Andrew Rybchenko 791f57ac6b net/sfc: provide a way to check if filter is supported
The information is obtained from firmware on attach. It may
change after MC reboot (firmware version or variant change).
Cache should be refreshed after MC reboot when it is handled
properly (not yet).

Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
Reviewed-by: Andrew Lee <alee@solarflare.com>
Reviewed-by: Andy Moreton <amoreton@solarflare.com>
Reviewed-by: Robert Stonehouse <rstonehouse@solarflare.com>
2017-04-04 15:52:52 +02:00

703 lines
16 KiB
C

/*-
* Copyright (c) 2016 Solarflare Communications Inc.
* All rights reserved.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* sysconf() */
#include <unistd.h>
#include <rte_errno.h>
#include "efx.h"
#include "sfc.h"
#include "sfc_log.h"
#include "sfc_ev.h"
#include "sfc_rx.h"
#include "sfc_tx.h"
int
sfc_dma_alloc(const struct sfc_adapter *sa, const char *name, uint16_t id,
size_t len, int socket_id, efsys_mem_t *esmp)
{
const struct rte_memzone *mz;
sfc_log_init(sa, "name=%s id=%u len=%lu socket_id=%d",
name, id, len, socket_id);
mz = rte_eth_dma_zone_reserve(sa->eth_dev, name, id, len,
sysconf(_SC_PAGESIZE), socket_id);
if (mz == NULL) {
sfc_err(sa, "cannot reserve DMA zone for %s:%u %#x@%d: %s",
name, (unsigned int)id, (unsigned int)len, socket_id,
rte_strerror(rte_errno));
return ENOMEM;
}
esmp->esm_addr = rte_mem_phy2mch(mz->memseg_id, mz->phys_addr);
if (esmp->esm_addr == RTE_BAD_PHYS_ADDR) {
(void)rte_memzone_free(mz);
return EFAULT;
}
esmp->esm_mz = mz;
esmp->esm_base = mz->addr;
return 0;
}
void
sfc_dma_free(const struct sfc_adapter *sa, efsys_mem_t *esmp)
{
int rc;
sfc_log_init(sa, "name=%s", esmp->esm_mz->name);
rc = rte_memzone_free(esmp->esm_mz);
if (rc != 0)
sfc_err(sa, "rte_memzone_free(() failed: %d", rc);
memset(esmp, 0, sizeof(*esmp));
}
static uint32_t
sfc_phy_cap_from_link_speeds(uint32_t speeds)
{
uint32_t phy_caps = 0;
if (~speeds & ETH_LINK_SPEED_FIXED) {
phy_caps |= (1 << EFX_PHY_CAP_AN);
/*
* If no speeds are specified in the mask, any supported
* may be negotiated
*/
if (speeds == ETH_LINK_SPEED_AUTONEG)
phy_caps |=
(1 << EFX_PHY_CAP_1000FDX) |
(1 << EFX_PHY_CAP_10000FDX) |
(1 << EFX_PHY_CAP_40000FDX);
}
if (speeds & ETH_LINK_SPEED_1G)
phy_caps |= (1 << EFX_PHY_CAP_1000FDX);
if (speeds & ETH_LINK_SPEED_10G)
phy_caps |= (1 << EFX_PHY_CAP_10000FDX);
if (speeds & ETH_LINK_SPEED_40G)
phy_caps |= (1 << EFX_PHY_CAP_40000FDX);
return phy_caps;
}
/*
* Check requested device level configuration.
* Receive and transmit configuration is checked in corresponding
* modules.
*/
static int
sfc_check_conf(struct sfc_adapter *sa)
{
const struct rte_eth_conf *conf = &sa->eth_dev->data->dev_conf;
int rc = 0;
sa->port.phy_adv_cap =
sfc_phy_cap_from_link_speeds(conf->link_speeds) &
sa->port.phy_adv_cap_mask;
if ((sa->port.phy_adv_cap & ~(1 << EFX_PHY_CAP_AN)) == 0) {
sfc_err(sa, "No link speeds from mask %#x are supported",
conf->link_speeds);
rc = EINVAL;
}
if (conf->lpbk_mode != 0) {
sfc_err(sa, "Loopback not supported");
rc = EINVAL;
}
if (conf->dcb_capability_en != 0) {
sfc_err(sa, "Priority-based flow control not supported");
rc = EINVAL;
}
if (conf->fdir_conf.mode != RTE_FDIR_MODE_NONE) {
sfc_err(sa, "Flow Director not supported");
rc = EINVAL;
}
if ((conf->intr_conf.lsc != 0) &&
(sa->intr.type != EFX_INTR_LINE) &&
(sa->intr.type != EFX_INTR_MESSAGE)) {
sfc_err(sa, "Link status change interrupt not supported");
rc = EINVAL;
}
if (conf->intr_conf.rxq != 0) {
sfc_err(sa, "Receive queue interrupt not supported");
rc = EINVAL;
}
return rc;
}
/*
* Find out maximum number of receive and transmit queues which could be
* advertised.
*
* NIC is kept initialized on success to allow other modules acquire
* defaults and capabilities.
*/
static int
sfc_estimate_resource_limits(struct sfc_adapter *sa)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
efx_drv_limits_t limits;
int rc;
uint32_t evq_allocated;
uint32_t rxq_allocated;
uint32_t txq_allocated;
memset(&limits, 0, sizeof(limits));
/* Request at least one Rx and Tx queue */
limits.edl_min_rxq_count = 1;
limits.edl_min_txq_count = 1;
/* Management event queue plus event queue for each Tx and Rx queue */
limits.edl_min_evq_count =
1 + limits.edl_min_rxq_count + limits.edl_min_txq_count;
/* Divide by number of functions to guarantee that all functions
* will get promised resources
*/
/* FIXME Divide by number of functions (not 2) below */
limits.edl_max_evq_count = encp->enc_evq_limit / 2;
SFC_ASSERT(limits.edl_max_evq_count >= limits.edl_min_rxq_count);
/* Split equally between receive and transmit */
limits.edl_max_rxq_count =
MIN(encp->enc_rxq_limit, (limits.edl_max_evq_count - 1) / 2);
SFC_ASSERT(limits.edl_max_rxq_count >= limits.edl_min_rxq_count);
limits.edl_max_txq_count =
MIN(encp->enc_txq_limit,
limits.edl_max_evq_count - 1 - limits.edl_max_rxq_count);
if (sa->tso)
limits.edl_max_txq_count =
MIN(limits.edl_max_txq_count,
encp->enc_fw_assisted_tso_v2_n_contexts /
encp->enc_hw_pf_count);
SFC_ASSERT(limits.edl_max_txq_count >= limits.edl_min_rxq_count);
/* Configure the minimum required resources needed for the
* driver to operate, and the maximum desired resources that the
* driver is capable of using.
*/
efx_nic_set_drv_limits(sa->nic, &limits);
sfc_log_init(sa, "init nic");
rc = efx_nic_init(sa->nic);
if (rc != 0)
goto fail_nic_init;
/* Find resource dimensions assigned by firmware to this function */
rc = efx_nic_get_vi_pool(sa->nic, &evq_allocated, &rxq_allocated,
&txq_allocated);
if (rc != 0)
goto fail_get_vi_pool;
/* It still may allocate more than maximum, ensure limit */
evq_allocated = MIN(evq_allocated, limits.edl_max_evq_count);
rxq_allocated = MIN(rxq_allocated, limits.edl_max_rxq_count);
txq_allocated = MIN(txq_allocated, limits.edl_max_txq_count);
/* Subtract management EVQ not used for traffic */
SFC_ASSERT(evq_allocated > 0);
evq_allocated--;
/* Right now we use separate EVQ for Rx and Tx */
sa->rxq_max = MIN(rxq_allocated, evq_allocated / 2);
sa->txq_max = MIN(txq_allocated, evq_allocated - sa->rxq_max);
/* Keep NIC initialized */
return 0;
fail_get_vi_pool:
fail_nic_init:
efx_nic_fini(sa->nic);
return rc;
}
static int
sfc_set_drv_limits(struct sfc_adapter *sa)
{
const struct rte_eth_dev_data *data = sa->eth_dev->data;
efx_drv_limits_t lim;
memset(&lim, 0, sizeof(lim));
/* Limits are strict since take into account initial estimation */
lim.edl_min_evq_count = lim.edl_max_evq_count =
1 + data->nb_rx_queues + data->nb_tx_queues;
lim.edl_min_rxq_count = lim.edl_max_rxq_count = data->nb_rx_queues;
lim.edl_min_txq_count = lim.edl_max_txq_count = data->nb_tx_queues;
return efx_nic_set_drv_limits(sa->nic, &lim);
}
int
sfc_start(struct sfc_adapter *sa)
{
int rc;
sfc_log_init(sa, "entry");
SFC_ASSERT(sfc_adapter_is_locked(sa));
switch (sa->state) {
case SFC_ADAPTER_CONFIGURED:
break;
case SFC_ADAPTER_STARTED:
sfc_info(sa, "already started");
return 0;
default:
rc = EINVAL;
goto fail_bad_state;
}
sa->state = SFC_ADAPTER_STARTING;
sfc_log_init(sa, "set resource limits");
rc = sfc_set_drv_limits(sa);
if (rc != 0)
goto fail_set_drv_limits;
sfc_log_init(sa, "init nic");
rc = efx_nic_init(sa->nic);
if (rc != 0)
goto fail_nic_init;
rc = sfc_intr_start(sa);
if (rc != 0)
goto fail_intr_start;
rc = sfc_ev_start(sa);
if (rc != 0)
goto fail_ev_start;
rc = sfc_port_start(sa);
if (rc != 0)
goto fail_port_start;
rc = sfc_rx_start(sa);
if (rc != 0)
goto fail_rx_start;
rc = sfc_tx_start(sa);
if (rc != 0)
goto fail_tx_start;
sa->state = SFC_ADAPTER_STARTED;
sfc_log_init(sa, "done");
return 0;
fail_tx_start:
sfc_rx_stop(sa);
fail_rx_start:
sfc_port_stop(sa);
fail_port_start:
sfc_ev_stop(sa);
fail_ev_start:
sfc_intr_stop(sa);
fail_intr_start:
efx_nic_fini(sa->nic);
fail_nic_init:
fail_set_drv_limits:
sa->state = SFC_ADAPTER_CONFIGURED;
fail_bad_state:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_stop(struct sfc_adapter *sa)
{
sfc_log_init(sa, "entry");
SFC_ASSERT(sfc_adapter_is_locked(sa));
switch (sa->state) {
case SFC_ADAPTER_STARTED:
break;
case SFC_ADAPTER_CONFIGURED:
sfc_info(sa, "already stopped");
return;
default:
sfc_err(sa, "stop in unexpected state %u", sa->state);
SFC_ASSERT(B_FALSE);
return;
}
sa->state = SFC_ADAPTER_STOPPING;
sfc_tx_stop(sa);
sfc_rx_stop(sa);
sfc_port_stop(sa);
sfc_ev_stop(sa);
sfc_intr_stop(sa);
efx_nic_fini(sa->nic);
sa->state = SFC_ADAPTER_CONFIGURED;
sfc_log_init(sa, "done");
}
int
sfc_configure(struct sfc_adapter *sa)
{
int rc;
sfc_log_init(sa, "entry");
SFC_ASSERT(sfc_adapter_is_locked(sa));
SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
sa->state = SFC_ADAPTER_CONFIGURING;
rc = sfc_check_conf(sa);
if (rc != 0)
goto fail_check_conf;
rc = sfc_intr_init(sa);
if (rc != 0)
goto fail_intr_init;
rc = sfc_ev_init(sa);
if (rc != 0)
goto fail_ev_init;
rc = sfc_port_init(sa);
if (rc != 0)
goto fail_port_init;
rc = sfc_rx_init(sa);
if (rc != 0)
goto fail_rx_init;
rc = sfc_tx_init(sa);
if (rc != 0)
goto fail_tx_init;
sa->state = SFC_ADAPTER_CONFIGURED;
sfc_log_init(sa, "done");
return 0;
fail_tx_init:
sfc_rx_fini(sa);
fail_rx_init:
sfc_port_fini(sa);
fail_port_init:
sfc_ev_fini(sa);
fail_ev_init:
sfc_intr_fini(sa);
fail_intr_init:
fail_check_conf:
sa->state = SFC_ADAPTER_INITIALIZED;
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_close(struct sfc_adapter *sa)
{
sfc_log_init(sa, "entry");
SFC_ASSERT(sfc_adapter_is_locked(sa));
SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
sa->state = SFC_ADAPTER_CLOSING;
sfc_tx_fini(sa);
sfc_rx_fini(sa);
sfc_port_fini(sa);
sfc_ev_fini(sa);
sfc_intr_fini(sa);
sa->state = SFC_ADAPTER_INITIALIZED;
sfc_log_init(sa, "done");
}
static int
sfc_mem_bar_init(struct sfc_adapter *sa)
{
struct rte_eth_dev *eth_dev = sa->eth_dev;
struct rte_pci_device *pci_dev = SFC_DEV_TO_PCI(eth_dev);
efsys_bar_t *ebp = &sa->mem_bar;
unsigned int i;
struct rte_mem_resource *res;
for (i = 0; i < RTE_DIM(pci_dev->mem_resource); i++) {
res = &pci_dev->mem_resource[i];
if ((res->len != 0) && (res->phys_addr != 0)) {
/* Found first memory BAR */
SFC_BAR_LOCK_INIT(ebp, eth_dev->data->name);
ebp->esb_rid = i;
ebp->esb_dev = pci_dev;
ebp->esb_base = res->addr;
return 0;
}
}
return EFAULT;
}
static void
sfc_mem_bar_fini(struct sfc_adapter *sa)
{
efsys_bar_t *ebp = &sa->mem_bar;
SFC_BAR_LOCK_DESTROY(ebp);
memset(ebp, 0, sizeof(*ebp));
}
#if EFSYS_OPT_RX_SCALE
/*
* A fixed RSS key which has a property of being symmetric
* (symmetrical flows are distributed to the same CPU)
* and also known to give a uniform distribution
* (a good distribution of traffic between different CPUs)
*/
static const uint8_t default_rss_key[SFC_RSS_KEY_SIZE] = {
0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a,
0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a,
0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a,
0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a,
0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a,
};
#endif
static int
sfc_set_rss_defaults(struct sfc_adapter *sa)
{
#if EFSYS_OPT_RX_SCALE
int rc;
rc = efx_intr_init(sa->nic, sa->intr.type, NULL);
if (rc != 0)
goto fail_intr_init;
rc = efx_ev_init(sa->nic);
if (rc != 0)
goto fail_ev_init;
rc = efx_rx_init(sa->nic);
if (rc != 0)
goto fail_rx_init;
rc = efx_rx_scale_support_get(sa->nic, &sa->rss_support);
if (rc != 0)
goto fail_scale_support_get;
rc = efx_rx_hash_support_get(sa->nic, &sa->hash_support);
if (rc != 0)
goto fail_hash_support_get;
efx_rx_fini(sa->nic);
efx_ev_fini(sa->nic);
efx_intr_fini(sa->nic);
sa->rss_hash_types = sfc_rte_to_efx_hash_type(SFC_RSS_OFFLOADS);
rte_memcpy(sa->rss_key, default_rss_key, sizeof(sa->rss_key));
return 0;
fail_hash_support_get:
fail_scale_support_get:
fail_rx_init:
efx_ev_fini(sa->nic);
fail_ev_init:
efx_intr_fini(sa->nic);
fail_intr_init:
return rc;
#else
return 0;
#endif
}
int
sfc_attach(struct sfc_adapter *sa)
{
struct rte_pci_device *pci_dev = SFC_DEV_TO_PCI(sa->eth_dev);
const efx_nic_cfg_t *encp;
efx_nic_t *enp;
int rc;
sfc_log_init(sa, "entry");
SFC_ASSERT(sfc_adapter_is_locked(sa));
sa->socket_id = rte_socket_id();
sfc_log_init(sa, "init mem bar");
rc = sfc_mem_bar_init(sa);
if (rc != 0)
goto fail_mem_bar_init;
sfc_log_init(sa, "get family");
rc = efx_family(pci_dev->id.vendor_id, pci_dev->id.device_id,
&sa->family);
if (rc != 0)
goto fail_family;
sfc_log_init(sa, "family is %u", sa->family);
sfc_log_init(sa, "create nic");
rte_spinlock_init(&sa->nic_lock);
rc = efx_nic_create(sa->family, (efsys_identifier_t *)sa,
&sa->mem_bar, &sa->nic_lock, &enp);
if (rc != 0)
goto fail_nic_create;
sa->nic = enp;
rc = sfc_mcdi_init(sa);
if (rc != 0)
goto fail_mcdi_init;
sfc_log_init(sa, "probe nic");
rc = efx_nic_probe(enp);
if (rc != 0)
goto fail_nic_probe;
efx_mcdi_new_epoch(enp);
sfc_log_init(sa, "reset nic");
rc = efx_nic_reset(enp);
if (rc != 0)
goto fail_nic_reset;
encp = efx_nic_cfg_get(sa->nic);
sa->tso = encp->enc_fw_assisted_tso_v2_enabled;
if (!sa->tso)
sfc_warn(sa, "TSO support isn't available on this adapter");
sfc_log_init(sa, "estimate resource limits");
rc = sfc_estimate_resource_limits(sa);
if (rc != 0)
goto fail_estimate_rsrc_limits;
sa->txq_max_entries = encp->enc_txq_max_ndescs;
SFC_ASSERT(rte_is_power_of_2(sa->txq_max_entries));
rc = sfc_intr_attach(sa);
if (rc != 0)
goto fail_intr_attach;
efx_phy_adv_cap_get(sa->nic, EFX_PHY_CAP_PERM,
&sa->port.phy_adv_cap_mask);
rc = sfc_set_rss_defaults(sa);
if (rc != 0)
goto fail_set_rss_defaults;
rc = sfc_filter_attach(sa);
if (rc != 0)
goto fail_filter_attach;
sfc_log_init(sa, "fini nic");
efx_nic_fini(enp);
sa->state = SFC_ADAPTER_INITIALIZED;
sfc_log_init(sa, "done");
return 0;
fail_filter_attach:
fail_set_rss_defaults:
sfc_intr_detach(sa);
fail_intr_attach:
efx_nic_fini(sa->nic);
fail_estimate_rsrc_limits:
fail_nic_reset:
sfc_log_init(sa, "unprobe nic");
efx_nic_unprobe(enp);
fail_nic_probe:
sfc_mcdi_fini(sa);
fail_mcdi_init:
sfc_log_init(sa, "destroy nic");
sa->nic = NULL;
efx_nic_destroy(enp);
fail_nic_create:
fail_family:
sfc_mem_bar_fini(sa);
fail_mem_bar_init:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_detach(struct sfc_adapter *sa)
{
efx_nic_t *enp = sa->nic;
sfc_log_init(sa, "entry");
SFC_ASSERT(sfc_adapter_is_locked(sa));
sfc_filter_detach(sa);
sfc_intr_detach(sa);
sfc_log_init(sa, "unprobe nic");
efx_nic_unprobe(enp);
sfc_mcdi_fini(sa);
sfc_log_init(sa, "destroy nic");
sa->nic = NULL;
efx_nic_destroy(enp);
sfc_mem_bar_fini(sa);
sa->state = SFC_ADAPTER_UNINITIALIZED;
}