper to create a mbuf pool */
struct rte_mempool *
rte_pktmbuf_pool_create(const char *name, unsigned int n,
unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
int socket_id)
{
return rte_pktmbuf_pool_create_by_ops(name, n, cache_size, priv_size,
data_room_size, socket_id, NULL);
}
/* Helper to create a mbuf pool with pinned external data buffers. */
struct rte_mempool *
rte_pktmbuf_pool_create_extbuf(const char *name, unsigned int n,
unsigned int cache_size, uint16_t priv_size,
uint16_t data_room_size, int socket_id,
const struct rte_pktmbuf_extmem *ext_mem,
unsigned int ext_num)
{
struct rte_mempool *mp;
struct rte_pktmbuf_pool_private mbp_priv;
struct rte_pktmbuf_extmem_init_ctx init_ctx;
const char *mp_ops_name;
unsigned int elt_size;
unsigned int i, n_elts = 0;
int ret;
if (RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) != priv_size) {
RTE_LOG(ERR, MBUF, "mbuf priv_size=%u is not aligned\n",
priv_size);
rte_errno = EINVAL;
return NULL;
}
/* Check the external memory descriptors. */
for (i = 0; i < ext_num; i++) {
const struct rte_pktmbuf_extmem *extm = ext_mem + i;
if (!extm->elt_size || !extm->buf_len || !extm->buf_ptr) {
RTE_LOG(ERR, MBUF, "invalid extmem descriptor\n");
rte_errno = EINVAL;
return NULL;
}
if (data_room_size > extm->elt_size) {
RTE_LOG(ERR, MBUF, "ext elt_size=%u is too small\n",
priv_size);
rte_errno = EINVAL;
return NULL;
}
n_elts += extm->buf_len / extm->elt_size;
}
/* Check whether enough external memory provided. */
if (n_elts < n) {
RTE_LOG(ERR, MBUF, "not enough extmem\n");
rte_errno = ENOMEM;
return NULL;
}
elt_size = sizeof(struct rte_mbuf) +
(unsigned int)priv_size +
sizeof(struct rte_mbuf_ext_shared_info);
memset(&mbp_priv, 0, sizeof(mbp_priv));
mbp_priv.mbuf_data_room_size = data_room_size;
mbp_priv.mbuf_priv_size = priv_size;
mbp_priv.flags = RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF;
mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
sizeof(struct rte_pktmbuf_pool_private), socket_id, 0);
if (mp == NULL)
return NULL;
mp_ops_name = rte_mbuf_best_mempool_ops();
ret = rte_mempool_set_ops_byname(mp, mp_ops_name, NULL);
if (ret != 0) {
RTE_LOG(ERR, MBUF, "error setting mempool handler\n");
rte_mempool_free(mp);
rte_errno = -ret;
return NULL;
}
rte_pktmbuf_pool_init(mp, &mbp_priv);
ret = rte_mempool_populate_default(mp);
if (ret < 0) {
rte_mempool_free(mp);
rte_errno = -ret;
return NULL;
}
init_ctx = (struct rte_pktmbuf_extmem_init_ctx){
.ext_mem = ext_mem,
.ext_num = ext_num,
.ext = 0,
.off = 0,
};
rte_mempool_obj_iter(mp, __rte_pktmbuf_init_extmem, &init_ctx);
return mp;
}
/* do some sanity checks on a mbuf: panic if it fails */
void
rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header)
{
const char *reason;
if (rte_mbuf_check(m, is_header, &reason))
rte_panic("%s\n", reason);
}
int rte_mbuf_check(const struct rte_mbuf *m, int is_header,
const char **reason)
{
unsigned int nb_segs, pkt_len;
if (m == NULL) {
*reason = "mbuf is NULL";
return -1;
}
/* generic checks */
if (m->pool == NULL) {
*reason = "bad mbuf pool";
return -1;
}
if (m->buf_iova == 0) {
*reason = "bad IO addr";
return -1;
}
if (m->buf_addr == NULL) {
*reason = "bad virt addr";
return -1;
}
uint16_t cnt = rte_mbuf_refcnt_read(m);
if ((cnt == 0) || (cnt == UINT16_MAX)) {
*reason = "bad ref cnt";
return -1;
}
/* nothing to check for sub-segments */
if (is_header == 0)
return 0;
/* data_len is supposed to be not more than pkt_len */
if (m->data_len > m->pkt_len) {
*reason = "bad data_len";
return -1;
}
nb_segs = m->nb_segs;
pkt_len = m->pkt_len;
do {
if (m->data_off > m->buf_len) {
*reason = "data offset too big in mbuf segment";
return -1;
}
if (m->data_off + m->data_len > m->buf_len) {
*reason = "data length too big in mbuf segment";
return -1;
}
nb_segs -= 1;
pkt_len -= m->data_len;
} while ((m = m->next) != NULL);
if (nb_segs) {
*reason = "bad nb_segs";
return -1;
}
if (pkt_len) {
*reason = "bad pkt_len";
return -1;
}
return 0;
}
/**
* @internal helper function for freeing a bulk of packet mbuf segments
* via an array holding the packet mbuf segments from the same mempool
* pending to be freed.
*
* @param m
* The packet mbuf segment to be freed.
* @param pending
* Pointer to the array of packet mbuf segments pending to be freed.
* @param nb_pending
* Pointer to the number of elements held in the array.
* @param pending_sz
* Number of elements the array can hold.
* Note: The compiler should optimize this parameter away when using a
* constant value, such as RTE_PKTMBUF_FREE_PENDING_SZ.
*/
static void
__rte_pktmbuf_free_seg_via_array(struct rte_mbuf *m,
struct rte_mbuf ** const pending, unsigned int * const nb_pending,
const unsigned int pending_sz)
{
m = rte_pktmbuf_prefree_seg(m);
if (likely(m != NULL)) {
if (*nb_pending == pending_sz ||
(*nb_pending > 0 && m->pool != pending[0]->pool)) {
rte_mempool_put_bulk(pending[0]->pool,
(void **)pending, *nb_pending);
*nb_pending = 0;
}
pending[(*nb_pending)++] = m;
}
}
/**
* Size of the array holding mbufs from the same mempool pending to be freed
* in bulk.
*/
#define RTE_PKTMBUF_FREE_PENDING_SZ 64
/* Free a bulk of packet mbufs back into their original mempools. */
void rte_pktmbuf_free_bulk(struct rte_mbuf **mbufs, unsigned int count)
{
struct rte_mbuf *m, *m_next, *pending[RTE_PKTMBUF_FREE_PENDING_SZ];
unsigned int idx, nb_pending = 0;
for (idx = 0; idx < count; idx++) {
m = mbufs[idx];
if (unlikely(m == NULL))
continue;
__rte_mbuf_sanity_check(m, 1);
do {
m_next = m->next;
__rte_pktmbuf_free_seg_via_array(m,
pending, &nb_pending,
RTE_PKTMBUF_FREE_PENDING_SZ);
m = m_next;
} while (m != NULL);
}
if (nb_pending > 0)
rte_mempool_put_bulk(pending[0]->pool, (void **)pending, nb_pending);
}
/* Creates a shallow copy of mbuf */
struct rte_mbuf *
rte_pktmbuf_clone(struct rte_mbuf *md, struct rte_mempool *mp)
{
struct rte_mbuf *mc, *mi, **prev;
uint32_t pktlen;
uint16_t nseg;
mc = rte_pktmbuf_alloc(mp);
if (unlikely(mc == NULL))
return NULL;
mi = mc;
prev = &mi->next;
pktlen = md->pkt_len;
nseg = 0;
do {
nseg++;
rte_pktmbuf_attach(mi, md);
*prev = mi;
prev = &mi->next;
} while ((md = md->next) != NULL &&
(mi = rte_pktmbuf_alloc(mp)) != NULL);
*prev = NULL;
mc->nb_segs = nseg;
mc->pkt_len = pktlen;
/* Allocation of new indirect segment failed */
if (unlikely(mi == NULL)) {
rte_pktmbuf_free(mc);
return NULL;
}
__rte_mbuf_sanity_check(mc, 1);
return mc;
}
/* convert multi-segment mbuf to single mbuf */
int
__rte_pktmbuf_linearize(struct rte_mbuf *mbuf)
{
size_t seg_len, copy_len;
struct rte_mbuf *m;
struct rte_mbuf *m_next;
char *buffer;
/* Extend first segment to the total packet length */
copy_len = rte_pktmbuf_pkt_len(mbuf) - rte_pktmbuf_data_len(mbuf);
if (unlikely(copy_len > rte_pktmbuf_tailroom(mbuf)))
return -1;
buffer = rte_pktmbuf_mtod_offset(mbuf, char *, mbuf->data_len);
mbuf->data_len = (uint16_t)(mbuf->pkt_len);
/* Append data from next segments to the first one */
m = mbuf->next;
while (m != NULL) {
m_next = m->next;
seg_len = rte_pktmbuf_data_len(m);
rte_memcpy(buffer, rte_pktmbuf_mtod(m, char *), seg_len);
buffer += seg_len;
rte_pktmbuf_free_seg(m);
m = m_next;
}
mbuf->next = NULL;
mbuf->nb_segs = 1;
return 0;
}
/* Create a deep copy of mbuf */
struct rte_mbuf *
rte_pktmbuf_copy(const struct rte_mbuf *m, struct rte_mempool *mp,
uint32_t off, uint32_t len)
{
const struct rte_mbuf *seg = m;
struct rte_mbuf *mc, *m_last, **prev;
/* garbage in check */
__rte_mbuf_sanity_check(m, 1);
/* check for request to copy at offset past end of mbuf */
if (unlikely(off >= m->pkt_len))
return NULL;
mc = rte_pktmbuf_alloc(mp);
if (unlikely(mc == NULL))
return NULL;
/* truncate requested length to available data */
if (len > m->pkt_len - off)
len = m->pkt_len - off;
__rte_pktmbuf_copy_hdr(mc, m);
/* copied mbuf is not indirect or external */
mc->ol_flags = m->ol_flags & ~(IND_ATTACHED_MBUF|EXT_ATTACHED_MBUF);
prev = &mc->next;
m_last = mc;
while (len > 0) {
uint32_t copy_len;
/* skip leading mbuf segments */
while (off >= seg->data_len) {
off -= seg->data_len;
seg = seg->next;
}
/* current buffer is full, chain a new one */
if (rte_pktmbuf_tailroom(m_last) == 0) {
m_last = rte_pktmbuf_alloc(mp);
if (unlikely(m_last == NULL)) {
rte_pktmbuf_free(mc);
return NULL;
}
++mc->nb_segs;
*prev = m_last;
prev = &m_last->next;
}
/*
* copy the min of data in input segment (seg)
* vs space available in output (m_last)
*/
copy_len = RTE_MIN(seg->data_len - off, len);
if (copy_len > rte_pktmbuf_tailroom(m_last))
copy_len = rte_pktmbuf_tailroom(m_last);
/* append from seg to m_last */
rte_memcpy(rte_pktmbuf_mtod_offset(m_last, char *,
m_last->data_len),
rte_pktmbuf_mtod_offset(seg, char *, off),
copy_len);
/* update offsets and lengths */
m_last->data_len += copy_len;
mc->pkt_len += copy_len;
off += copy_len;
len -= copy_len;
}
/* garbage out check */
__rte_mbuf_sanity_check(mc, 1);
return mc;
}
/* dump a mbuf on console */
void
rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len)
{
unsigned int len;
unsigned int nb_segs;
__rte_mbuf_sanity_check(m, 1);
fprintf(f, "dump mbuf at %p, iova=%#"PRIx64", buf_len=%u\n",
m, m->buf_iova, m->buf_len);
fprintf(f, " pkt_len=%u, ol_flags=%#"PRIx64", nb_segs=%u, port=%u",
m->pkt_len, m->ol_flags, m->nb_segs, m->port);
if (m->ol_flags & (PKT_RX_VLAN | PKT_TX_VLAN))
fprintf(f, ", vlan_tci=%u", m->vlan_tci);
fprintf(f, ", ptype=%#"PRIx32"\n", m->packet_type);
nb_segs = m->nb_segs;
while (m && nb_segs != 0) {
__rte_mbuf_sanity_check(m, 0);
fprintf(f, " segment at %p, data=%p, len=%u, off=%u, refcnt=%u\n",
m, rte_pktmbuf_mtod(m, void *),
m->data_len, m->data_off, rte_mbuf_refcnt_read(m));
len = dump_len;
if (len > m->data_len)
len = m->data_len;
if (len != 0)
rte_hexdump(f, NULL, rte_pktmbuf_mtod(m, void *), len);
dump_len -= len;
m = m->next;
nb_segs --;
}
}
/* read len data bytes in a mbuf at specified offset (internal) */
const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off,
uint32_t len, void *buf)
{
const struct rte_mbuf *seg = m;
uint32_t buf_off = 0, copy_len;
if (off + len > rte_pktmbuf_pkt_len(m))
return NULL;
while (off >= rte_pktmbuf_data_len(seg)) {
off -= rte_pktmbuf_data_len(seg);
seg = seg->next;
}
if (off + len <= rte_pktmbuf_data_len(seg))
return rte_pktmbuf_mtod_offset(seg, char *, off);
/* rare case: header is split among several segments */
while (len > 0) {
copy_len = rte_pktmbuf_data_len(seg) - off;
if (copy_len > len)
copy_len = len;
rte_memcpy((char *)buf + buf_off,
rte_pktmbuf_mtod_offset(seg, char *, off), copy_len);
off = 0;
buf_off += copy_len;
len -= copy_len;
seg = seg->next;
}
return buf;
}
/*
* Get the name of a RX offload flag. Must be kept synchronized with flag
* definitions in rte_mbuf.h.
*/
const char *rte_get_rx_ol_flag_name(uint64_t mask)
{
switch (mask) {
case PKT_RX_VLAN: return "PKT_RX_VLAN";
case PKT_RX_RSS_HASH: return "PKT_RX_RSS_HASH";
case PKT_RX_FDIR: return "PKT_RX_FDIR";
case PKT_RX_L4_CKSUM_BAD: return "PKT_RX_L4_CKSUM_BAD";
case PKT_RX_L4_CKSUM_GOOD: return "PKT_RX_L4_CKSUM_GOOD";
case PKT_RX_L4_CKSUM_NONE: return "PKT_RX_L4_CKSUM_NONE";
case PKT_RX_IP_CKSUM_BAD: return "PKT_RX_IP_CKSUM_BAD";
case PKT_RX_IP_CKSUM_GOOD: return "PKT_RX_IP_CKSUM_GOOD";
case PKT_RX_IP_CKSUM_NONE: return "PKT_RX_IP_CKSUM_NONE";
case PKT_RX_EIP_CKSUM_BAD: return "PKT_RX_EIP_CKSUM_BAD";
case PKT_RX_VLAN_STRIPPED: return "PKT_RX_VLAN_STRIPPED";
case PKT_RX_IEEE1588_PTP: return "PKT_RX_IEEE1588_PTP";
case PKT_RX_IEEE1588_TMST: return "PKT_RX_IEEE1588_TMST";
case PKT_RX_FDIR_ID: return "PKT_RX_FDIR_ID";
case PKT_RX_FDIR_FLX: return "PKT_RX_FDIR_FLX";
case PKT_RX_QINQ_STRIPPED: return "PKT_RX_QINQ_STRIPPED";
case PKT_RX_QINQ: return "PKT_RX_QINQ";
case PKT_RX_LRO: return "PKT_RX_LRO";
case PKT_RX_TIMESTAMP: return "PKT_RX_TIMESTAMP";
case PKT_RX_SEC_OFFLOAD: return "PKT_RX_SEC_OFFLOAD";
case PKT_RX_SEC_OFFLOAD_FAILED: return "PKT_RX_SEC_OFFLOAD_FAILED";
case PKT_RX_OUTER_L4_CKSUM_BAD: return "PKT_RX_OUTER_L4_CKSUM_BAD";
case PKT_RX_OUTER_L4_CKSUM_GOOD: return "PKT_RX_OUTER_L4_CKSUM_GOOD";
case PKT_RX_OUTER_L4_CKSUM_INVALID:
return "PKT_RX_OUTER_L4_CKSUM_INVALID";
default: return NULL;
}
}
struct flag_mask {
uint64_t flag;
uint64_t mask;
const char *default_name;
};
/* write the list of rx ol flags in buffer buf */
int
rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen)
{
const struct flag_mask rx_flags[] = {
{ PKT_RX_VLAN, PKT_RX_VLAN, NULL },
{ PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, NULL },
{ PKT_RX_FDIR, PKT_RX_FDIR, NULL },
{ PKT_RX_L4_CKSUM_BAD, PKT_RX_L4_CKSUM_MASK, NULL },
{ PKT_RX_L4_CKSUM_GOOD, PKT_RX_L4_CKSUM_MASK, NULL },
{ PKT_RX_L4_CKSUM_NONE, PKT_RX_L4_CKSUM_MASK, NULL },
{ PKT_RX_L4_CKSUM_UNKNOWN, PKT_RX_L4_CKSUM_MASK,
"PKT_RX_L4_CKSUM_UNKNOWN" },
{ PKT_RX_IP_CKSUM_BAD, PKT_RX_IP_CKSUM_MASK, NULL },
{ PKT_RX_IP_CKSUM_GOOD, PKT_RX_IP_CKSUM_MASK, NULL },
{ PKT_RX_IP_CKSUM_NONE, PKT_RX_IP_CKSUM_MASK, NULL },
{ PKT_RX_IP_CKSUM_UNKNOWN, PKT_RX_IP_CKSUM_MASK,
"PKT_RX_IP_CKSUM_UNKNOWN" },
{ PKT_RX_EIP_CKSUM_BAD, PKT_RX_EIP_CKSUM_BAD, NULL },
{ PKT_RX_VLAN_STRIPPED, PKT_RX_VLAN_STRIPPED, NULL },
{ PKT_RX_IEEE1588_PTP, PKT_RX_IEEE1588_PTP, NULL },
{ PKT_RX_IEEE1588_TMST, PKT_RX_IEEE1588_TMST, NULL },
{ PKT_RX_FDIR_ID, PKT_RX_FDIR_ID, NULL },
{ PKT_RX_FDIR_FLX, PKT_RX_FDIR_FLX, NULL },
{ PKT_RX_QINQ_STRIPPED, PKT_RX_QINQ_STRIPPED, NULL },
{ PKT_RX_LRO, PKT_RX_LRO, NULL },
{ PKT_RX_TIMESTAMP, PKT_RX_TIMESTAMP, NULL },
{ PKT_RX_SEC_OFFLOAD, PKT_RX_SEC_OFFLOAD, NULL },
{ PKT_RX_SEC_OFFLOAD_FAILED, PKT_RX_SEC_OFFLOAD_FAILED, NULL },
{ PKT_RX_QINQ, PKT_RX_QINQ, NULL },
{ PKT_RX_OUTER_L4_CKSUM_BAD, PKT_RX_OUTER_L4_CKSUM_MASK, NULL },
{ PKT_RX_OUTER_L4_CKSUM_GOOD, PKT_RX_OUTER_L4_CKSUM_MASK,
NULL },
{ PKT_RX_OUTER_L4_CKSUM_INVALID, PKT_RX_OUTER_L4_CKSUM_MASK,
NULL },
{ PKT_RX_OUTER_L4_CKSUM_UNKNOWN, PKT_RX_OUTER_L4_CKSUM_MASK,
"PKT_RX_OUTER_L4_CKSUM_UNKNOWN" },
};
const char *name;
unsigned int i;
int ret;
if (buflen == 0)
return -1;
buf[0] = '\0';
for (i = 0; i < RTE_DIM(rx_flags); i++) {
if ((mask & rx_flags[i].mask) != rx_flags[i].flag)
continue;
name = rte_get_rx_ol_flag_name(rx_flags[i].flag);
if (name == NULL)
name = rx_flags[i].default_name;
ret = snprintf(buf, buflen, "%s ", name);
if (ret < 0)
return -1;
if ((size_t)ret >= buflen)
return -1;
buf += ret;
buflen -= ret;
}
return 0;
}
/*
* Get the name of a TX offload flag. Must be kept synchronized with flag
* definitions in rte_mbuf.h.
*/
const char *rte_get_tx_ol_flag_name(uint64_t mask)
{
switch (mask) {
case PKT_TX_VLAN: return "PKT_TX_VLAN";
case PKT_TX_IP_CKSUM: return "PKT_TX_IP_CKSUM";
case PKT_TX_TCP_CKSUM: return "PKT_TX_TCP_CKSUM";
case PKT_TX_SCTP_CKSUM: return "PKT_TX_SCTP_CKSUM";
case PKT_TX_UDP_CKSUM: return "PKT_TX_UDP_CKSUM";
case PKT_TX_IEEE1588_TMST: return "PKT_TX_IEEE1588_TMST";
case PKT_TX_TCP_SEG: return "PKT_TX_TCP_SEG";
case PKT_TX_IPV4: return "PKT_TX_IPV4";
case PKT_TX_IPV6: return "PKT_TX_IPV6";
case PKT_TX_OUTER_IP_CKSUM: return "PKT_TX_OUTER_IP_CKSUM";
case PKT_TX_OUTER_IPV4: return "PKT_TX_OUTER_IPV4";
case PKT_TX_OUTER_IPV6: return "PKT_TX_OUTER_IPV6";
case PKT_TX_TUNNEL_VXLAN: return "PKT_TX_TUNNEL_VXLAN";
case PKT_TX_TUNNEL_GTP: return "PKT_TX_TUNNEL_GTP";
case PKT_TX_TUNNEL_GRE: return "PKT_TX_TUNNEL_GRE";
case PKT_TX_TUNNEL_IPIP: return "PKT_TX_TUNNEL_IPIP";
case PKT_TX_TUNNEL_GENEVE: return "PKT_TX_TUNNEL_GENEVE";
case PKT_TX_TUNNEL_MPLSINUDP: return "PKT_TX_TUNNEL_MPLSINUDP";
case PKT_TX_TUNNEL_VXLAN_GPE: return "PKT_TX_TUNNEL_VXLAN_GPE";
case PKT_TX_TUNNEL_IP: return "PKT_TX_TUNNEL_IP";
case PKT_TX_TUNNEL_UDP: return "PKT_TX_TUNNEL_UDP";
case PKT_TX_QINQ: return "PKT_TX_QINQ";
case PKT_TX_MACSEC: return "PKT_TX_MACSEC";
case PKT_TX_SEC_OFFLOAD: return "PKT_TX_SEC_OFFLOAD";
case PKT_TX_UDP_SEG: return "PKT_TX_UDP_SEG";
case PKT_TX_OUTER_UDP_CKSUM: return "PKT_TX_OUTER_UDP_CKSUM";
default: return NULL;
}
}
/* write the list of tx ol flags in buffer buf */
int
rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen)
{
const struct flag_mask tx_flags[] = {
{ PKT_TX_VLAN, PKT_TX_VLAN, NULL },
{ PKT_TX_IP_CKSUM, PKT_TX_IP_CKSUM, NULL },
{ PKT_TX_TCP_CKSUM, PKT_TX_L4_MASK, NULL },
{ PKT_TX_SCTP_CKSUM, PKT_TX_L4_MASK, NULL },
{ PKT_TX_UDP_CKSUM, PKT_TX_L4_MASK, NULL },
{ PKT_TX_L4_NO_CKSUM, PKT_TX_L4_MASK, "PKT_TX_L4_NO_CKSUM" },
{ PKT_TX_IEEE1588_TMST, PKT_TX_IEEE1588_TMST, NULL },
{ PKT_TX_TCP_SEG, PKT_TX_TCP_SEG, NULL },
{ PKT_TX_IPV4, PKT_TX_IPV4, NULL },
{ PKT_TX_IPV6, PKT_TX_IPV6, NULL },
{ PKT_TX_OUTER_IP_CKSUM, PKT_TX_OUTER_IP_CKSUM, NULL },
{ PKT_TX_OUTER_IPV4, PKT_TX_OUTER_IPV4, NULL },
{ PKT_TX_OUTER_IPV6, PKT_TX_OUTER_IPV6, NULL },
{ PKT_TX_TUNNEL_VXLAN, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_TUNNEL_GTP, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_TUNNEL_GRE, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_TUNNEL_IPIP, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_TUNNEL_GENEVE, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_TUNNEL_MPLSINUDP, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_TUNNEL_VXLAN_GPE, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_TUNNEL_IP, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_TUNNEL_UDP, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_QINQ, PKT_TX_QINQ, NULL },
{ PKT_TX_MACSEC, PKT_TX_MACSEC, NULL },
{ PKT_TX_SEC_OFFLOAD, PKT_TX_SEC_OFFLOAD, NULL },
{ PKT_TX_UDP_SEG, PKT_TX_UDP_SEG, NULL },
{ PKT_TX_OUTER_UDP_CKSUM, PKT_TX_OUTER_UDP_CKSUM, NULL },
};
const char *name;
unsigned int i;
int ret;
if (buflen == 0)
return -1;
buf[0] = '\0';
for (i = 0; i < RTE_DIM(tx_flags); i++) {
if ((mask & tx_flags[i].mask) != tx_flags[i].flag)
continue;
name = rte_get_tx_ol_flag_name(tx_flags[i].flag);
if (name == NULL)
name = tx_flags[i].default_name;
ret = snprintf(buf, buflen, "%s ", name);
if (ret < 0)
return -1;
if ((size_t)ret >= buflen)
return -1;
buf += ret;
buflen -= ret;
}
return 0;
}