d0c34e99ca
The mbuf timestamp is moved to a dynamic field in order to allow removal of the deprecated static field. The related mbuf flag is also replaced with the dynamic one. Signed-off-by: Thomas Monjalon <thomas@monjalon.net> Acked-by: David Marchand <david.marchand@redhat.com> Acked-by: Olivier Matz <olivier.matz@6wind.com>
384 lines
9.7 KiB
C
384 lines
9.7 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2018 Intel Corporation
|
|
*/
|
|
|
|
#include <unistd.h>
|
|
#include <sys/types.h>
|
|
#include <stdbool.h>
|
|
#include <math.h>
|
|
|
|
#include <rte_string_fns.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_mbuf_dyn.h>
|
|
#include <rte_log.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_metrics.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_lcore.h>
|
|
|
|
#include "rte_latencystats.h"
|
|
|
|
/** Nano seconds per second */
|
|
#define NS_PER_SEC 1E9
|
|
|
|
/** Clock cycles per nano second */
|
|
static uint64_t
|
|
latencystat_cycles_per_ns(void)
|
|
{
|
|
return rte_get_timer_hz() / NS_PER_SEC;
|
|
}
|
|
|
|
/* Macros for printing using RTE_LOG */
|
|
#define RTE_LOGTYPE_LATENCY_STATS RTE_LOGTYPE_USER1
|
|
|
|
static uint64_t timestamp_dynflag;
|
|
static int timestamp_dynfield_offset = -1;
|
|
|
|
static inline rte_mbuf_timestamp_t *
|
|
timestamp_dynfield(struct rte_mbuf *mbuf)
|
|
{
|
|
return RTE_MBUF_DYNFIELD(mbuf,
|
|
timestamp_dynfield_offset, rte_mbuf_timestamp_t *);
|
|
}
|
|
|
|
static const char *MZ_RTE_LATENCY_STATS = "rte_latencystats";
|
|
static int latency_stats_index;
|
|
static uint64_t samp_intvl;
|
|
static uint64_t timer_tsc;
|
|
static uint64_t prev_tsc;
|
|
|
|
struct rte_latency_stats {
|
|
float min_latency; /**< Minimum latency in nano seconds */
|
|
float avg_latency; /**< Average latency in nano seconds */
|
|
float max_latency; /**< Maximum latency in nano seconds */
|
|
float jitter; /** Latency variation */
|
|
rte_spinlock_t lock; /** Latency calculation lock */
|
|
};
|
|
|
|
static struct rte_latency_stats *glob_stats;
|
|
|
|
struct rxtx_cbs {
|
|
const struct rte_eth_rxtx_callback *cb;
|
|
};
|
|
|
|
static struct rxtx_cbs rx_cbs[RTE_MAX_ETHPORTS][RTE_MAX_QUEUES_PER_PORT];
|
|
static struct rxtx_cbs tx_cbs[RTE_MAX_ETHPORTS][RTE_MAX_QUEUES_PER_PORT];
|
|
|
|
struct latency_stats_nameoff {
|
|
char name[RTE_ETH_XSTATS_NAME_SIZE];
|
|
unsigned int offset;
|
|
};
|
|
|
|
static const struct latency_stats_nameoff lat_stats_strings[] = {
|
|
{"min_latency_ns", offsetof(struct rte_latency_stats, min_latency)},
|
|
{"avg_latency_ns", offsetof(struct rte_latency_stats, avg_latency)},
|
|
{"max_latency_ns", offsetof(struct rte_latency_stats, max_latency)},
|
|
{"jitter_ns", offsetof(struct rte_latency_stats, jitter)},
|
|
};
|
|
|
|
#define NUM_LATENCY_STATS (sizeof(lat_stats_strings) / \
|
|
sizeof(lat_stats_strings[0]))
|
|
|
|
int32_t
|
|
rte_latencystats_update(void)
|
|
{
|
|
unsigned int i;
|
|
float *stats_ptr = NULL;
|
|
uint64_t values[NUM_LATENCY_STATS] = {0};
|
|
int ret;
|
|
|
|
for (i = 0; i < NUM_LATENCY_STATS; i++) {
|
|
stats_ptr = RTE_PTR_ADD(glob_stats,
|
|
lat_stats_strings[i].offset);
|
|
values[i] = (uint64_t)floor((*stats_ptr)/
|
|
latencystat_cycles_per_ns());
|
|
}
|
|
|
|
ret = rte_metrics_update_values(RTE_METRICS_GLOBAL,
|
|
latency_stats_index,
|
|
values, NUM_LATENCY_STATS);
|
|
if (ret < 0)
|
|
RTE_LOG(INFO, LATENCY_STATS, "Failed to push the stats\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
rte_latencystats_fill_values(struct rte_metric_value *values)
|
|
{
|
|
unsigned int i;
|
|
float *stats_ptr = NULL;
|
|
|
|
for (i = 0; i < NUM_LATENCY_STATS; i++) {
|
|
stats_ptr = RTE_PTR_ADD(glob_stats,
|
|
lat_stats_strings[i].offset);
|
|
values[i].key = i;
|
|
values[i].value = (uint64_t)floor((*stats_ptr)/
|
|
latencystat_cycles_per_ns());
|
|
}
|
|
}
|
|
|
|
static uint16_t
|
|
add_time_stamps(uint16_t pid __rte_unused,
|
|
uint16_t qid __rte_unused,
|
|
struct rte_mbuf **pkts,
|
|
uint16_t nb_pkts,
|
|
uint16_t max_pkts __rte_unused,
|
|
void *user_cb __rte_unused)
|
|
{
|
|
unsigned int i;
|
|
uint64_t diff_tsc, now;
|
|
|
|
/*
|
|
* For every sample interval,
|
|
* time stamp is marked on one received packet.
|
|
*/
|
|
now = rte_rdtsc();
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
diff_tsc = now - prev_tsc;
|
|
timer_tsc += diff_tsc;
|
|
|
|
if ((pkts[i]->ol_flags & timestamp_dynflag) == 0
|
|
&& (timer_tsc >= samp_intvl)) {
|
|
*timestamp_dynfield(pkts[i]) = now;
|
|
pkts[i]->ol_flags |= timestamp_dynflag;
|
|
timer_tsc = 0;
|
|
}
|
|
prev_tsc = now;
|
|
now = rte_rdtsc();
|
|
}
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
static uint16_t
|
|
calc_latency(uint16_t pid __rte_unused,
|
|
uint16_t qid __rte_unused,
|
|
struct rte_mbuf **pkts,
|
|
uint16_t nb_pkts,
|
|
void *_ __rte_unused)
|
|
{
|
|
unsigned int i, cnt = 0;
|
|
uint64_t now;
|
|
float latency[nb_pkts];
|
|
static float prev_latency;
|
|
/*
|
|
* Alpha represents degree of weighting decrease in EWMA,
|
|
* a constant smoothing factor between 0 and 1. The value
|
|
* is used below for measuring average latency.
|
|
*/
|
|
const float alpha = 0.2;
|
|
|
|
now = rte_rdtsc();
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
if (pkts[i]->ol_flags & timestamp_dynflag)
|
|
latency[cnt++] = now - *timestamp_dynfield(pkts[i]);
|
|
}
|
|
|
|
rte_spinlock_lock(&glob_stats->lock);
|
|
for (i = 0; i < cnt; i++) {
|
|
/*
|
|
* The jitter is calculated as statistical mean of interpacket
|
|
* delay variation. The "jitter estimate" is computed by taking
|
|
* the absolute values of the ipdv sequence and applying an
|
|
* exponential filter with parameter 1/16 to generate the
|
|
* estimate. i.e J=J+(|D(i-1,i)|-J)/16. Where J is jitter,
|
|
* D(i-1,i) is difference in latency of two consecutive packets
|
|
* i-1 and i.
|
|
* Reference: Calculated as per RFC 5481, sec 4.1,
|
|
* RFC 3393 sec 4.5, RFC 1889 sec.
|
|
*/
|
|
glob_stats->jitter += (fabsf(prev_latency - latency[i])
|
|
- glob_stats->jitter)/16;
|
|
if (glob_stats->min_latency == 0)
|
|
glob_stats->min_latency = latency[i];
|
|
else if (latency[i] < glob_stats->min_latency)
|
|
glob_stats->min_latency = latency[i];
|
|
else if (latency[i] > glob_stats->max_latency)
|
|
glob_stats->max_latency = latency[i];
|
|
/*
|
|
* The average latency is measured using exponential moving
|
|
* average, i.e. using EWMA
|
|
* https://en.wikipedia.org/wiki/Moving_average
|
|
*/
|
|
glob_stats->avg_latency +=
|
|
alpha * (latency[i] - glob_stats->avg_latency);
|
|
prev_latency = latency[i];
|
|
}
|
|
rte_spinlock_unlock(&glob_stats->lock);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
int
|
|
rte_latencystats_init(uint64_t app_samp_intvl,
|
|
rte_latency_stats_flow_type_fn user_cb)
|
|
{
|
|
unsigned int i;
|
|
uint16_t pid;
|
|
uint16_t qid;
|
|
struct rxtx_cbs *cbs = NULL;
|
|
const char *ptr_strings[NUM_LATENCY_STATS] = {0};
|
|
const struct rte_memzone *mz = NULL;
|
|
const unsigned int flags = 0;
|
|
int ret;
|
|
|
|
if (rte_memzone_lookup(MZ_RTE_LATENCY_STATS))
|
|
return -EEXIST;
|
|
|
|
/** Allocate stats in shared memory fo multi process support */
|
|
mz = rte_memzone_reserve(MZ_RTE_LATENCY_STATS, sizeof(*glob_stats),
|
|
rte_socket_id(), flags);
|
|
if (mz == NULL) {
|
|
RTE_LOG(ERR, LATENCY_STATS, "Cannot reserve memory: %s:%d\n",
|
|
__func__, __LINE__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
glob_stats = mz->addr;
|
|
rte_spinlock_init(&glob_stats->lock);
|
|
samp_intvl = app_samp_intvl * latencystat_cycles_per_ns();
|
|
|
|
/** Register latency stats with stats library */
|
|
for (i = 0; i < NUM_LATENCY_STATS; i++)
|
|
ptr_strings[i] = lat_stats_strings[i].name;
|
|
|
|
latency_stats_index = rte_metrics_reg_names(ptr_strings,
|
|
NUM_LATENCY_STATS);
|
|
if (latency_stats_index < 0) {
|
|
RTE_LOG(DEBUG, LATENCY_STATS,
|
|
"Failed to register latency stats names\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Register mbuf field and flag for Rx timestamp */
|
|
ret = rte_mbuf_dyn_rx_timestamp_register(×tamp_dynfield_offset,
|
|
×tamp_dynflag);
|
|
if (ret != 0) {
|
|
RTE_LOG(ERR, LATENCY_STATS,
|
|
"Cannot register mbuf field/flag for timestamp\n");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/** Register Rx/Tx callbacks */
|
|
RTE_ETH_FOREACH_DEV(pid) {
|
|
struct rte_eth_dev_info dev_info;
|
|
|
|
ret = rte_eth_dev_info_get(pid, &dev_info);
|
|
if (ret != 0) {
|
|
RTE_LOG(INFO, LATENCY_STATS,
|
|
"Error during getting device (port %u) info: %s\n",
|
|
pid, strerror(-ret));
|
|
|
|
continue;
|
|
}
|
|
|
|
for (qid = 0; qid < dev_info.nb_rx_queues; qid++) {
|
|
cbs = &rx_cbs[pid][qid];
|
|
cbs->cb = rte_eth_add_first_rx_callback(pid, qid,
|
|
add_time_stamps, user_cb);
|
|
if (!cbs->cb)
|
|
RTE_LOG(INFO, LATENCY_STATS, "Failed to "
|
|
"register Rx callback for pid=%d, "
|
|
"qid=%d\n", pid, qid);
|
|
}
|
|
for (qid = 0; qid < dev_info.nb_tx_queues; qid++) {
|
|
cbs = &tx_cbs[pid][qid];
|
|
cbs->cb = rte_eth_add_tx_callback(pid, qid,
|
|
calc_latency, user_cb);
|
|
if (!cbs->cb)
|
|
RTE_LOG(INFO, LATENCY_STATS, "Failed to "
|
|
"register Tx callback for pid=%d, "
|
|
"qid=%d\n", pid, qid);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_latencystats_uninit(void)
|
|
{
|
|
uint16_t pid;
|
|
uint16_t qid;
|
|
int ret = 0;
|
|
struct rxtx_cbs *cbs = NULL;
|
|
const struct rte_memzone *mz = NULL;
|
|
|
|
/** De register Rx/Tx callbacks */
|
|
RTE_ETH_FOREACH_DEV(pid) {
|
|
struct rte_eth_dev_info dev_info;
|
|
|
|
ret = rte_eth_dev_info_get(pid, &dev_info);
|
|
if (ret != 0) {
|
|
RTE_LOG(INFO, LATENCY_STATS,
|
|
"Error during getting device (port %u) info: %s\n",
|
|
pid, strerror(-ret));
|
|
|
|
continue;
|
|
}
|
|
|
|
for (qid = 0; qid < dev_info.nb_rx_queues; qid++) {
|
|
cbs = &rx_cbs[pid][qid];
|
|
ret = rte_eth_remove_rx_callback(pid, qid, cbs->cb);
|
|
if (ret)
|
|
RTE_LOG(INFO, LATENCY_STATS, "failed to "
|
|
"remove Rx callback for pid=%d, "
|
|
"qid=%d\n", pid, qid);
|
|
}
|
|
for (qid = 0; qid < dev_info.nb_tx_queues; qid++) {
|
|
cbs = &tx_cbs[pid][qid];
|
|
ret = rte_eth_remove_tx_callback(pid, qid, cbs->cb);
|
|
if (ret)
|
|
RTE_LOG(INFO, LATENCY_STATS, "failed to "
|
|
"remove Tx callback for pid=%d, "
|
|
"qid=%d\n", pid, qid);
|
|
}
|
|
}
|
|
|
|
/* free up the memzone */
|
|
mz = rte_memzone_lookup(MZ_RTE_LATENCY_STATS);
|
|
if (mz)
|
|
rte_memzone_free(mz);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_latencystats_get_names(struct rte_metric_name *names, uint16_t size)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (names == NULL || size < NUM_LATENCY_STATS)
|
|
return NUM_LATENCY_STATS;
|
|
|
|
for (i = 0; i < NUM_LATENCY_STATS; i++)
|
|
strlcpy(names[i].name, lat_stats_strings[i].name,
|
|
sizeof(names[i].name));
|
|
|
|
return NUM_LATENCY_STATS;
|
|
}
|
|
|
|
int
|
|
rte_latencystats_get(struct rte_metric_value *values, uint16_t size)
|
|
{
|
|
if (size < NUM_LATENCY_STATS || values == NULL)
|
|
return NUM_LATENCY_STATS;
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
|
|
const struct rte_memzone *mz;
|
|
mz = rte_memzone_lookup(MZ_RTE_LATENCY_STATS);
|
|
if (mz == NULL) {
|
|
RTE_LOG(ERR, LATENCY_STATS,
|
|
"Latency stats memzone not found\n");
|
|
return -ENOMEM;
|
|
}
|
|
glob_stats = mz->addr;
|
|
}
|
|
|
|
/* Retrieve latency stats */
|
|
rte_latencystats_fill_values(values);
|
|
|
|
return NUM_LATENCY_STATS;
|
|
}
|