numam-dpdk/drivers/net/hns3/hns3_cmd.c
Chengwen Feng 7079121324 net/hns3: support masking device capability
This patch supports runtime config of mask device capability, it was
used to mask the capability which queried from firmware.

The device argument key is "dev_caps_mask" which takes hexadecimal
bitmask where each bit represents whether mask corresponding capability.

Its main purpose is to debug and avoid problems.

Signed-off-by: Chengwen Feng <fengchengwen@huawei.com>
Signed-off-by: Min Hu (Connor) <humin29@huawei.com>
2021-04-19 19:15:45 +02:00

814 lines
22 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2021 HiSilicon Limited.
*/
#include <ethdev_pci.h>
#include <rte_io.h>
#include "hns3_ethdev.h"
#include "hns3_regs.h"
#include "hns3_intr.h"
#include "hns3_logs.h"
#define hns3_is_csq(ring) ((ring)->flag & HNS3_TYPE_CSQ)
#define cmq_ring_to_dev(ring) (&(ring)->dev->pdev->dev)
static int
hns3_ring_space(struct hns3_cmq_ring *ring)
{
int ntu = ring->next_to_use;
int ntc = ring->next_to_clean;
int used = (ntu - ntc + ring->desc_num) % ring->desc_num;
return ring->desc_num - used - 1;
}
static bool
is_valid_csq_clean_head(struct hns3_cmq_ring *ring, int head)
{
int ntu = ring->next_to_use;
int ntc = ring->next_to_clean;
if (ntu > ntc)
return head >= ntc && head <= ntu;
return head >= ntc || head <= ntu;
}
/*
* hns3_allocate_dma_mem - Specific memory alloc for command function.
* Malloc a memzone, which is a contiguous portion of physical memory identified
* by a name.
* @ring: pointer to the ring structure
* @size: size of memory requested
* @alignment: what to align the allocation to
*/
static int
hns3_allocate_dma_mem(struct hns3_hw *hw, struct hns3_cmq_ring *ring,
uint64_t size, uint32_t alignment)
{
const struct rte_memzone *mz = NULL;
char z_name[RTE_MEMZONE_NAMESIZE];
snprintf(z_name, sizeof(z_name), "hns3_dma_%" PRIu64, rte_rand());
mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG, alignment,
RTE_PGSIZE_2M);
if (mz == NULL)
return -ENOMEM;
ring->buf_size = size;
ring->desc = mz->addr;
ring->desc_dma_addr = mz->iova;
ring->zone = (const void *)mz;
hns3_dbg(hw, "memzone %s allocated with physical address: %" PRIu64,
mz->name, ring->desc_dma_addr);
return 0;
}
static void
hns3_free_dma_mem(struct hns3_hw *hw, struct hns3_cmq_ring *ring)
{
hns3_dbg(hw, "memzone %s to be freed with physical address: %" PRIu64,
((const struct rte_memzone *)ring->zone)->name,
ring->desc_dma_addr);
rte_memzone_free((const struct rte_memzone *)ring->zone);
ring->buf_size = 0;
ring->desc = NULL;
ring->desc_dma_addr = 0;
ring->zone = NULL;
}
static int
hns3_alloc_cmd_desc(struct hns3_hw *hw, struct hns3_cmq_ring *ring)
{
int size = ring->desc_num * sizeof(struct hns3_cmd_desc);
if (hns3_allocate_dma_mem(hw, ring, size, HNS3_CMD_DESC_ALIGNMENT)) {
hns3_err(hw, "allocate dma mem failed");
return -ENOMEM;
}
return 0;
}
static void
hns3_free_cmd_desc(struct hns3_hw *hw, struct hns3_cmq_ring *ring)
{
if (ring->desc)
hns3_free_dma_mem(hw, ring);
}
static int
hns3_alloc_cmd_queue(struct hns3_hw *hw, int ring_type)
{
struct hns3_cmq_ring *ring =
(ring_type == HNS3_TYPE_CSQ) ? &hw->cmq.csq : &hw->cmq.crq;
int ret;
ring->ring_type = ring_type;
ring->hw = hw;
ret = hns3_alloc_cmd_desc(hw, ring);
if (ret)
hns3_err(hw, "descriptor %s alloc error %d",
(ring_type == HNS3_TYPE_CSQ) ? "CSQ" : "CRQ", ret);
return ret;
}
void
hns3_cmd_reuse_desc(struct hns3_cmd_desc *desc, bool is_read)
{
desc->flag = rte_cpu_to_le_16(HNS3_CMD_FLAG_NO_INTR | HNS3_CMD_FLAG_IN);
if (is_read)
desc->flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_WR);
else
desc->flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_WR);
}
void
hns3_cmd_setup_basic_desc(struct hns3_cmd_desc *desc,
enum hns3_opcode_type opcode, bool is_read)
{
memset((void *)desc, 0, sizeof(struct hns3_cmd_desc));
desc->opcode = rte_cpu_to_le_16(opcode);
desc->flag = rte_cpu_to_le_16(HNS3_CMD_FLAG_NO_INTR | HNS3_CMD_FLAG_IN);
if (is_read)
desc->flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_WR);
}
static void
hns3_cmd_clear_regs(struct hns3_hw *hw)
{
hns3_write_dev(hw, HNS3_CMDQ_TX_ADDR_L_REG, 0);
hns3_write_dev(hw, HNS3_CMDQ_TX_ADDR_H_REG, 0);
hns3_write_dev(hw, HNS3_CMDQ_TX_DEPTH_REG, 0);
hns3_write_dev(hw, HNS3_CMDQ_TX_HEAD_REG, 0);
hns3_write_dev(hw, HNS3_CMDQ_TX_TAIL_REG, 0);
hns3_write_dev(hw, HNS3_CMDQ_RX_ADDR_L_REG, 0);
hns3_write_dev(hw, HNS3_CMDQ_RX_ADDR_H_REG, 0);
hns3_write_dev(hw, HNS3_CMDQ_RX_DEPTH_REG, 0);
hns3_write_dev(hw, HNS3_CMDQ_RX_HEAD_REG, 0);
hns3_write_dev(hw, HNS3_CMDQ_RX_TAIL_REG, 0);
}
static void
hns3_cmd_config_regs(struct hns3_cmq_ring *ring)
{
uint64_t dma = ring->desc_dma_addr;
if (ring->ring_type == HNS3_TYPE_CSQ) {
hns3_write_dev(ring->hw, HNS3_CMDQ_TX_ADDR_L_REG,
lower_32_bits(dma));
hns3_write_dev(ring->hw, HNS3_CMDQ_TX_ADDR_H_REG,
upper_32_bits(dma));
hns3_write_dev(ring->hw, HNS3_CMDQ_TX_DEPTH_REG,
ring->desc_num >> HNS3_NIC_CMQ_DESC_NUM_S |
HNS3_NIC_SW_RST_RDY);
hns3_write_dev(ring->hw, HNS3_CMDQ_TX_HEAD_REG, 0);
hns3_write_dev(ring->hw, HNS3_CMDQ_TX_TAIL_REG, 0);
} else {
hns3_write_dev(ring->hw, HNS3_CMDQ_RX_ADDR_L_REG,
lower_32_bits(dma));
hns3_write_dev(ring->hw, HNS3_CMDQ_RX_ADDR_H_REG,
upper_32_bits(dma));
hns3_write_dev(ring->hw, HNS3_CMDQ_RX_DEPTH_REG,
ring->desc_num >> HNS3_NIC_CMQ_DESC_NUM_S);
hns3_write_dev(ring->hw, HNS3_CMDQ_RX_HEAD_REG, 0);
hns3_write_dev(ring->hw, HNS3_CMDQ_RX_TAIL_REG, 0);
}
}
static void
hns3_cmd_init_regs(struct hns3_hw *hw)
{
hns3_cmd_config_regs(&hw->cmq.csq);
hns3_cmd_config_regs(&hw->cmq.crq);
}
static int
hns3_cmd_csq_clean(struct hns3_hw *hw)
{
struct hns3_cmq_ring *csq = &hw->cmq.csq;
uint32_t head;
uint32_t addr;
int clean;
head = hns3_read_dev(hw, HNS3_CMDQ_TX_HEAD_REG);
addr = hns3_read_dev(hw, HNS3_CMDQ_TX_ADDR_L_REG);
if (!is_valid_csq_clean_head(csq, head) || addr == 0) {
hns3_err(hw, "wrong cmd addr(%0x) head (%u, %u-%u)", addr, head,
csq->next_to_use, csq->next_to_clean);
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
__atomic_store_n(&hw->reset.disable_cmd, 1,
__ATOMIC_RELAXED);
hns3_schedule_delayed_reset(HNS3_DEV_HW_TO_ADAPTER(hw));
}
return -EIO;
}
clean = (head - csq->next_to_clean + csq->desc_num) % csq->desc_num;
csq->next_to_clean = head;
return clean;
}
static int
hns3_cmd_csq_done(struct hns3_hw *hw)
{
uint32_t head = hns3_read_dev(hw, HNS3_CMDQ_TX_HEAD_REG);
return head == hw->cmq.csq.next_to_use;
}
static bool
hns3_is_special_opcode(uint16_t opcode)
{
/*
* These commands have several descriptors,
* and use the first one to save opcode and return value.
*/
uint16_t spec_opcode[] = {HNS3_OPC_STATS_64_BIT,
HNS3_OPC_STATS_32_BIT,
HNS3_OPC_STATS_MAC,
HNS3_OPC_STATS_MAC_ALL,
HNS3_OPC_QUERY_32_BIT_REG,
HNS3_OPC_QUERY_64_BIT_REG,
HNS3_OPC_QUERY_CLEAR_MPF_RAS_INT,
HNS3_OPC_QUERY_CLEAR_PF_RAS_INT,
HNS3_OPC_QUERY_CLEAR_ALL_MPF_MSIX_INT,
HNS3_OPC_QUERY_CLEAR_ALL_PF_MSIX_INT,
HNS3_OPC_QUERY_ALL_ERR_INFO,};
uint32_t i;
for (i = 0; i < ARRAY_SIZE(spec_opcode); i++)
if (spec_opcode[i] == opcode)
return true;
return false;
}
static int
hns3_cmd_convert_err_code(uint16_t desc_ret)
{
static const struct {
uint16_t imp_errcode;
int linux_errcode;
} hns3_cmdq_status[] = {
{HNS3_CMD_EXEC_SUCCESS, 0},
{HNS3_CMD_NO_AUTH, -EPERM},
{HNS3_CMD_NOT_SUPPORTED, -EOPNOTSUPP},
{HNS3_CMD_QUEUE_FULL, -EXFULL},
{HNS3_CMD_NEXT_ERR, -ENOSR},
{HNS3_CMD_UNEXE_ERR, -ENOTBLK},
{HNS3_CMD_PARA_ERR, -EINVAL},
{HNS3_CMD_RESULT_ERR, -ERANGE},
{HNS3_CMD_TIMEOUT, -ETIME},
{HNS3_CMD_HILINK_ERR, -ENOLINK},
{HNS3_CMD_QUEUE_ILLEGAL, -ENXIO},
{HNS3_CMD_INVALID, -EBADR},
{HNS3_CMD_ROH_CHECK_FAIL, -EINVAL}
};
uint32_t i;
for (i = 0; i < ARRAY_SIZE(hns3_cmdq_status); i++)
if (hns3_cmdq_status[i].imp_errcode == desc_ret)
return hns3_cmdq_status[i].linux_errcode;
return -EREMOTEIO;
}
static int
hns3_cmd_get_hardware_reply(struct hns3_hw *hw,
struct hns3_cmd_desc *desc, int num, int ntc)
{
uint16_t opcode, desc_ret;
int current_ntc = ntc;
int handle;
opcode = rte_le_to_cpu_16(desc[0].opcode);
for (handle = 0; handle < num; handle++) {
/* Get the result of hardware write back */
desc[handle] = hw->cmq.csq.desc[current_ntc];
current_ntc++;
if (current_ntc == hw->cmq.csq.desc_num)
current_ntc = 0;
}
if (likely(!hns3_is_special_opcode(opcode)))
desc_ret = rte_le_to_cpu_16(desc[num - 1].retval);
else
desc_ret = rte_le_to_cpu_16(desc[0].retval);
hw->cmq.last_status = desc_ret;
return hns3_cmd_convert_err_code(desc_ret);
}
static int hns3_cmd_poll_reply(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
uint32_t timeout = 0;
do {
if (hns3_cmd_csq_done(hw))
return 0;
if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED)) {
hns3_err(hw,
"Don't wait for reply because of disable_cmd");
return -EBUSY;
}
if (is_reset_pending(hns)) {
hns3_err(hw, "Don't wait for reply because of reset pending");
return -EIO;
}
rte_delay_us(1);
timeout++;
} while (timeout < hw->cmq.tx_timeout);
hns3_err(hw, "Wait for reply timeout");
return -ETIME;
}
/*
* hns3_cmd_send - send command to command queue
*
* @param hw
* pointer to the hw struct
* @param desc
* prefilled descriptor for describing the command
* @param num
* the number of descriptors to be sent
* @return
* - -EBUSY if detect device is in resetting
* - -EIO if detect cmd csq corrupted (due to reset) or
* there is reset pending
* - -ENOMEM/-ETIME/...(Non-Zero) if other error case
* - Zero if operation completed successfully
*
* Note -BUSY/-EIO only used in reset case
*
* Note this is the main send command for command queue, it
* sends the queue, cleans the queue, etc
*/
int
hns3_cmd_send(struct hns3_hw *hw, struct hns3_cmd_desc *desc, int num)
{
struct hns3_cmd_desc *desc_to_use;
int handle = 0;
int retval;
uint32_t ntc;
if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED))
return -EBUSY;
rte_spinlock_lock(&hw->cmq.csq.lock);
/* Clean the command send queue */
retval = hns3_cmd_csq_clean(hw);
if (retval < 0) {
rte_spinlock_unlock(&hw->cmq.csq.lock);
return retval;
}
if (num > hns3_ring_space(&hw->cmq.csq)) {
rte_spinlock_unlock(&hw->cmq.csq.lock);
return -ENOMEM;
}
/*
* Record the location of desc in the ring for this time
* which will be use for hardware to write back
*/
ntc = hw->cmq.csq.next_to_use;
while (handle < num) {
desc_to_use = &hw->cmq.csq.desc[hw->cmq.csq.next_to_use];
*desc_to_use = desc[handle];
(hw->cmq.csq.next_to_use)++;
if (hw->cmq.csq.next_to_use == hw->cmq.csq.desc_num)
hw->cmq.csq.next_to_use = 0;
handle++;
}
/* Write to hardware */
hns3_write_dev(hw, HNS3_CMDQ_TX_TAIL_REG, hw->cmq.csq.next_to_use);
/*
* If the command is sync, wait for the firmware to write back,
* if multi descriptors to be sent, use the first one to check.
*/
if (HNS3_CMD_SEND_SYNC(rte_le_to_cpu_16(desc->flag))) {
retval = hns3_cmd_poll_reply(hw);
if (!retval)
retval = hns3_cmd_get_hardware_reply(hw, desc, num,
ntc);
}
rte_spinlock_unlock(&hw->cmq.csq.lock);
return retval;
}
static const char *
hns3_get_caps_name(uint32_t caps_id)
{
const struct {
enum HNS3_CAPS_BITS caps;
const char *name;
} dev_caps[] = {
{ HNS3_CAPS_UDP_GSO_B, "udp_gso" },
{ HNS3_CAPS_ATR_B, "atr" },
{ HNS3_CAPS_FD_QUEUE_REGION_B, "fd_queue_region" },
{ HNS3_CAPS_PTP_B, "ptp" },
{ HNS3_CAPS_INT_QL_B, "int_ql" },
{ HNS3_CAPS_SIMPLE_BD_B, "simple_bd" },
{ HNS3_CAPS_TX_PUSH_B, "tx_push" },
{ HNS3_CAPS_PHY_IMP_B, "phy_imp" },
{ HNS3_CAPS_TQP_TXRX_INDEP_B, "tqp_txrx_indep" },
{ HNS3_CAPS_HW_PAD_B, "hw_pad" },
{ HNS3_CAPS_STASH_B, "stash" },
{ HNS3_CAPS_UDP_TUNNEL_CSUM_B, "udp_tunnel_csum" },
{ HNS3_CAPS_RAS_IMP_B, "ras_imp" },
{ HNS3_CAPS_FEC_B, "fec" },
{ HNS3_CAPS_PAUSE_B, "pause" },
{ HNS3_CAPS_RXD_ADV_LAYOUT_B, "rxd_adv_layout" }
};
uint32_t i;
for (i = 0; i < RTE_DIM(dev_caps); i++) {
if (dev_caps[i].caps == caps_id)
return dev_caps[i].name;
}
return "unknown";
}
static void
hns3_mask_capability(struct hns3_hw *hw,
struct hns3_query_version_cmd *cmd)
{
#define MAX_CAPS_BIT 64
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
uint64_t caps_org, caps_new, caps_masked;
uint32_t i;
if (hns->dev_caps_mask == 0)
return;
memcpy(&caps_org, &cmd->caps[0], sizeof(caps_org));
caps_org = rte_le_to_cpu_64(caps_org);
caps_new = caps_org ^ (caps_org & hns->dev_caps_mask);
caps_masked = caps_org ^ caps_new;
caps_new = rte_cpu_to_le_64(caps_new);
memcpy(&cmd->caps[0], &caps_new, sizeof(caps_new));
for (i = 0; i < MAX_CAPS_BIT; i++) {
if (!(caps_masked & BIT_ULL(i)))
continue;
hns3_info(hw, "mask capabiliy: id-%u, name-%s.",
i, hns3_get_caps_name(i));
}
}
static void
hns3_parse_capability(struct hns3_hw *hw,
struct hns3_query_version_cmd *cmd)
{
uint32_t caps = rte_le_to_cpu_32(cmd->caps[0]);
if (hns3_get_bit(caps, HNS3_CAPS_UDP_GSO_B))
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_UDP_GSO_B, 1);
if (hns3_get_bit(caps, HNS3_CAPS_FD_QUEUE_REGION_B))
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_FD_QUEUE_REGION_B,
1);
if (hns3_get_bit(caps, HNS3_CAPS_PTP_B)) {
/*
* PTP depends on special packet type reported by hardware which
* enabled rxd advanced layout, so if the hardware doesn't
* support rxd advanced layout, driver should ignore the PTP
* capability.
*/
if (hns3_get_bit(caps, HNS3_CAPS_RXD_ADV_LAYOUT_B))
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_PTP_B, 1);
else
hns3_warn(hw, "ignore PTP capability due to lack of "
"rxd advanced layout capability.");
}
if (hns3_get_bit(caps, HNS3_CAPS_TX_PUSH_B))
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_TX_PUSH_B, 1);
if (hns3_get_bit(caps, HNS3_CAPS_PHY_IMP_B))
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_COPPER_B, 1);
if (hns3_get_bit(caps, HNS3_CAPS_TQP_TXRX_INDEP_B))
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_INDEP_TXRX_B, 1);
if (hns3_get_bit(caps, HNS3_CAPS_STASH_B))
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_STASH_B, 1);
if (hns3_get_bit(caps, HNS3_CAPS_RXD_ADV_LAYOUT_B))
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_RXD_ADV_LAYOUT_B,
1);
if (hns3_get_bit(caps, HNS3_CAPS_UDP_TUNNEL_CSUM_B))
hns3_set_bit(hw->capability,
HNS3_DEV_SUPPORT_OUTER_UDP_CKSUM_B, 1);
if (hns3_get_bit(caps, HNS3_CAPS_RAS_IMP_B))
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_RAS_IMP_B, 1);
}
static uint32_t
hns3_build_api_caps(void)
{
uint32_t api_caps = 0;
hns3_set_bit(api_caps, HNS3_API_CAP_FLEX_RSS_TBL_B, 1);
return rte_cpu_to_le_32(api_caps);
}
static int
hns3_cmd_query_firmware_version_and_capability(struct hns3_hw *hw)
{
struct hns3_query_version_cmd *resp;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FW_VER, 1);
resp = (struct hns3_query_version_cmd *)desc.data;
resp->api_caps = hns3_build_api_caps();
/* Initialize the cmd function */
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
return ret;
hw->fw_version = rte_le_to_cpu_32(resp->firmware);
/*
* Make sure mask the capability before parse capability because it
* may overwrite resp's data.
*/
hns3_mask_capability(hw, resp);
hns3_parse_capability(hw, resp);
return 0;
}
int
hns3_cmd_init_queue(struct hns3_hw *hw)
{
int ret;
/* Setup the lock for command queue */
rte_spinlock_init(&hw->cmq.csq.lock);
rte_spinlock_init(&hw->cmq.crq.lock);
/*
* Clear up all command register,
* in case there are some residual values
*/
hns3_cmd_clear_regs(hw);
/* Setup the queue entries for use cmd queue */
hw->cmq.csq.desc_num = HNS3_NIC_CMQ_DESC_NUM;
hw->cmq.crq.desc_num = HNS3_NIC_CMQ_DESC_NUM;
/* Setup Tx write back timeout */
hw->cmq.tx_timeout = HNS3_CMDQ_TX_TIMEOUT;
/* Setup queue rings */
ret = hns3_alloc_cmd_queue(hw, HNS3_TYPE_CSQ);
if (ret) {
PMD_INIT_LOG(ERR, "CSQ ring setup error %d", ret);
return ret;
}
ret = hns3_alloc_cmd_queue(hw, HNS3_TYPE_CRQ);
if (ret) {
PMD_INIT_LOG(ERR, "CRQ ring setup error %d", ret);
goto err_crq;
}
return 0;
err_crq:
hns3_free_cmd_desc(hw, &hw->cmq.csq);
return ret;
}
static void
hns3_update_dev_lsc_cap(struct hns3_hw *hw, int fw_compact_cmd_result)
{
struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
if (hw->adapter_state != HNS3_NIC_UNINITIALIZED)
return;
if (fw_compact_cmd_result != 0) {
/*
* If fw_compact_cmd_result is not zero, it means firmware don't
* support link status change interrupt.
* Framework already set RTE_ETH_DEV_INTR_LSC bit because driver
* declared RTE_PCI_DRV_INTR_LSC in drv_flags. It need to clear
* the RTE_ETH_DEV_INTR_LSC capability when detect firmware
* don't support link status change interrupt.
*/
dev->data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
}
}
static int
hns3_apply_fw_compat_cmd_result(struct hns3_hw *hw, int result)
{
if (result != 0 && hns3_dev_copper_supported(hw)) {
hns3_err(hw, "firmware fails to initialize the PHY, ret = %d.",
result);
return result;
}
hns3_update_dev_lsc_cap(hw, result);
return 0;
}
static int
hns3_firmware_compat_config(struct hns3_hw *hw, bool is_init)
{
struct hns3_firmware_compat_cmd *req;
struct hns3_cmd_desc desc;
uint32_t compat = 0;
#if defined(RTE_HNS3_ONLY_1630_FPGA)
/* If resv reg enabled phy driver of imp is not configured, driver
* will use temporary phy driver.
*/
struct rte_pci_device *pci_dev;
struct rte_eth_dev *eth_dev;
uint8_t revision;
int ret;
eth_dev = &rte_eth_devices[hw->data->port_id];
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
/* Get PCI revision id */
ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
HNS3_PCI_REVISION_ID);
if (ret != HNS3_PCI_REVISION_ID_LEN) {
PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
ret);
return -EIO;
}
if (revision == PCI_REVISION_ID_HIP09_A) {
struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
if (hns3_dev_copper_supported(hw) == 0 || pf->is_tmp_phy) {
PMD_INIT_LOG(ERR, "***use temp phy driver in dpdk***");
pf->is_tmp_phy = true;
hns3_set_bit(hw->capability,
HNS3_DEV_SUPPORT_COPPER_B, 1);
return 0;
}
PMD_INIT_LOG(ERR, "***use phy driver in imp***");
}
#endif
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_FIRMWARE_COMPAT_CFG, false);
req = (struct hns3_firmware_compat_cmd *)desc.data;
if (is_init) {
hns3_set_bit(compat, HNS3_LINK_EVENT_REPORT_EN_B, 1);
hns3_set_bit(compat, HNS3_NCSI_ERROR_REPORT_EN_B, 0);
if (hns3_dev_copper_supported(hw))
hns3_set_bit(compat, HNS3_FIRMWARE_PHY_DRIVER_EN_B, 1);
}
req->compat = rte_cpu_to_le_32(compat);
return hns3_cmd_send(hw, &desc, 1);
}
int
hns3_cmd_init(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
uint32_t version;
int ret;
rte_spinlock_lock(&hw->cmq.csq.lock);
rte_spinlock_lock(&hw->cmq.crq.lock);
hw->cmq.csq.next_to_clean = 0;
hw->cmq.csq.next_to_use = 0;
hw->cmq.crq.next_to_clean = 0;
hw->cmq.crq.next_to_use = 0;
hw->mbx_resp.head = 0;
hw->mbx_resp.tail = 0;
hw->mbx_resp.lost = 0;
hns3_cmd_init_regs(hw);
rte_spinlock_unlock(&hw->cmq.crq.lock);
rte_spinlock_unlock(&hw->cmq.csq.lock);
/*
* Check if there is new reset pending, because the higher level
* reset may happen when lower level reset is being processed.
*/
if (is_reset_pending(HNS3_DEV_HW_TO_ADAPTER(hw))) {
PMD_INIT_LOG(ERR, "New reset pending, keep disable cmd");
ret = -EBUSY;
goto err_cmd_init;
}
__atomic_store_n(&hw->reset.disable_cmd, 0, __ATOMIC_RELAXED);
ret = hns3_cmd_query_firmware_version_and_capability(hw);
if (ret) {
PMD_INIT_LOG(ERR, "firmware version query failed %d", ret);
goto err_cmd_init;
}
version = hw->fw_version;
PMD_INIT_LOG(INFO, "The firmware version is %lu.%lu.%lu.%lu",
hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
HNS3_FW_VERSION_BYTE3_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
HNS3_FW_VERSION_BYTE2_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
HNS3_FW_VERSION_BYTE1_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
HNS3_FW_VERSION_BYTE0_S));
if (hns->is_vf)
return 0;
/*
* Requiring firmware to enable some features, firber port can still
* work without it, but copper port can't work because the firmware
* fails to take over the PHY.
*/
ret = hns3_firmware_compat_config(hw, true);
if (ret)
PMD_INIT_LOG(WARNING, "firmware compatible features not "
"supported, ret = %d.", ret);
/*
* Perform some corresponding operations based on the firmware
* compatibility configuration result.
*/
ret = hns3_apply_fw_compat_cmd_result(hw, ret);
if (ret)
goto err_cmd_init;
return 0;
err_cmd_init:
__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
return ret;
}
static void
hns3_destroy_queue(struct hns3_hw *hw, struct hns3_cmq_ring *ring)
{
rte_spinlock_lock(&ring->lock);
hns3_free_cmd_desc(hw, ring);
rte_spinlock_unlock(&ring->lock);
}
void
hns3_cmd_destroy_queue(struct hns3_hw *hw)
{
hns3_destroy_queue(hw, &hw->cmq.csq);
hns3_destroy_queue(hw, &hw->cmq.crq);
}
void
hns3_cmd_uninit(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
if (!hns->is_vf)
(void)hns3_firmware_compat_config(hw, false);
__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
/*
* A delay is added to ensure that the register cleanup operations
* will not be performed concurrently with the firmware command and
* ensure that all the reserved commands are executed.
* Concurrency may occur in two scenarios: asynchronous command and
* timeout command. If the command fails to be executed due to busy
* scheduling, the command will be processed in the next scheduling
* of the firmware.
*/
rte_delay_ms(HNS3_CMDQ_CLEAR_WAIT_TIME);
rte_spinlock_lock(&hw->cmq.csq.lock);
rte_spinlock_lock(&hw->cmq.crq.lock);
hns3_cmd_clear_regs(hw);
rte_spinlock_unlock(&hw->cmq.crq.lock);
rte_spinlock_unlock(&hw->cmq.csq.lock);
}