numam-dpdk/drivers/net/ice/ice_rxtx_vec_avx2.c
Olivier Matz daa02b5cdd mbuf: add namespace to offload flags
Fix the mbuf offload flags namespace by adding an RTE_ prefix to the
name. The old flags remain usable, but a deprecation warning is issued
at compilation.

Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Somnath Kotur <somnath.kotur@broadcom.com>
2021-10-24 13:37:43 +02:00

994 lines
32 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation
*/
#include "ice_rxtx_vec_common.h"
#include "ice_rxtx_common_avx.h"
#include <rte_vect.h>
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
static __rte_always_inline void
ice_rxq_rearm(struct ice_rx_queue *rxq)
{
return ice_rxq_rearm_common(rxq, false);
}
static __rte_always_inline __m256i
ice_flex_rxd_to_fdir_flags_vec_avx2(const __m256i fdir_id0_7)
{
#define FDID_MIS_MAGIC 0xFFFFFFFF
RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR != (1 << 2));
RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
const __m256i pkt_fdir_bit = _mm256_set1_epi32(RTE_MBUF_F_RX_FDIR |
RTE_MBUF_F_RX_FDIR_ID);
/* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
__m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
fdir_mis_mask);
/* this XOR op results to bit-reverse the fdir_mask */
fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
return fdir_flags;
}
static __rte_always_inline uint16_t
_ice_recv_raw_pkts_vec_avx2(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, uint8_t *split_packet,
bool offload)
{
#define ICE_DESCS_PER_LOOP_AVX 8
const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
0, rxq->mbuf_initializer);
struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
const int avx_aligned = ((rxq->rx_tail & 1) == 0);
rte_prefetch0(rxdp);
/* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
ice_rxq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.status_error0 &
rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
return 0;
/* constants used in processing loop */
const __m256i crc_adjust =
_mm256_set_epi16
(/* first descriptor */
0, 0, 0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
0, /* ignore high-16bits of pkt_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, 0, /* ignore pkt_type field */
/* second descriptor */
0, 0, 0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
0, /* ignore high-16bits of pkt_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, 0 /* ignore pkt_type field */
);
/* 8 packets DD mask, LSB in each 32-bit value */
const __m256i dd_check = _mm256_set1_epi32(1);
/* 8 packets EOP mask, second-LSB in each 32-bit value */
const __m256i eop_check = _mm256_slli_epi32(dd_check,
ICE_RX_DESC_STATUS_EOF_S);
/* mask to shuffle from desc. to mbuf (2 descriptors)*/
const __m256i shuf_msk =
_mm256_set_epi8
(/* first descriptor */
0xFF, 0xFF,
0xFF, 0xFF, /* rss hash parsed separately */
11, 10, /* octet 10~11, 16 bits vlan_macip */
5, 4, /* octet 4~5, 16 bits data_len */
0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */
5, 4, /* octet 4~5, 16 bits pkt_len */
0xFF, 0xFF, /* pkt_type set as unknown */
0xFF, 0xFF, /*pkt_type set as unknown */
/* second descriptor */
0xFF, 0xFF,
0xFF, 0xFF, /* rss hash parsed separately */
11, 10, /* octet 10~11, 16 bits vlan_macip */
5, 4, /* octet 4~5, 16 bits data_len */
0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */
5, 4, /* octet 4~5, 16 bits pkt_len */
0xFF, 0xFF, /* pkt_type set as unknown */
0xFF, 0xFF /*pkt_type set as unknown */
);
/**
* compile-time check the above crc and shuffle layout is correct.
* NOTE: the first field (lowest address) is given last in set_epi
* calls above.
*/
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
/* Status/Error flag masks */
/**
* mask everything except Checksum Reports, RSS indication
* and VLAN indication.
* bit6:4 for IP/L4 checksum errors.
* bit12 is for RSS indication.
* bit13 is for VLAN indication.
*/
const __m256i flags_mask =
_mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13));
/**
* data to be shuffled by the result of the flags mask shifted by 4
* bits. This gives use the l3_l4 flags.
*/
const __m256i l3_l4_flags_shuf =
_mm256_set_epi8((RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
/**
* second 128-bits
* shift right 20 bits to use the low two bits to indicate
* outer checksum status
* shift right 1 bit to make sure it not exceed 255
*/
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1);
const __m256i cksum_mask =
_mm256_set1_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK |
RTE_MBUF_F_RX_L4_CKSUM_MASK |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK);
/**
* data to be shuffled by result of flag mask, shifted down 12.
* If RSS(bit12)/VLAN(bit13) are set,
* shuffle moves appropriate flags in place.
*/
const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
RTE_MBUF_F_RX_RSS_HASH, 0,
/* end up 128-bits */
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
RTE_MBUF_F_RX_RSS_HASH, 0);
RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
uint16_t i, received;
for (i = 0, received = 0; i < nb_pkts;
i += ICE_DESCS_PER_LOOP_AVX,
rxdp += ICE_DESCS_PER_LOOP_AVX) {
/* step 1, copy over 8 mbuf pointers to rx_pkts array */
_mm256_storeu_si256((void *)&rx_pkts[i],
_mm256_loadu_si256((void *)&sw_ring[i]));
#ifdef RTE_ARCH_X86_64
_mm256_storeu_si256
((void *)&rx_pkts[i + 4],
_mm256_loadu_si256((void *)&sw_ring[i + 4]));
#endif
__m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
#ifdef RTE_LIBRTE_ICE_16BYTE_RX_DESC
/* for AVX we need alignment otherwise loads are not atomic */
if (avx_aligned) {
/* load in descriptors, 2 at a time, in reverse order */
raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
rte_compiler_barrier();
raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
rte_compiler_barrier();
raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
rte_compiler_barrier();
raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
} else
#endif
{
const __m128i raw_desc7 =
_mm_load_si128((void *)(rxdp + 7));
rte_compiler_barrier();
const __m128i raw_desc6 =
_mm_load_si128((void *)(rxdp + 6));
rte_compiler_barrier();
const __m128i raw_desc5 =
_mm_load_si128((void *)(rxdp + 5));
rte_compiler_barrier();
const __m128i raw_desc4 =
_mm_load_si128((void *)(rxdp + 4));
rte_compiler_barrier();
const __m128i raw_desc3 =
_mm_load_si128((void *)(rxdp + 3));
rte_compiler_barrier();
const __m128i raw_desc2 =
_mm_load_si128((void *)(rxdp + 2));
rte_compiler_barrier();
const __m128i raw_desc1 =
_mm_load_si128((void *)(rxdp + 1));
rte_compiler_barrier();
const __m128i raw_desc0 =
_mm_load_si128((void *)(rxdp + 0));
raw_desc6_7 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc6),
raw_desc7, 1);
raw_desc4_5 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc4),
raw_desc5, 1);
raw_desc2_3 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc2),
raw_desc3, 1);
raw_desc0_1 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc0),
raw_desc1, 1);
}
if (split_packet) {
int j;
for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
rte_mbuf_prefetch_part2(rx_pkts[i + j]);
}
/**
* convert descriptors 4-7 into mbufs, re-arrange fields.
* Then write into the mbuf.
*/
__m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk);
__m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk);
mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
/**
* to get packet types, ptype is located in bit16-25
* of each 128bits
*/
const __m256i ptype_mask =
_mm256_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
const __m256i ptypes6_7 =
_mm256_and_si256(raw_desc6_7, ptype_mask);
const __m256i ptypes4_5 =
_mm256_and_si256(raw_desc4_5, ptype_mask);
const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
/* merge the status bits into one register */
const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7,
raw_desc4_5);
/**
* convert descriptors 0-3 into mbufs, re-arrange fields.
* Then write into the mbuf.
*/
__m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk);
__m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk);
mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
/**
* to get packet types, ptype is located in bit16-25
* of each 128bits
*/
const __m256i ptypes2_3 =
_mm256_and_si256(raw_desc2_3, ptype_mask);
const __m256i ptypes0_1 =
_mm256_and_si256(raw_desc0_1, ptype_mask);
const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
/* merge the status bits into one register */
const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3,
raw_desc0_1);
/**
* take the two sets of status bits and merge to one
* After merge, the packets status flags are in the
* order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
*/
__m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
status0_3);
__m256i mbuf_flags = _mm256_set1_epi32(0);
if (offload) {
/* now do flag manipulation */
/* get only flag/error bits we want */
const __m256i flag_bits =
_mm256_and_si256(status0_7, flags_mask);
/**
* l3_l4_error flags, shuffle, then shift to correct adjustment
* of flags in flags_shuf, and finally mask out extra bits
*/
__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
_mm256_srli_epi32(flag_bits, 4));
l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
__m256i l4_outer_mask = _mm256_set1_epi32(0x6);
__m256i l4_outer_flags =
_mm256_and_si256(l3_l4_flags, l4_outer_mask);
l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20);
__m256i l3_l4_mask = _mm256_set1_epi32(~0x6);
l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask);
l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags);
l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
/* set rss and vlan flags */
const __m256i rss_vlan_flag_bits =
_mm256_srli_epi32(flag_bits, 12);
const __m256i rss_vlan_flags =
_mm256_shuffle_epi8(rss_vlan_flags_shuf,
rss_vlan_flag_bits);
/* merge flags */
mbuf_flags = _mm256_or_si256(l3_l4_flags,
rss_vlan_flags);
}
if (rxq->fdir_enabled) {
const __m256i fdir_id4_7 =
_mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5);
const __m256i fdir_id0_3 =
_mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1);
const __m256i fdir_id0_7 =
_mm256_unpackhi_epi64(fdir_id4_7, fdir_id0_3);
const __m256i fdir_flags =
ice_flex_rxd_to_fdir_flags_vec_avx2(fdir_id0_7);
/* merge with fdir_flags */
mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_flags);
/* write to mbuf: have to use scalar store here */
rx_pkts[i + 0]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 3);
rx_pkts[i + 1]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 7);
rx_pkts[i + 2]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 2);
rx_pkts[i + 3]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 6);
rx_pkts[i + 4]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 1);
rx_pkts[i + 5]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 5);
rx_pkts[i + 6]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 0);
rx_pkts[i + 7]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 4);
} /* if() on fdir_enabled */
if (offload) {
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
/**
* needs to load 2nd 16B of each desc for RSS hash parsing,
* will cause performance drop to get into this context.
*/
if (rxq->vsi->adapter->pf.dev_data->dev_conf.rxmode.offloads &
RTE_ETH_RX_OFFLOAD_RSS_HASH) {
/* load bottom half of every 32B desc */
const __m128i raw_desc_bh7 =
_mm_load_si128
((void *)(&rxdp[7].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh6 =
_mm_load_si128
((void *)(&rxdp[6].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh5 =
_mm_load_si128
((void *)(&rxdp[5].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh4 =
_mm_load_si128
((void *)(&rxdp[4].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh3 =
_mm_load_si128
((void *)(&rxdp[3].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh2 =
_mm_load_si128
((void *)(&rxdp[2].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh1 =
_mm_load_si128
((void *)(&rxdp[1].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh0 =
_mm_load_si128
((void *)(&rxdp[0].wb.status_error1));
__m256i raw_desc_bh6_7 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc_bh6),
raw_desc_bh7, 1);
__m256i raw_desc_bh4_5 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc_bh4),
raw_desc_bh5, 1);
__m256i raw_desc_bh2_3 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc_bh2),
raw_desc_bh3, 1);
__m256i raw_desc_bh0_1 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc_bh0),
raw_desc_bh1, 1);
/**
* to shift the 32b RSS hash value to the
* highest 32b of each 128b before mask
*/
__m256i rss_hash6_7 =
_mm256_slli_epi64(raw_desc_bh6_7, 32);
__m256i rss_hash4_5 =
_mm256_slli_epi64(raw_desc_bh4_5, 32);
__m256i rss_hash2_3 =
_mm256_slli_epi64(raw_desc_bh2_3, 32);
__m256i rss_hash0_1 =
_mm256_slli_epi64(raw_desc_bh0_1, 32);
__m256i rss_hash_msk =
_mm256_set_epi32(0xFFFFFFFF, 0, 0, 0,
0xFFFFFFFF, 0, 0, 0);
rss_hash6_7 = _mm256_and_si256
(rss_hash6_7, rss_hash_msk);
rss_hash4_5 = _mm256_and_si256
(rss_hash4_5, rss_hash_msk);
rss_hash2_3 = _mm256_and_si256
(rss_hash2_3, rss_hash_msk);
rss_hash0_1 = _mm256_and_si256
(rss_hash0_1, rss_hash_msk);
mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7);
mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5);
mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3);
mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1);
} /* if() on RSS hash parsing */
#endif
}
/**
* At this point, we have the 8 sets of flags in the low 16-bits
* of each 32-bit value in vlan0.
* We want to extract these, and merge them with the mbuf init
* data so we can do a single write to the mbuf to set the flags
* and all the other initialization fields. Extracting the
* appropriate flags means that we have to do a shift and blend
* for each mbuf before we do the write. However, we can also
* add in the previously computed rx_descriptor fields to
* make a single 256-bit write per mbuf
*/
/* check the structure matches expectations */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_mbuf, rearm_data) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
RTE_ALIGN(offsetof(struct rte_mbuf,
rearm_data),
16));
/* build up data and do writes */
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
rearm6, rearm7;
rearm6 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 8),
0x04);
rearm4 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 4),
0x04);
rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
rearm0 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(mbuf_flags, 4),
0x04);
/* permute to add in the rx_descriptor e.g. rss fields */
rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
/* write to mbuf */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
rearm6);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
rearm4);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
rearm2);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
rearm0);
/* repeat for the odd mbufs */
const __m256i odd_flags =
_mm256_castsi128_si256
(_mm256_extracti128_si256(mbuf_flags, 1));
rearm7 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 8),
0x04);
rearm5 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 4),
0x04);
rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
rearm1 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(odd_flags, 4),
0x04);
/* since odd mbufs are already in hi 128-bits use blend */
rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
/* again write to mbufs */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
rearm7);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
rearm5);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
rearm3);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
rearm1);
/* extract and record EOP bit */
if (split_packet) {
const __m128i eop_mask =
_mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
const __m256i eop_bits256 = _mm256_and_si256(status0_7,
eop_check);
/* pack status bits into a single 128-bit register */
const __m128i eop_bits =
_mm_packus_epi32
(_mm256_castsi256_si128(eop_bits256),
_mm256_extractf128_si256(eop_bits256,
1));
/**
* flip bits, and mask out the EOP bit, which is now
* a split-packet bit i.e. !EOP, rather than EOP one.
*/
__m128i split_bits = _mm_andnot_si128(eop_bits,
eop_mask);
/**
* eop bits are out of order, so we need to shuffle them
* back into order again. In doing so, only use low 8
* bits, which acts like another pack instruction
* The original order is (hi->lo): 1,3,5,7,0,2,4,6
* [Since we use epi8, the 16-bit positions are
* multiplied by 2 in the eop_shuffle value.]
*/
__m128i eop_shuffle =
_mm_set_epi8(/* zero hi 64b */
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
/* move values to lo 64b */
8, 0, 10, 2,
12, 4, 14, 6);
split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
*(uint64_t *)split_packet =
_mm_cvtsi128_si64(split_bits);
split_packet += ICE_DESCS_PER_LOOP_AVX;
}
/* perform dd_check */
status0_7 = _mm256_and_si256(status0_7, dd_check);
status0_7 = _mm256_packs_epi32(status0_7,
_mm256_setzero_si256());
uint64_t burst = __builtin_popcountll
(_mm_cvtsi128_si64
(_mm256_extracti128_si256
(status0_7, 1)));
burst += __builtin_popcountll
(_mm_cvtsi128_si64
(_mm256_castsi256_si128(status0_7)));
received += burst;
if (burst != ICE_DESCS_PER_LOOP_AVX)
break;
}
/* update tail pointers */
rxq->rx_tail += received;
rxq->rx_tail &= (rxq->nb_rx_desc - 1);
if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
rxq->rx_tail--;
received--;
}
rxq->rxrearm_nb += received;
return received;
}
/**
* Notice:
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
*/
uint16_t
ice_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _ice_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts,
nb_pkts, NULL, false);
}
uint16_t
ice_recv_pkts_vec_avx2_offload(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _ice_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts,
nb_pkts, NULL, true);
}
/**
* vPMD receive routine that reassembles single burst of 32 scattered packets
* Notice:
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
*/
static __rte_always_inline uint16_t
ice_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, bool offload)
{
struct ice_rx_queue *rxq = rx_queue;
uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
split_flags, offload);
if (nb_bufs == 0)
return 0;
/* happy day case, full burst + no packets to be joined */
const uint64_t *split_fl64 = (uint64_t *)split_flags;
if (!rxq->pkt_first_seg &&
split_fl64[0] == 0 && split_fl64[1] == 0 &&
split_fl64[2] == 0 && split_fl64[3] == 0)
return nb_bufs;
/* reassemble any packets that need reassembly*/
unsigned int i = 0;
if (!rxq->pkt_first_seg) {
/* find the first split flag, and only reassemble then*/
while (i < nb_bufs && !split_flags[i])
i++;
if (i == nb_bufs)
return nb_bufs;
rxq->pkt_first_seg = rx_pkts[i];
}
return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
&split_flags[i]);
}
/**
* vPMD receive routine that reassembles scattered packets.
* Main receive routine that can handle arbitrary burst sizes
* Notice:
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
*/
static __rte_always_inline uint16_t
ice_recv_scattered_pkts_vec_avx2_common(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts,
bool offload)
{
uint16_t retval = 0;
while (nb_pkts > ICE_VPMD_RX_BURST) {
uint16_t burst = ice_recv_scattered_burst_vec_avx2(rx_queue,
rx_pkts + retval, ICE_VPMD_RX_BURST, offload);
retval += burst;
nb_pkts -= burst;
if (burst < ICE_VPMD_RX_BURST)
return retval;
}
return retval + ice_recv_scattered_burst_vec_avx2(rx_queue,
rx_pkts + retval, nb_pkts, offload);
}
uint16_t
ice_recv_scattered_pkts_vec_avx2(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return ice_recv_scattered_pkts_vec_avx2_common(rx_queue,
rx_pkts,
nb_pkts,
false);
}
uint16_t
ice_recv_scattered_pkts_vec_avx2_offload(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return ice_recv_scattered_pkts_vec_avx2_common(rx_queue,
rx_pkts,
nb_pkts,
true);
}
static __rte_always_inline void
ice_vtx1(volatile struct ice_tx_desc *txdp,
struct rte_mbuf *pkt, uint64_t flags, bool offload)
{
uint64_t high_qw =
(ICE_TX_DESC_DTYPE_DATA |
((uint64_t)flags << ICE_TXD_QW1_CMD_S) |
((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
if (offload)
ice_txd_enable_offload(pkt, &high_qw);
__m128i descriptor = _mm_set_epi64x(high_qw,
pkt->buf_iova + pkt->data_off);
_mm_store_si128((__m128i *)txdp, descriptor);
}
static __rte_always_inline void
ice_vtx(volatile struct ice_tx_desc *txdp,
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags, bool offload)
{
const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
((uint64_t)flags << ICE_TXD_QW1_CMD_S));
/* if unaligned on 32-bit boundary, do one to align */
if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
ice_vtx1(txdp, *pkt, flags, offload);
nb_pkts--, txdp++, pkt++;
}
/* do two at a time while possible, in bursts */
for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
uint64_t hi_qw3 =
hi_qw_tmpl |
((uint64_t)pkt[3]->data_len <<
ICE_TXD_QW1_TX_BUF_SZ_S);
if (offload)
ice_txd_enable_offload(pkt[3], &hi_qw3);
uint64_t hi_qw2 =
hi_qw_tmpl |
((uint64_t)pkt[2]->data_len <<
ICE_TXD_QW1_TX_BUF_SZ_S);
if (offload)
ice_txd_enable_offload(pkt[2], &hi_qw2);
uint64_t hi_qw1 =
hi_qw_tmpl |
((uint64_t)pkt[1]->data_len <<
ICE_TXD_QW1_TX_BUF_SZ_S);
if (offload)
ice_txd_enable_offload(pkt[1], &hi_qw1);
uint64_t hi_qw0 =
hi_qw_tmpl |
((uint64_t)pkt[0]->data_len <<
ICE_TXD_QW1_TX_BUF_SZ_S);
if (offload)
ice_txd_enable_offload(pkt[0], &hi_qw0);
__m256i desc2_3 =
_mm256_set_epi64x
(hi_qw3,
pkt[3]->buf_iova + pkt[3]->data_off,
hi_qw2,
pkt[2]->buf_iova + pkt[2]->data_off);
__m256i desc0_1 =
_mm256_set_epi64x
(hi_qw1,
pkt[1]->buf_iova + pkt[1]->data_off,
hi_qw0,
pkt[0]->buf_iova + pkt[0]->data_off);
_mm256_store_si256((void *)(txdp + 2), desc2_3);
_mm256_store_si256((void *)txdp, desc0_1);
}
/* do any last ones */
while (nb_pkts) {
ice_vtx1(txdp, *pkt, flags, offload);
txdp++, pkt++, nb_pkts--;
}
}
static __rte_always_inline uint16_t
ice_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts, bool offload)
{
struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
volatile struct ice_tx_desc *txdp;
struct ice_tx_entry *txep;
uint16_t n, nb_commit, tx_id;
uint64_t flags = ICE_TD_CMD;
uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
/* cross rx_thresh boundary is not allowed */
nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
if (txq->nb_tx_free < txq->tx_free_thresh)
ice_tx_free_bufs_vec(txq);
nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
if (unlikely(nb_pkts == 0))
return 0;
tx_id = txq->tx_tail;
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
n = (uint16_t)(txq->nb_tx_desc - tx_id);
if (nb_commit >= n) {
ice_tx_backlog_entry(txep, tx_pkts, n);
ice_vtx(txdp, tx_pkts, n - 1, flags, offload);
tx_pkts += (n - 1);
txdp += (n - 1);
ice_vtx1(txdp, *tx_pkts++, rs, offload);
nb_commit = (uint16_t)(nb_commit - n);
tx_id = 0;
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
/* avoid reach the end of ring */
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
}
ice_tx_backlog_entry(txep, tx_pkts, nb_commit);
ice_vtx(txdp, tx_pkts, nb_commit, flags, offload);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->tx_next_rs) {
txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
ICE_TXD_QW1_CMD_S);
txq->tx_next_rs =
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
}
txq->tx_tail = tx_id;
ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
return nb_pkts;
}
static __rte_always_inline uint16_t
ice_xmit_pkts_vec_avx2_common(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts, bool offload)
{
uint16_t nb_tx = 0;
struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
while (nb_pkts) {
uint16_t ret, num;
num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
ret = ice_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
num, offload);
nb_tx += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_tx;
}
uint16_t
ice_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
return ice_xmit_pkts_vec_avx2_common(tx_queue, tx_pkts, nb_pkts, false);
}
uint16_t
ice_xmit_pkts_vec_avx2_offload(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
return ice_xmit_pkts_vec_avx2_common(tx_queue, tx_pkts, nb_pkts, true);
}