de2bc16e1b
In crypto producer mode, producer core enqueues cryptodev with software generated crypto ops and worker core dequeues crypto completion events from the eventdev. Event crypto metadata used for above processing is pre-populated in each crypto session. Parameter --prod_type_cryptodev can be used to enable crypto producer mode. Parameter --crypto_adptr_mode can be set to select the crypto adapter mode, 0 for OP_NEW and 1 for OP_FORWARD. This mode can be used to measure the performance of crypto adapter. Example: ./dpdk-test-eventdev -l 0-2 -w <EVENTDEV> -w <CRYPTODEV> -- \ --prod_type_cryptodev --crypto_adptr_mode 1 --test=perf_atq \ --stlist=a --wlcores 1 --plcores 2 Signed-off-by: Shijith Thotton <sthotton@marvell.com> Acked-by: Akhil Goyal <gakhil@marvell.com> Acked-by: Abhinandan Gujjar <abhinandan.gujjar@intel.com>
374 lines
9.6 KiB
C
374 lines
9.6 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2017 Cavium, Inc
|
|
*/
|
|
|
|
#include "test_perf_common.h"
|
|
|
|
/* See http://doc.dpdk.org/guides/tools/testeventdev.html for test details */
|
|
|
|
static inline int
|
|
perf_queue_nb_event_queues(struct evt_options *opt)
|
|
{
|
|
/* nb_queues = number of producers * number of stages */
|
|
uint8_t nb_prod = opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ?
|
|
rte_eth_dev_count_avail() : evt_nr_active_lcores(opt->plcores);
|
|
return nb_prod * opt->nb_stages;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
mark_fwd_latency(struct rte_event *const ev,
|
|
const uint8_t nb_stages)
|
|
{
|
|
if (unlikely((ev->queue_id % nb_stages) == 0)) {
|
|
struct perf_elt *const m = ev->event_ptr;
|
|
|
|
m->timestamp = rte_get_timer_cycles();
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
fwd_event(struct rte_event *const ev, uint8_t *const sched_type_list,
|
|
const uint8_t nb_stages)
|
|
{
|
|
ev->queue_id++;
|
|
ev->sched_type = sched_type_list[ev->queue_id % nb_stages];
|
|
ev->op = RTE_EVENT_OP_FORWARD;
|
|
ev->event_type = RTE_EVENT_TYPE_CPU;
|
|
}
|
|
|
|
static int
|
|
perf_queue_worker(void *arg, const int enable_fwd_latency)
|
|
{
|
|
PERF_WORKER_INIT;
|
|
struct rte_event ev;
|
|
|
|
while (t->done == false) {
|
|
uint16_t event = rte_event_dequeue_burst(dev, port, &ev, 1, 0);
|
|
|
|
if (!event) {
|
|
rte_pause();
|
|
continue;
|
|
}
|
|
|
|
if (prod_crypto_type &&
|
|
(ev.event_type == RTE_EVENT_TYPE_CRYPTODEV)) {
|
|
struct rte_crypto_op *op = ev.event_ptr;
|
|
|
|
if (op->status == RTE_CRYPTO_OP_STATUS_SUCCESS) {
|
|
if (op->sym->m_dst == NULL)
|
|
ev.event_ptr = op->sym->m_src;
|
|
else
|
|
ev.event_ptr = op->sym->m_dst;
|
|
rte_crypto_op_free(op);
|
|
} else {
|
|
rte_crypto_op_free(op);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (enable_fwd_latency && !prod_timer_type)
|
|
/* first q in pipeline, mark timestamp to compute fwd latency */
|
|
mark_fwd_latency(&ev, nb_stages);
|
|
|
|
/* last stage in pipeline */
|
|
if (unlikely((ev.queue_id % nb_stages) == laststage)) {
|
|
if (enable_fwd_latency)
|
|
cnt = perf_process_last_stage_latency(pool,
|
|
&ev, w, bufs, sz, cnt);
|
|
else
|
|
cnt = perf_process_last_stage(pool,
|
|
&ev, w, bufs, sz, cnt);
|
|
} else {
|
|
fwd_event(&ev, sched_type_list, nb_stages);
|
|
while (rte_event_enqueue_burst(dev, port, &ev, 1) != 1)
|
|
rte_pause();
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
perf_queue_worker_burst(void *arg, const int enable_fwd_latency)
|
|
{
|
|
PERF_WORKER_INIT;
|
|
uint16_t i;
|
|
/* +1 to avoid prefetch out of array check */
|
|
struct rte_event ev[BURST_SIZE + 1];
|
|
|
|
while (t->done == false) {
|
|
uint16_t const nb_rx = rte_event_dequeue_burst(dev, port, ev,
|
|
BURST_SIZE, 0);
|
|
|
|
if (!nb_rx) {
|
|
rte_pause();
|
|
continue;
|
|
}
|
|
|
|
for (i = 0; i < nb_rx; i++) {
|
|
if (prod_crypto_type &&
|
|
(ev[i].event_type == RTE_EVENT_TYPE_CRYPTODEV)) {
|
|
struct rte_crypto_op *op = ev[i].event_ptr;
|
|
|
|
if (op->status ==
|
|
RTE_CRYPTO_OP_STATUS_SUCCESS) {
|
|
if (op->sym->m_dst == NULL)
|
|
ev[i].event_ptr =
|
|
op->sym->m_src;
|
|
else
|
|
ev[i].event_ptr =
|
|
op->sym->m_dst;
|
|
rte_crypto_op_free(op);
|
|
} else {
|
|
rte_crypto_op_free(op);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (enable_fwd_latency && !prod_timer_type) {
|
|
rte_prefetch0(ev[i+1].event_ptr);
|
|
/* first queue in pipeline.
|
|
* mark time stamp to compute fwd latency
|
|
*/
|
|
mark_fwd_latency(&ev[i], nb_stages);
|
|
}
|
|
/* last stage in pipeline */
|
|
if (unlikely((ev[i].queue_id % nb_stages) ==
|
|
laststage)) {
|
|
if (enable_fwd_latency)
|
|
cnt = perf_process_last_stage_latency(
|
|
pool, &ev[i], w, bufs, sz, cnt);
|
|
else
|
|
cnt = perf_process_last_stage(pool,
|
|
&ev[i], w, bufs, sz, cnt);
|
|
|
|
ev[i].op = RTE_EVENT_OP_RELEASE;
|
|
} else {
|
|
fwd_event(&ev[i], sched_type_list, nb_stages);
|
|
}
|
|
}
|
|
|
|
uint16_t enq;
|
|
|
|
enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
|
|
while (enq < nb_rx) {
|
|
enq += rte_event_enqueue_burst(dev, port,
|
|
ev + enq, nb_rx - enq);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
worker_wrapper(void *arg)
|
|
{
|
|
struct worker_data *w = arg;
|
|
struct evt_options *opt = w->t->opt;
|
|
|
|
const bool burst = evt_has_burst_mode(w->dev_id);
|
|
const int fwd_latency = opt->fwd_latency;
|
|
|
|
/* allow compiler to optimize */
|
|
if (!burst && !fwd_latency)
|
|
return perf_queue_worker(arg, 0);
|
|
else if (!burst && fwd_latency)
|
|
return perf_queue_worker(arg, 1);
|
|
else if (burst && !fwd_latency)
|
|
return perf_queue_worker_burst(arg, 0);
|
|
else if (burst && fwd_latency)
|
|
return perf_queue_worker_burst(arg, 1);
|
|
|
|
rte_panic("invalid worker\n");
|
|
}
|
|
|
|
static int
|
|
perf_queue_launch_lcores(struct evt_test *test, struct evt_options *opt)
|
|
{
|
|
return perf_launch_lcores(test, opt, worker_wrapper);
|
|
}
|
|
|
|
static int
|
|
perf_queue_eventdev_setup(struct evt_test *test, struct evt_options *opt)
|
|
{
|
|
uint8_t queue;
|
|
int nb_stages = opt->nb_stages;
|
|
int ret;
|
|
int nb_ports;
|
|
int nb_queues;
|
|
uint16_t prod;
|
|
struct rte_event_dev_info dev_info;
|
|
struct test_perf *t = evt_test_priv(test);
|
|
|
|
nb_ports = evt_nr_active_lcores(opt->wlcores);
|
|
nb_ports += opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ||
|
|
opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR ? 0 :
|
|
evt_nr_active_lcores(opt->plcores);
|
|
|
|
nb_queues = perf_queue_nb_event_queues(opt);
|
|
|
|
memset(&dev_info, 0, sizeof(struct rte_event_dev_info));
|
|
ret = rte_event_dev_info_get(opt->dev_id, &dev_info);
|
|
if (ret) {
|
|
evt_err("failed to get eventdev info %d", opt->dev_id);
|
|
return ret;
|
|
}
|
|
|
|
ret = evt_configure_eventdev(opt, nb_queues, nb_ports);
|
|
if (ret) {
|
|
evt_err("failed to configure eventdev %d", opt->dev_id);
|
|
return ret;
|
|
}
|
|
|
|
struct rte_event_queue_conf q_conf = {
|
|
.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
|
|
.nb_atomic_flows = opt->nb_flows,
|
|
.nb_atomic_order_sequences = opt->nb_flows,
|
|
};
|
|
/* queue configurations */
|
|
for (queue = 0; queue < nb_queues; queue++) {
|
|
q_conf.schedule_type =
|
|
(opt->sched_type_list[queue % nb_stages]);
|
|
|
|
if (opt->q_priority) {
|
|
uint8_t stage_pos = queue % nb_stages;
|
|
/* Configure event queues(stage 0 to stage n) with
|
|
* RTE_EVENT_DEV_PRIORITY_LOWEST to
|
|
* RTE_EVENT_DEV_PRIORITY_HIGHEST.
|
|
*/
|
|
uint8_t step = RTE_EVENT_DEV_PRIORITY_LOWEST /
|
|
(nb_stages - 1);
|
|
/* Higher prio for the queues closer to last stage */
|
|
q_conf.priority = RTE_EVENT_DEV_PRIORITY_LOWEST -
|
|
(step * stage_pos);
|
|
}
|
|
ret = rte_event_queue_setup(opt->dev_id, queue, &q_conf);
|
|
if (ret) {
|
|
evt_err("failed to setup queue=%d", queue);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (opt->wkr_deq_dep > dev_info.max_event_port_dequeue_depth)
|
|
opt->wkr_deq_dep = dev_info.max_event_port_dequeue_depth;
|
|
|
|
/* port configuration */
|
|
const struct rte_event_port_conf p_conf = {
|
|
.dequeue_depth = opt->wkr_deq_dep,
|
|
.enqueue_depth = dev_info.max_event_port_dequeue_depth,
|
|
.new_event_threshold = dev_info.max_num_events,
|
|
};
|
|
|
|
ret = perf_event_dev_port_setup(test, opt, nb_stages /* stride */,
|
|
nb_queues, &p_conf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!evt_has_distributed_sched(opt->dev_id)) {
|
|
uint32_t service_id;
|
|
rte_event_dev_service_id_get(opt->dev_id, &service_id);
|
|
ret = evt_service_setup(service_id);
|
|
if (ret) {
|
|
evt_err("No service lcore found to run event dev.");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = rte_event_dev_start(opt->dev_id);
|
|
if (ret) {
|
|
evt_err("failed to start eventdev %d", opt->dev_id);
|
|
return ret;
|
|
}
|
|
|
|
if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
|
|
RTE_ETH_FOREACH_DEV(prod) {
|
|
ret = rte_eth_dev_start(prod);
|
|
if (ret) {
|
|
evt_err("Ethernet dev [%d] failed to start. Using synthetic producer",
|
|
prod);
|
|
return ret;
|
|
}
|
|
|
|
ret = rte_event_eth_rx_adapter_start(prod);
|
|
if (ret) {
|
|
evt_err("Rx adapter[%d] start failed", prod);
|
|
return ret;
|
|
}
|
|
printf("%s: Port[%d] using Rx adapter[%d] started\n",
|
|
__func__, prod, prod);
|
|
}
|
|
} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
|
|
for (prod = 0; prod < opt->nb_timer_adptrs; prod++) {
|
|
ret = rte_event_timer_adapter_start(
|
|
t->timer_adptr[prod]);
|
|
if (ret) {
|
|
evt_err("failed to Start event timer adapter %d"
|
|
, prod);
|
|
return ret;
|
|
}
|
|
}
|
|
} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) {
|
|
uint8_t cdev_id, cdev_count;
|
|
|
|
cdev_count = rte_cryptodev_count();
|
|
for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
|
|
ret = rte_cryptodev_start(cdev_id);
|
|
if (ret) {
|
|
evt_err("Failed to start cryptodev %u",
|
|
cdev_id);
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
perf_queue_opt_dump(struct evt_options *opt)
|
|
{
|
|
evt_dump_fwd_latency(opt);
|
|
perf_opt_dump(opt, perf_queue_nb_event_queues(opt));
|
|
}
|
|
|
|
static int
|
|
perf_queue_opt_check(struct evt_options *opt)
|
|
{
|
|
return perf_opt_check(opt, perf_queue_nb_event_queues(opt));
|
|
}
|
|
|
|
static bool
|
|
perf_queue_capability_check(struct evt_options *opt)
|
|
{
|
|
struct rte_event_dev_info dev_info;
|
|
|
|
rte_event_dev_info_get(opt->dev_id, &dev_info);
|
|
if (dev_info.max_event_queues < perf_queue_nb_event_queues(opt) ||
|
|
dev_info.max_event_ports < perf_nb_event_ports(opt)) {
|
|
evt_err("not enough eventdev queues=%d/%d or ports=%d/%d",
|
|
perf_queue_nb_event_queues(opt),
|
|
dev_info.max_event_queues,
|
|
perf_nb_event_ports(opt), dev_info.max_event_ports);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static const struct evt_test_ops perf_queue = {
|
|
.cap_check = perf_queue_capability_check,
|
|
.opt_check = perf_queue_opt_check,
|
|
.opt_dump = perf_queue_opt_dump,
|
|
.test_setup = perf_test_setup,
|
|
.mempool_setup = perf_mempool_setup,
|
|
.ethdev_setup = perf_ethdev_setup,
|
|
.cryptodev_setup = perf_cryptodev_setup,
|
|
.eventdev_setup = perf_queue_eventdev_setup,
|
|
.launch_lcores = perf_queue_launch_lcores,
|
|
.eventdev_destroy = perf_eventdev_destroy,
|
|
.mempool_destroy = perf_mempool_destroy,
|
|
.ethdev_destroy = perf_ethdev_destroy,
|
|
.cryptodev_destroy = perf_cryptodev_destroy,
|
|
.test_result = perf_test_result,
|
|
.test_destroy = perf_test_destroy,
|
|
};
|
|
|
|
EVT_TEST_REGISTER(perf_queue);
|