numam-dpdk/app/test-pmd/cmdline_flow.c
Gaetan Rivet 7d89b26103 app/testpmd: use ethdev iterator to list devices
This commit replaces redundant code with public ethdev layer calls.

Signed-off-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2017-04-05 22:47:57 +02:00

2762 lines
67 KiB
C

/*-
* BSD LICENSE
*
* Copyright 2016 6WIND S.A.
* Copyright 2016 Mellanox.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of 6WIND S.A. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <inttypes.h>
#include <errno.h>
#include <ctype.h>
#include <string.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <rte_common.h>
#include <rte_ethdev.h>
#include <rte_byteorder.h>
#include <cmdline_parse.h>
#include <cmdline_parse_etheraddr.h>
#include <rte_flow.h>
#include "testpmd.h"
/** Parser token indices. */
enum index {
/* Special tokens. */
ZERO = 0,
END,
/* Common tokens. */
INTEGER,
UNSIGNED,
PREFIX,
BOOLEAN,
STRING,
MAC_ADDR,
IPV4_ADDR,
IPV6_ADDR,
RULE_ID,
PORT_ID,
GROUP_ID,
PRIORITY_LEVEL,
/* Top-level command. */
FLOW,
/* Sub-level commands. */
VALIDATE,
CREATE,
DESTROY,
FLUSH,
QUERY,
LIST,
/* Destroy arguments. */
DESTROY_RULE,
/* Query arguments. */
QUERY_ACTION,
/* List arguments. */
LIST_GROUP,
/* Validate/create arguments. */
GROUP,
PRIORITY,
INGRESS,
EGRESS,
/* Validate/create pattern. */
PATTERN,
ITEM_PARAM_IS,
ITEM_PARAM_SPEC,
ITEM_PARAM_LAST,
ITEM_PARAM_MASK,
ITEM_PARAM_PREFIX,
ITEM_NEXT,
ITEM_END,
ITEM_VOID,
ITEM_INVERT,
ITEM_ANY,
ITEM_ANY_NUM,
ITEM_PF,
ITEM_VF,
ITEM_VF_ID,
ITEM_PORT,
ITEM_PORT_INDEX,
ITEM_RAW,
ITEM_RAW_RELATIVE,
ITEM_RAW_SEARCH,
ITEM_RAW_OFFSET,
ITEM_RAW_LIMIT,
ITEM_RAW_PATTERN,
ITEM_ETH,
ITEM_ETH_DST,
ITEM_ETH_SRC,
ITEM_ETH_TYPE,
ITEM_VLAN,
ITEM_VLAN_TPID,
ITEM_VLAN_TCI,
ITEM_VLAN_PCP,
ITEM_VLAN_DEI,
ITEM_VLAN_VID,
ITEM_IPV4,
ITEM_IPV4_TOS,
ITEM_IPV4_TTL,
ITEM_IPV4_PROTO,
ITEM_IPV4_SRC,
ITEM_IPV4_DST,
ITEM_IPV6,
ITEM_IPV6_TC,
ITEM_IPV6_FLOW,
ITEM_IPV6_PROTO,
ITEM_IPV6_HOP,
ITEM_IPV6_SRC,
ITEM_IPV6_DST,
ITEM_ICMP,
ITEM_ICMP_TYPE,
ITEM_ICMP_CODE,
ITEM_UDP,
ITEM_UDP_SRC,
ITEM_UDP_DST,
ITEM_TCP,
ITEM_TCP_SRC,
ITEM_TCP_DST,
ITEM_SCTP,
ITEM_SCTP_SRC,
ITEM_SCTP_DST,
ITEM_SCTP_TAG,
ITEM_SCTP_CKSUM,
ITEM_VXLAN,
ITEM_VXLAN_VNI,
ITEM_MPLS,
ITEM_MPLS_LABEL,
ITEM_GRE,
ITEM_GRE_PROTO,
/* Validate/create actions. */
ACTIONS,
ACTION_NEXT,
ACTION_END,
ACTION_VOID,
ACTION_PASSTHRU,
ACTION_MARK,
ACTION_MARK_ID,
ACTION_FLAG,
ACTION_QUEUE,
ACTION_QUEUE_INDEX,
ACTION_DROP,
ACTION_COUNT,
ACTION_DUP,
ACTION_DUP_INDEX,
ACTION_RSS,
ACTION_RSS_QUEUES,
ACTION_RSS_QUEUE,
ACTION_PF,
ACTION_VF,
ACTION_VF_ORIGINAL,
ACTION_VF_ID,
};
/** Size of pattern[] field in struct rte_flow_item_raw. */
#define ITEM_RAW_PATTERN_SIZE 36
/** Storage size for struct rte_flow_item_raw including pattern. */
#define ITEM_RAW_SIZE \
(offsetof(struct rte_flow_item_raw, pattern) + ITEM_RAW_PATTERN_SIZE)
/** Number of queue[] entries in struct rte_flow_action_rss. */
#define ACTION_RSS_NUM 32
/** Storage size for struct rte_flow_action_rss including queues. */
#define ACTION_RSS_SIZE \
(offsetof(struct rte_flow_action_rss, queue) + \
sizeof(*((struct rte_flow_action_rss *)0)->queue) * ACTION_RSS_NUM)
/** Maximum number of subsequent tokens and arguments on the stack. */
#define CTX_STACK_SIZE 16
/** Parser context. */
struct context {
/** Stack of subsequent token lists to process. */
const enum index *next[CTX_STACK_SIZE];
/** Arguments for stacked tokens. */
const void *args[CTX_STACK_SIZE];
enum index curr; /**< Current token index. */
enum index prev; /**< Index of the last token seen. */
int next_num; /**< Number of entries in next[]. */
int args_num; /**< Number of entries in args[]. */
uint32_t reparse:1; /**< Start over from the beginning. */
uint32_t eol:1; /**< EOL has been detected. */
uint32_t last:1; /**< No more arguments. */
uint16_t port; /**< Current port ID (for completions). */
uint32_t objdata; /**< Object-specific data. */
void *object; /**< Address of current object for relative offsets. */
void *objmask; /**< Object a full mask must be written to. */
};
/** Token argument. */
struct arg {
uint32_t hton:1; /**< Use network byte ordering. */
uint32_t sign:1; /**< Value is signed. */
uint32_t offset; /**< Relative offset from ctx->object. */
uint32_t size; /**< Field size. */
const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
};
/** Parser token definition. */
struct token {
/** Type displayed during completion (defaults to "TOKEN"). */
const char *type;
/** Help displayed during completion (defaults to token name). */
const char *help;
/** Private data used by parser functions. */
const void *priv;
/**
* Lists of subsequent tokens to push on the stack. Each call to the
* parser consumes the last entry of that stack.
*/
const enum index *const *next;
/** Arguments stack for subsequent tokens that need them. */
const struct arg *const *args;
/**
* Token-processing callback, returns -1 in case of error, the
* length of the matched string otherwise. If NULL, attempts to
* match the token name.
*
* If buf is not NULL, the result should be stored in it according
* to context. An error is returned if not large enough.
*/
int (*call)(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size);
/**
* Callback that provides possible values for this token, used for
* completion. Returns -1 in case of error, the number of possible
* values otherwise. If NULL, the token name is used.
*
* If buf is not NULL, entry index ent is written to buf and the
* full length of the entry is returned (same behavior as
* snprintf()).
*/
int (*comp)(struct context *ctx, const struct token *token,
unsigned int ent, char *buf, unsigned int size);
/** Mandatory token name, no default value. */
const char *name;
};
/** Static initializer for the next field. */
#define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
/** Static initializer for a NEXT() entry. */
#define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
/** Static initializer for the args field. */
#define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
/** Static initializer for ARGS() to target a field. */
#define ARGS_ENTRY(s, f) \
(&(const struct arg){ \
.offset = offsetof(s, f), \
.size = sizeof(((s *)0)->f), \
})
/** Static initializer for ARGS() to target a bit-field. */
#define ARGS_ENTRY_BF(s, f, b) \
(&(const struct arg){ \
.size = sizeof(s), \
.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
})
/** Static initializer for ARGS() to target an arbitrary bit-mask. */
#define ARGS_ENTRY_MASK(s, f, m) \
(&(const struct arg){ \
.offset = offsetof(s, f), \
.size = sizeof(((s *)0)->f), \
.mask = (const void *)(m), \
})
/** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
#define ARGS_ENTRY_MASK_HTON(s, f, m) \
(&(const struct arg){ \
.hton = 1, \
.offset = offsetof(s, f), \
.size = sizeof(((s *)0)->f), \
.mask = (const void *)(m), \
})
/** Static initializer for ARGS() to target a pointer. */
#define ARGS_ENTRY_PTR(s, f) \
(&(const struct arg){ \
.size = sizeof(*((s *)0)->f), \
})
/** Static initializer for ARGS() with arbitrary size. */
#define ARGS_ENTRY_USZ(s, f, sz) \
(&(const struct arg){ \
.offset = offsetof(s, f), \
.size = (sz), \
})
/** Same as ARGS_ENTRY() using network byte ordering. */
#define ARGS_ENTRY_HTON(s, f) \
(&(const struct arg){ \
.hton = 1, \
.offset = offsetof(s, f), \
.size = sizeof(((s *)0)->f), \
})
/** Parser output buffer layout expected by cmd_flow_parsed(). */
struct buffer {
enum index command; /**< Flow command. */
uint16_t port; /**< Affected port ID. */
union {
struct {
struct rte_flow_attr attr;
struct rte_flow_item *pattern;
struct rte_flow_action *actions;
uint32_t pattern_n;
uint32_t actions_n;
uint8_t *data;
} vc; /**< Validate/create arguments. */
struct {
uint32_t *rule;
uint32_t rule_n;
} destroy; /**< Destroy arguments. */
struct {
uint32_t rule;
enum rte_flow_action_type action;
} query; /**< Query arguments. */
struct {
uint32_t *group;
uint32_t group_n;
} list; /**< List arguments. */
} args; /**< Command arguments. */
};
/** Private data for pattern items. */
struct parse_item_priv {
enum rte_flow_item_type type; /**< Item type. */
uint32_t size; /**< Size of item specification structure. */
};
#define PRIV_ITEM(t, s) \
(&(const struct parse_item_priv){ \
.type = RTE_FLOW_ITEM_TYPE_ ## t, \
.size = s, \
})
/** Private data for actions. */
struct parse_action_priv {
enum rte_flow_action_type type; /**< Action type. */
uint32_t size; /**< Size of action configuration structure. */
};
#define PRIV_ACTION(t, s) \
(&(const struct parse_action_priv){ \
.type = RTE_FLOW_ACTION_TYPE_ ## t, \
.size = s, \
})
static const enum index next_vc_attr[] = {
GROUP,
PRIORITY,
INGRESS,
EGRESS,
PATTERN,
ZERO,
};
static const enum index next_destroy_attr[] = {
DESTROY_RULE,
END,
ZERO,
};
static const enum index next_list_attr[] = {
LIST_GROUP,
END,
ZERO,
};
static const enum index item_param[] = {
ITEM_PARAM_IS,
ITEM_PARAM_SPEC,
ITEM_PARAM_LAST,
ITEM_PARAM_MASK,
ITEM_PARAM_PREFIX,
ZERO,
};
static const enum index next_item[] = {
ITEM_END,
ITEM_VOID,
ITEM_INVERT,
ITEM_ANY,
ITEM_PF,
ITEM_VF,
ITEM_PORT,
ITEM_RAW,
ITEM_ETH,
ITEM_VLAN,
ITEM_IPV4,
ITEM_IPV6,
ITEM_ICMP,
ITEM_UDP,
ITEM_TCP,
ITEM_SCTP,
ITEM_VXLAN,
ITEM_MPLS,
ITEM_GRE,
ZERO,
};
static const enum index item_any[] = {
ITEM_ANY_NUM,
ITEM_NEXT,
ZERO,
};
static const enum index item_vf[] = {
ITEM_VF_ID,
ITEM_NEXT,
ZERO,
};
static const enum index item_port[] = {
ITEM_PORT_INDEX,
ITEM_NEXT,
ZERO,
};
static const enum index item_raw[] = {
ITEM_RAW_RELATIVE,
ITEM_RAW_SEARCH,
ITEM_RAW_OFFSET,
ITEM_RAW_LIMIT,
ITEM_RAW_PATTERN,
ITEM_NEXT,
ZERO,
};
static const enum index item_eth[] = {
ITEM_ETH_DST,
ITEM_ETH_SRC,
ITEM_ETH_TYPE,
ITEM_NEXT,
ZERO,
};
static const enum index item_vlan[] = {
ITEM_VLAN_TPID,
ITEM_VLAN_TCI,
ITEM_VLAN_PCP,
ITEM_VLAN_DEI,
ITEM_VLAN_VID,
ITEM_NEXT,
ZERO,
};
static const enum index item_ipv4[] = {
ITEM_IPV4_TOS,
ITEM_IPV4_TTL,
ITEM_IPV4_PROTO,
ITEM_IPV4_SRC,
ITEM_IPV4_DST,
ITEM_NEXT,
ZERO,
};
static const enum index item_ipv6[] = {
ITEM_IPV6_TC,
ITEM_IPV6_FLOW,
ITEM_IPV6_PROTO,
ITEM_IPV6_HOP,
ITEM_IPV6_SRC,
ITEM_IPV6_DST,
ITEM_NEXT,
ZERO,
};
static const enum index item_icmp[] = {
ITEM_ICMP_TYPE,
ITEM_ICMP_CODE,
ITEM_NEXT,
ZERO,
};
static const enum index item_udp[] = {
ITEM_UDP_SRC,
ITEM_UDP_DST,
ITEM_NEXT,
ZERO,
};
static const enum index item_tcp[] = {
ITEM_TCP_SRC,
ITEM_TCP_DST,
ITEM_NEXT,
ZERO,
};
static const enum index item_sctp[] = {
ITEM_SCTP_SRC,
ITEM_SCTP_DST,
ITEM_SCTP_TAG,
ITEM_SCTP_CKSUM,
ITEM_NEXT,
ZERO,
};
static const enum index item_vxlan[] = {
ITEM_VXLAN_VNI,
ITEM_NEXT,
ZERO,
};
static const enum index item_mpls[] = {
ITEM_MPLS_LABEL,
ITEM_NEXT,
ZERO,
};
static const enum index item_gre[] = {
ITEM_GRE_PROTO,
ITEM_NEXT,
ZERO,
};
static const enum index next_action[] = {
ACTION_END,
ACTION_VOID,
ACTION_PASSTHRU,
ACTION_MARK,
ACTION_FLAG,
ACTION_QUEUE,
ACTION_DROP,
ACTION_COUNT,
ACTION_DUP,
ACTION_RSS,
ACTION_PF,
ACTION_VF,
ZERO,
};
static const enum index action_mark[] = {
ACTION_MARK_ID,
ACTION_NEXT,
ZERO,
};
static const enum index action_queue[] = {
ACTION_QUEUE_INDEX,
ACTION_NEXT,
ZERO,
};
static const enum index action_dup[] = {
ACTION_DUP_INDEX,
ACTION_NEXT,
ZERO,
};
static const enum index action_rss[] = {
ACTION_RSS_QUEUES,
ACTION_NEXT,
ZERO,
};
static const enum index action_vf[] = {
ACTION_VF_ORIGINAL,
ACTION_VF_ID,
ACTION_NEXT,
ZERO,
};
static int parse_init(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_vc(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_vc_spec(struct context *, const struct token *,
const char *, unsigned int, void *, unsigned int);
static int parse_vc_conf(struct context *, const struct token *,
const char *, unsigned int, void *, unsigned int);
static int parse_vc_action_rss_queue(struct context *, const struct token *,
const char *, unsigned int, void *,
unsigned int);
static int parse_destroy(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_flush(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_query(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_action(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_list(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_int(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_prefix(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_boolean(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_string(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_mac_addr(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_ipv4_addr(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_ipv6_addr(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_port(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int comp_none(struct context *, const struct token *,
unsigned int, char *, unsigned int);
static int comp_boolean(struct context *, const struct token *,
unsigned int, char *, unsigned int);
static int comp_action(struct context *, const struct token *,
unsigned int, char *, unsigned int);
static int comp_port(struct context *, const struct token *,
unsigned int, char *, unsigned int);
static int comp_rule_id(struct context *, const struct token *,
unsigned int, char *, unsigned int);
static int comp_vc_action_rss_queue(struct context *, const struct token *,
unsigned int, char *, unsigned int);
/** Token definitions. */
static const struct token token_list[] = {
/* Special tokens. */
[ZERO] = {
.name = "ZERO",
.help = "null entry, abused as the entry point",
.next = NEXT(NEXT_ENTRY(FLOW)),
},
[END] = {
.name = "",
.type = "RETURN",
.help = "command may end here",
},
/* Common tokens. */
[INTEGER] = {
.name = "{int}",
.type = "INTEGER",
.help = "integer value",
.call = parse_int,
.comp = comp_none,
},
[UNSIGNED] = {
.name = "{unsigned}",
.type = "UNSIGNED",
.help = "unsigned integer value",
.call = parse_int,
.comp = comp_none,
},
[PREFIX] = {
.name = "{prefix}",
.type = "PREFIX",
.help = "prefix length for bit-mask",
.call = parse_prefix,
.comp = comp_none,
},
[BOOLEAN] = {
.name = "{boolean}",
.type = "BOOLEAN",
.help = "any boolean value",
.call = parse_boolean,
.comp = comp_boolean,
},
[STRING] = {
.name = "{string}",
.type = "STRING",
.help = "fixed string",
.call = parse_string,
.comp = comp_none,
},
[MAC_ADDR] = {
.name = "{MAC address}",
.type = "MAC-48",
.help = "standard MAC address notation",
.call = parse_mac_addr,
.comp = comp_none,
},
[IPV4_ADDR] = {
.name = "{IPv4 address}",
.type = "IPV4 ADDRESS",
.help = "standard IPv4 address notation",
.call = parse_ipv4_addr,
.comp = comp_none,
},
[IPV6_ADDR] = {
.name = "{IPv6 address}",
.type = "IPV6 ADDRESS",
.help = "standard IPv6 address notation",
.call = parse_ipv6_addr,
.comp = comp_none,
},
[RULE_ID] = {
.name = "{rule id}",
.type = "RULE ID",
.help = "rule identifier",
.call = parse_int,
.comp = comp_rule_id,
},
[PORT_ID] = {
.name = "{port_id}",
.type = "PORT ID",
.help = "port identifier",
.call = parse_port,
.comp = comp_port,
},
[GROUP_ID] = {
.name = "{group_id}",
.type = "GROUP ID",
.help = "group identifier",
.call = parse_int,
.comp = comp_none,
},
[PRIORITY_LEVEL] = {
.name = "{level}",
.type = "PRIORITY",
.help = "priority level",
.call = parse_int,
.comp = comp_none,
},
/* Top-level command. */
[FLOW] = {
.name = "flow",
.type = "{command} {port_id} [{arg} [...]]",
.help = "manage ingress/egress flow rules",
.next = NEXT(NEXT_ENTRY
(VALIDATE,
CREATE,
DESTROY,
FLUSH,
LIST,
QUERY)),
.call = parse_init,
},
/* Sub-level commands. */
[VALIDATE] = {
.name = "validate",
.help = "check whether a flow rule can be created",
.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
.args = ARGS(ARGS_ENTRY(struct buffer, port)),
.call = parse_vc,
},
[CREATE] = {
.name = "create",
.help = "create a flow rule",
.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
.args = ARGS(ARGS_ENTRY(struct buffer, port)),
.call = parse_vc,
},
[DESTROY] = {
.name = "destroy",
.help = "destroy specific flow rules",
.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
.args = ARGS(ARGS_ENTRY(struct buffer, port)),
.call = parse_destroy,
},
[FLUSH] = {
.name = "flush",
.help = "destroy all flow rules",
.next = NEXT(NEXT_ENTRY(PORT_ID)),
.args = ARGS(ARGS_ENTRY(struct buffer, port)),
.call = parse_flush,
},
[QUERY] = {
.name = "query",
.help = "query an existing flow rule",
.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
NEXT_ENTRY(RULE_ID),
NEXT_ENTRY(PORT_ID)),
.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action),
ARGS_ENTRY(struct buffer, args.query.rule),
ARGS_ENTRY(struct buffer, port)),
.call = parse_query,
},
[LIST] = {
.name = "list",
.help = "list existing flow rules",
.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
.args = ARGS(ARGS_ENTRY(struct buffer, port)),
.call = parse_list,
},
/* Destroy arguments. */
[DESTROY_RULE] = {
.name = "rule",
.help = "specify a rule identifier",
.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
.call = parse_destroy,
},
/* Query arguments. */
[QUERY_ACTION] = {
.name = "{action}",
.type = "ACTION",
.help = "action to query, must be part of the rule",
.call = parse_action,
.comp = comp_action,
},
/* List arguments. */
[LIST_GROUP] = {
.name = "group",
.help = "specify a group",
.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
.call = parse_list,
},
/* Validate/create attributes. */
[GROUP] = {
.name = "group",
.help = "specify a group",
.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
.call = parse_vc,
},
[PRIORITY] = {
.name = "priority",
.help = "specify a priority level",
.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
.call = parse_vc,
},
[INGRESS] = {
.name = "ingress",
.help = "affect rule to ingress",
.next = NEXT(next_vc_attr),
.call = parse_vc,
},
[EGRESS] = {
.name = "egress",
.help = "affect rule to egress",
.next = NEXT(next_vc_attr),
.call = parse_vc,
},
/* Validate/create pattern. */
[PATTERN] = {
.name = "pattern",
.help = "submit a list of pattern items",
.next = NEXT(next_item),
.call = parse_vc,
},
[ITEM_PARAM_IS] = {
.name = "is",
.help = "match value perfectly (with full bit-mask)",
.call = parse_vc_spec,
},
[ITEM_PARAM_SPEC] = {
.name = "spec",
.help = "match value according to configured bit-mask",
.call = parse_vc_spec,
},
[ITEM_PARAM_LAST] = {
.name = "last",
.help = "specify upper bound to establish a range",
.call = parse_vc_spec,
},
[ITEM_PARAM_MASK] = {
.name = "mask",
.help = "specify bit-mask with relevant bits set to one",
.call = parse_vc_spec,
},
[ITEM_PARAM_PREFIX] = {
.name = "prefix",
.help = "generate bit-mask from a prefix length",
.call = parse_vc_spec,
},
[ITEM_NEXT] = {
.name = "/",
.help = "specify next pattern item",
.next = NEXT(next_item),
},
[ITEM_END] = {
.name = "end",
.help = "end list of pattern items",
.priv = PRIV_ITEM(END, 0),
.next = NEXT(NEXT_ENTRY(ACTIONS)),
.call = parse_vc,
},
[ITEM_VOID] = {
.name = "void",
.help = "no-op pattern item",
.priv = PRIV_ITEM(VOID, 0),
.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
.call = parse_vc,
},
[ITEM_INVERT] = {
.name = "invert",
.help = "perform actions when pattern does not match",
.priv = PRIV_ITEM(INVERT, 0),
.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
.call = parse_vc,
},
[ITEM_ANY] = {
.name = "any",
.help = "match any protocol for the current layer",
.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
.next = NEXT(item_any),
.call = parse_vc,
},
[ITEM_ANY_NUM] = {
.name = "num",
.help = "number of layers covered",
.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
},
[ITEM_PF] = {
.name = "pf",
.help = "match packets addressed to the physical function",
.priv = PRIV_ITEM(PF, 0),
.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
.call = parse_vc,
},
[ITEM_VF] = {
.name = "vf",
.help = "match packets addressed to a virtual function ID",
.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
.next = NEXT(item_vf),
.call = parse_vc,
},
[ITEM_VF_ID] = {
.name = "id",
.help = "destination VF ID",
.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
},
[ITEM_PORT] = {
.name = "port",
.help = "device-specific physical port index to use",
.priv = PRIV_ITEM(PORT, sizeof(struct rte_flow_item_port)),
.next = NEXT(item_port),
.call = parse_vc,
},
[ITEM_PORT_INDEX] = {
.name = "index",
.help = "physical port index",
.next = NEXT(item_port, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port, index)),
},
[ITEM_RAW] = {
.name = "raw",
.help = "match an arbitrary byte string",
.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
.next = NEXT(item_raw),
.call = parse_vc,
},
[ITEM_RAW_RELATIVE] = {
.name = "relative",
.help = "look for pattern after the previous item",
.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
relative, 1)),
},
[ITEM_RAW_SEARCH] = {
.name = "search",
.help = "search pattern from offset (see also limit)",
.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
search, 1)),
},
[ITEM_RAW_OFFSET] = {
.name = "offset",
.help = "absolute or relative offset for pattern",
.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
},
[ITEM_RAW_LIMIT] = {
.name = "limit",
.help = "search area limit for start of pattern",
.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
},
[ITEM_RAW_PATTERN] = {
.name = "pattern",
.help = "byte string to look for",
.next = NEXT(item_raw,
NEXT_ENTRY(STRING),
NEXT_ENTRY(ITEM_PARAM_IS,
ITEM_PARAM_SPEC,
ITEM_PARAM_MASK)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, length),
ARGS_ENTRY_USZ(struct rte_flow_item_raw,
pattern,
ITEM_RAW_PATTERN_SIZE)),
},
[ITEM_ETH] = {
.name = "eth",
.help = "match Ethernet header",
.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
.next = NEXT(item_eth),
.call = parse_vc,
},
[ITEM_ETH_DST] = {
.name = "dst",
.help = "destination MAC",
.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_eth, dst)),
},
[ITEM_ETH_SRC] = {
.name = "src",
.help = "source MAC",
.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_eth, src)),
},
[ITEM_ETH_TYPE] = {
.name = "type",
.help = "EtherType",
.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
},
[ITEM_VLAN] = {
.name = "vlan",
.help = "match 802.1Q/ad VLAN tag",
.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
.next = NEXT(item_vlan),
.call = parse_vc,
},
[ITEM_VLAN_TPID] = {
.name = "tpid",
.help = "tag protocol identifier",
.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tpid)),
},
[ITEM_VLAN_TCI] = {
.name = "tci",
.help = "tag control information",
.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
},
[ITEM_VLAN_PCP] = {
.name = "pcp",
.help = "priority code point",
.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
tci, "\xe0\x00")),
},
[ITEM_VLAN_DEI] = {
.name = "dei",
.help = "drop eligible indicator",
.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
tci, "\x10\x00")),
},
[ITEM_VLAN_VID] = {
.name = "vid",
.help = "VLAN identifier",
.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
tci, "\x0f\xff")),
},
[ITEM_IPV4] = {
.name = "ipv4",
.help = "match IPv4 header",
.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
.next = NEXT(item_ipv4),
.call = parse_vc,
},
[ITEM_IPV4_TOS] = {
.name = "tos",
.help = "type of service",
.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
hdr.type_of_service)),
},
[ITEM_IPV4_TTL] = {
.name = "ttl",
.help = "time to live",
.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
hdr.time_to_live)),
},
[ITEM_IPV4_PROTO] = {
.name = "proto",
.help = "next protocol ID",
.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
hdr.next_proto_id)),
},
[ITEM_IPV4_SRC] = {
.name = "src",
.help = "source address",
.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
hdr.src_addr)),
},
[ITEM_IPV4_DST] = {
.name = "dst",
.help = "destination address",
.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
hdr.dst_addr)),
},
[ITEM_IPV6] = {
.name = "ipv6",
.help = "match IPv6 header",
.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
.next = NEXT(item_ipv6),
.call = parse_vc,
},
[ITEM_IPV6_TC] = {
.name = "tc",
.help = "traffic class",
.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
hdr.vtc_flow,
"\x0f\xf0\x00\x00")),
},
[ITEM_IPV6_FLOW] = {
.name = "flow",
.help = "flow label",
.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
hdr.vtc_flow,
"\x00\x0f\xff\xff")),
},
[ITEM_IPV6_PROTO] = {
.name = "proto",
.help = "protocol (next header)",
.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
hdr.proto)),
},
[ITEM_IPV6_HOP] = {
.name = "hop",
.help = "hop limit",
.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
hdr.hop_limits)),
},
[ITEM_IPV6_SRC] = {
.name = "src",
.help = "source address",
.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
hdr.src_addr)),
},
[ITEM_IPV6_DST] = {
.name = "dst",
.help = "destination address",
.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
hdr.dst_addr)),
},
[ITEM_ICMP] = {
.name = "icmp",
.help = "match ICMP header",
.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
.next = NEXT(item_icmp),
.call = parse_vc,
},
[ITEM_ICMP_TYPE] = {
.name = "type",
.help = "ICMP packet type",
.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
hdr.icmp_type)),
},
[ITEM_ICMP_CODE] = {
.name = "code",
.help = "ICMP packet code",
.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
hdr.icmp_code)),
},
[ITEM_UDP] = {
.name = "udp",
.help = "match UDP header",
.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
.next = NEXT(item_udp),
.call = parse_vc,
},
[ITEM_UDP_SRC] = {
.name = "src",
.help = "UDP source port",
.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
hdr.src_port)),
},
[ITEM_UDP_DST] = {
.name = "dst",
.help = "UDP destination port",
.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
hdr.dst_port)),
},
[ITEM_TCP] = {
.name = "tcp",
.help = "match TCP header",
.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
.next = NEXT(item_tcp),
.call = parse_vc,
},
[ITEM_TCP_SRC] = {
.name = "src",
.help = "TCP source port",
.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
hdr.src_port)),
},
[ITEM_TCP_DST] = {
.name = "dst",
.help = "TCP destination port",
.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
hdr.dst_port)),
},
[ITEM_SCTP] = {
.name = "sctp",
.help = "match SCTP header",
.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
.next = NEXT(item_sctp),
.call = parse_vc,
},
[ITEM_SCTP_SRC] = {
.name = "src",
.help = "SCTP source port",
.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
hdr.src_port)),
},
[ITEM_SCTP_DST] = {
.name = "dst",
.help = "SCTP destination port",
.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
hdr.dst_port)),
},
[ITEM_SCTP_TAG] = {
.name = "tag",
.help = "validation tag",
.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
hdr.tag)),
},
[ITEM_SCTP_CKSUM] = {
.name = "cksum",
.help = "checksum",
.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
hdr.cksum)),
},
[ITEM_VXLAN] = {
.name = "vxlan",
.help = "match VXLAN header",
.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
.next = NEXT(item_vxlan),
.call = parse_vc,
},
[ITEM_VXLAN_VNI] = {
.name = "vni",
.help = "VXLAN identifier",
.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
},
[ITEM_MPLS] = {
.name = "mpls",
.help = "match MPLS header",
.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
.next = NEXT(item_mpls),
.call = parse_vc,
},
[ITEM_MPLS_LABEL] = {
.name = "label",
.help = "MPLS label",
.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
label_tc_s,
"\xff\xff\xf0")),
},
[ITEM_GRE] = {
.name = "gre",
.help = "match GRE header",
.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
.next = NEXT(item_gre),
.call = parse_vc,
},
[ITEM_GRE_PROTO] = {
.name = "protocol",
.help = "GRE protocol type",
.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
protocol)),
},
/* Validate/create actions. */
[ACTIONS] = {
.name = "actions",
.help = "submit a list of associated actions",
.next = NEXT(next_action),
.call = parse_vc,
},
[ACTION_NEXT] = {
.name = "/",
.help = "specify next action",
.next = NEXT(next_action),
},
[ACTION_END] = {
.name = "end",
.help = "end list of actions",
.priv = PRIV_ACTION(END, 0),
.call = parse_vc,
},
[ACTION_VOID] = {
.name = "void",
.help = "no-op action",
.priv = PRIV_ACTION(VOID, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_PASSTHRU] = {
.name = "passthru",
.help = "let subsequent rule process matched packets",
.priv = PRIV_ACTION(PASSTHRU, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_MARK] = {
.name = "mark",
.help = "attach 32 bit value to packets",
.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
.next = NEXT(action_mark),
.call = parse_vc,
},
[ACTION_MARK_ID] = {
.name = "id",
.help = "32 bit value to return with packets",
.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
.call = parse_vc_conf,
},
[ACTION_FLAG] = {
.name = "flag",
.help = "flag packets",
.priv = PRIV_ACTION(FLAG, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_QUEUE] = {
.name = "queue",
.help = "assign packets to a given queue index",
.priv = PRIV_ACTION(QUEUE,
sizeof(struct rte_flow_action_queue)),
.next = NEXT(action_queue),
.call = parse_vc,
},
[ACTION_QUEUE_INDEX] = {
.name = "index",
.help = "queue index to use",
.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
.call = parse_vc_conf,
},
[ACTION_DROP] = {
.name = "drop",
.help = "drop packets (note: passthru has priority)",
.priv = PRIV_ACTION(DROP, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_COUNT] = {
.name = "count",
.help = "enable counters for this rule",
.priv = PRIV_ACTION(COUNT, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_DUP] = {
.name = "dup",
.help = "duplicate packets to a given queue index",
.priv = PRIV_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
.next = NEXT(action_dup),
.call = parse_vc,
},
[ACTION_DUP_INDEX] = {
.name = "index",
.help = "queue index to duplicate packets to",
.next = NEXT(action_dup, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_action_dup, index)),
.call = parse_vc_conf,
},
[ACTION_RSS] = {
.name = "rss",
.help = "spread packets among several queues",
.priv = PRIV_ACTION(RSS, ACTION_RSS_SIZE),
.next = NEXT(action_rss),
.call = parse_vc,
},
[ACTION_RSS_QUEUES] = {
.name = "queues",
.help = "queue indices to use",
.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
.call = parse_vc_conf,
},
[ACTION_RSS_QUEUE] = {
.name = "{queue}",
.help = "queue index",
.call = parse_vc_action_rss_queue,
.comp = comp_vc_action_rss_queue,
},
[ACTION_PF] = {
.name = "pf",
.help = "redirect packets to physical device function",
.priv = PRIV_ACTION(PF, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_VF] = {
.name = "vf",
.help = "redirect packets to virtual device function",
.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
.next = NEXT(action_vf),
.call = parse_vc,
},
[ACTION_VF_ORIGINAL] = {
.name = "original",
.help = "use original VF ID if possible",
.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
original, 1)),
.call = parse_vc_conf,
},
[ACTION_VF_ID] = {
.name = "id",
.help = "VF ID to redirect packets to",
.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
.call = parse_vc_conf,
},
};
/** Remove and return last entry from argument stack. */
static const struct arg *
pop_args(struct context *ctx)
{
return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
}
/** Add entry on top of the argument stack. */
static int
push_args(struct context *ctx, const struct arg *arg)
{
if (ctx->args_num == CTX_STACK_SIZE)
return -1;
ctx->args[ctx->args_num++] = arg;
return 0;
}
/** Spread value into buffer according to bit-mask. */
static size_t
arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
{
uint32_t i = arg->size;
uint32_t end = 0;
int sub = 1;
int add = 0;
size_t len = 0;
if (!arg->mask)
return 0;
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
if (!arg->hton) {
i = 0;
end = arg->size;
sub = 0;
add = 1;
}
#endif
while (i != end) {
unsigned int shift = 0;
uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
for (shift = 0; arg->mask[i] >> shift; ++shift) {
if (!(arg->mask[i] & (1 << shift)))
continue;
++len;
if (!dst)
continue;
*buf &= ~(1 << shift);
*buf |= (val & 1) << shift;
val >>= 1;
}
i += add;
}
return len;
}
/**
* Parse a prefix length and generate a bit-mask.
*
* Last argument (ctx->args) is retrieved to determine mask size, storage
* location and whether the result must use network byte ordering.
*/
static int
parse_prefix(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
const struct arg *arg = pop_args(ctx);
static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
char *end;
uintmax_t u;
unsigned int bytes;
unsigned int extra;
(void)token;
/* Argument is expected. */
if (!arg)
return -1;
errno = 0;
u = strtoumax(str, &end, 0);
if (errno || (size_t)(end - str) != len)
goto error;
if (arg->mask) {
uintmax_t v = 0;
extra = arg_entry_bf_fill(NULL, 0, arg);
if (u > extra)
goto error;
if (!ctx->object)
return len;
extra -= u;
while (u--)
(v <<= 1, v |= 1);
v <<= extra;
if (!arg_entry_bf_fill(ctx->object, v, arg) ||
!arg_entry_bf_fill(ctx->objmask, -1, arg))
goto error;
return len;
}
bytes = u / 8;
extra = u % 8;
size = arg->size;
if (bytes > size || bytes + !!extra > size)
goto error;
if (!ctx->object)
return len;
buf = (uint8_t *)ctx->object + arg->offset;
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
if (!arg->hton) {
memset((uint8_t *)buf + size - bytes, 0xff, bytes);
memset(buf, 0x00, size - bytes);
if (extra)
((uint8_t *)buf)[size - bytes - 1] = conv[extra];
} else
#endif
{
memset(buf, 0xff, bytes);
memset((uint8_t *)buf + bytes, 0x00, size - bytes);
if (extra)
((uint8_t *)buf)[bytes] = conv[extra];
}
if (ctx->objmask)
memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
return len;
error:
push_args(ctx, arg);
return -1;
}
/** Default parsing function for token name matching. */
static int
parse_default(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
(void)ctx;
(void)buf;
(void)size;
if (strncmp(str, token->name, len))
return -1;
return len;
}
/** Parse flow command, initialize output buffer for subsequent tokens. */
static int
parse_init(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
/* Make sure buffer is large enough. */
if (size < sizeof(*out))
return -1;
/* Initialize buffer. */
memset(out, 0x00, sizeof(*out));
memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
ctx->objdata = 0;
ctx->object = out;
ctx->objmask = NULL;
return len;
}
/** Parse tokens for validate/create commands. */
static int
parse_vc(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
uint8_t *data;
uint32_t data_size;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
if (!out->command) {
if (ctx->curr != VALIDATE && ctx->curr != CREATE)
return -1;
if (sizeof(*out) > size)
return -1;
out->command = ctx->curr;
ctx->objdata = 0;
ctx->object = out;
ctx->objmask = NULL;
out->args.vc.data = (uint8_t *)out + size;
return len;
}
ctx->objdata = 0;
ctx->object = &out->args.vc.attr;
ctx->objmask = NULL;
switch (ctx->curr) {
case GROUP:
case PRIORITY:
return len;
case INGRESS:
out->args.vc.attr.ingress = 1;
return len;
case EGRESS:
out->args.vc.attr.egress = 1;
return len;
case PATTERN:
out->args.vc.pattern =
(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
sizeof(double));
ctx->object = out->args.vc.pattern;
ctx->objmask = NULL;
return len;
case ACTIONS:
out->args.vc.actions =
(void *)RTE_ALIGN_CEIL((uintptr_t)
(out->args.vc.pattern +
out->args.vc.pattern_n),
sizeof(double));
ctx->object = out->args.vc.actions;
ctx->objmask = NULL;
return len;
default:
if (!token->priv)
return -1;
break;
}
if (!out->args.vc.actions) {
const struct parse_item_priv *priv = token->priv;
struct rte_flow_item *item =
out->args.vc.pattern + out->args.vc.pattern_n;
data_size = priv->size * 3; /* spec, last, mask */
data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
(out->args.vc.data - data_size),
sizeof(double));
if ((uint8_t *)item + sizeof(*item) > data)
return -1;
*item = (struct rte_flow_item){
.type = priv->type,
};
++out->args.vc.pattern_n;
ctx->object = item;
ctx->objmask = NULL;
} else {
const struct parse_action_priv *priv = token->priv;
struct rte_flow_action *action =
out->args.vc.actions + out->args.vc.actions_n;
data_size = priv->size; /* configuration */
data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
(out->args.vc.data - data_size),
sizeof(double));
if ((uint8_t *)action + sizeof(*action) > data)
return -1;
*action = (struct rte_flow_action){
.type = priv->type,
};
++out->args.vc.actions_n;
ctx->object = action;
ctx->objmask = NULL;
}
memset(data, 0, data_size);
out->args.vc.data = data;
ctx->objdata = data_size;
return len;
}
/** Parse pattern item parameter type. */
static int
parse_vc_spec(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
struct rte_flow_item *item;
uint32_t data_size;
int index;
int objmask = 0;
(void)size;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Parse parameter types. */
switch (ctx->curr) {
case ITEM_PARAM_IS:
index = 0;
objmask = 1;
break;
case ITEM_PARAM_SPEC:
index = 0;
break;
case ITEM_PARAM_LAST:
index = 1;
break;
case ITEM_PARAM_PREFIX:
/* Modify next token to expect a prefix. */
if (ctx->next_num < 2)
return -1;
ctx->next[ctx->next_num - 2] = NEXT_ENTRY(PREFIX);
/* Fall through. */
case ITEM_PARAM_MASK:
index = 2;
break;
default:
return -1;
}
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
if (!out->args.vc.pattern_n)
return -1;
item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
data_size = ctx->objdata / 3; /* spec, last, mask */
/* Point to selected object. */
ctx->object = out->args.vc.data + (data_size * index);
if (objmask) {
ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
item->mask = ctx->objmask;
} else
ctx->objmask = NULL;
/* Update relevant item pointer. */
*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
ctx->object;
return len;
}
/** Parse action configuration field. */
static int
parse_vc_conf(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
struct rte_flow_action *action;
(void)size;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
if (!out->args.vc.actions_n)
return -1;
action = &out->args.vc.actions[out->args.vc.actions_n - 1];
/* Point to selected object. */
ctx->object = out->args.vc.data;
ctx->objmask = NULL;
/* Update configuration pointer. */
action->conf = ctx->object;
return len;
}
/**
* Parse queue field for RSS action.
*
* Valid tokens are queue indices and the "end" token.
*/
static int
parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
int ret;
int i;
(void)token;
(void)buf;
(void)size;
if (ctx->curr != ACTION_RSS_QUEUE)
return -1;
i = ctx->objdata >> 16;
if (!strncmp(str, "end", len)) {
ctx->objdata &= 0xffff;
return len;
}
if (i >= ACTION_RSS_NUM)
return -1;
if (push_args(ctx, ARGS_ENTRY(struct rte_flow_action_rss, queue[i])))
return -1;
ret = parse_int(ctx, token, str, len, NULL, 0);
if (ret < 0) {
pop_args(ctx);
return -1;
}
++i;
ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
/* Repeat token. */
if (ctx->next_num == RTE_DIM(ctx->next))
return -1;
ctx->next[ctx->next_num++] = next;
if (!ctx->object)
return len;
((struct rte_flow_action_rss *)ctx->object)->num = i;
return len;
}
/** Parse tokens for destroy command. */
static int
parse_destroy(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
if (!out->command) {
if (ctx->curr != DESTROY)
return -1;
if (sizeof(*out) > size)
return -1;
out->command = ctx->curr;
ctx->objdata = 0;
ctx->object = out;
ctx->objmask = NULL;
out->args.destroy.rule =
(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
sizeof(double));
return len;
}
if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
return -1;
ctx->objdata = 0;
ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
ctx->objmask = NULL;
return len;
}
/** Parse tokens for flush command. */
static int
parse_flush(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
if (!out->command) {
if (ctx->curr != FLUSH)
return -1;
if (sizeof(*out) > size)
return -1;
out->command = ctx->curr;
ctx->objdata = 0;
ctx->object = out;
ctx->objmask = NULL;
}
return len;
}
/** Parse tokens for query command. */
static int
parse_query(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
if (!out->command) {
if (ctx->curr != QUERY)
return -1;
if (sizeof(*out) > size)
return -1;
out->command = ctx->curr;
ctx->objdata = 0;
ctx->object = out;
ctx->objmask = NULL;
}
return len;
}
/** Parse action names. */
static int
parse_action(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
const struct arg *arg = pop_args(ctx);
unsigned int i;
(void)size;
/* Argument is expected. */
if (!arg)
return -1;
/* Parse action name. */
for (i = 0; next_action[i]; ++i) {
const struct parse_action_priv *priv;
token = &token_list[next_action[i]];
if (strncmp(token->name, str, len))
continue;
priv = token->priv;
if (!priv)
goto error;
if (out)
memcpy((uint8_t *)ctx->object + arg->offset,
&priv->type,
arg->size);
return len;
}
error:
push_args(ctx, arg);
return -1;
}
/** Parse tokens for list command. */
static int
parse_list(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
if (!out->command) {
if (ctx->curr != LIST)
return -1;
if (sizeof(*out) > size)
return -1;
out->command = ctx->curr;
ctx->objdata = 0;
ctx->object = out;
ctx->objmask = NULL;
out->args.list.group =
(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
sizeof(double));
return len;
}
if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
sizeof(*out->args.list.group)) > (uint8_t *)out + size)
return -1;
ctx->objdata = 0;
ctx->object = out->args.list.group + out->args.list.group_n++;
ctx->objmask = NULL;
return len;
}
/**
* Parse signed/unsigned integers 8 to 64-bit long.
*
* Last argument (ctx->args) is retrieved to determine integer type and
* storage location.
*/
static int
parse_int(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
const struct arg *arg = pop_args(ctx);
uintmax_t u;
char *end;
(void)token;
/* Argument is expected. */
if (!arg)
return -1;
errno = 0;
u = arg->sign ?
(uintmax_t)strtoimax(str, &end, 0) :
strtoumax(str, &end, 0);
if (errno || (size_t)(end - str) != len)
goto error;
if (!ctx->object)
return len;
if (arg->mask) {
if (!arg_entry_bf_fill(ctx->object, u, arg) ||
!arg_entry_bf_fill(ctx->objmask, -1, arg))
goto error;
return len;
}
buf = (uint8_t *)ctx->object + arg->offset;
size = arg->size;
objmask:
switch (size) {
case sizeof(uint8_t):
*(uint8_t *)buf = u;
break;
case sizeof(uint16_t):
*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
break;
case sizeof(uint8_t [3]):
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
if (!arg->hton) {
((uint8_t *)buf)[0] = u;
((uint8_t *)buf)[1] = u >> 8;
((uint8_t *)buf)[2] = u >> 16;
break;
}
#endif
((uint8_t *)buf)[0] = u >> 16;
((uint8_t *)buf)[1] = u >> 8;
((uint8_t *)buf)[2] = u;
break;
case sizeof(uint32_t):
*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
break;
case sizeof(uint64_t):
*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
break;
default:
goto error;
}
if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
u = -1;
buf = (uint8_t *)ctx->objmask + arg->offset;
goto objmask;
}
return len;
error:
push_args(ctx, arg);
return -1;
}
/**
* Parse a string.
*
* Two arguments (ctx->args) are retrieved from the stack to store data and
* its length (in that order).
*/
static int
parse_string(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
const struct arg *arg_data = pop_args(ctx);
const struct arg *arg_len = pop_args(ctx);
char tmp[16]; /* Ought to be enough. */
int ret;
/* Arguments are expected. */
if (!arg_data)
return -1;
if (!arg_len) {
push_args(ctx, arg_data);
return -1;
}
size = arg_data->size;
/* Bit-mask fill is not supported. */
if (arg_data->mask || size < len)
goto error;
if (!ctx->object)
return len;
/* Let parse_int() fill length information first. */
ret = snprintf(tmp, sizeof(tmp), "%u", len);
if (ret < 0)
goto error;
push_args(ctx, arg_len);
ret = parse_int(ctx, token, tmp, ret, NULL, 0);
if (ret < 0) {
pop_args(ctx);
goto error;
}
buf = (uint8_t *)ctx->object + arg_data->offset;
/* Output buffer is not necessarily NUL-terminated. */
memcpy(buf, str, len);
memset((uint8_t *)buf + len, 0x55, size - len);
if (ctx->objmask)
memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
return len;
error:
push_args(ctx, arg_len);
push_args(ctx, arg_data);
return -1;
}
/**
* Parse a MAC address.
*
* Last argument (ctx->args) is retrieved to determine storage size and
* location.
*/
static int
parse_mac_addr(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
const struct arg *arg = pop_args(ctx);
struct ether_addr tmp;
int ret;
(void)token;
/* Argument is expected. */
if (!arg)
return -1;
size = arg->size;
/* Bit-mask fill is not supported. */
if (arg->mask || size != sizeof(tmp))
goto error;
ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
if (ret < 0 || (unsigned int)ret != len)
goto error;
if (!ctx->object)
return len;
buf = (uint8_t *)ctx->object + arg->offset;
memcpy(buf, &tmp, size);
if (ctx->objmask)
memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
return len;
error:
push_args(ctx, arg);
return -1;
}
/**
* Parse an IPv4 address.
*
* Last argument (ctx->args) is retrieved to determine storage size and
* location.
*/
static int
parse_ipv4_addr(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
const struct arg *arg = pop_args(ctx);
char str2[len + 1];
struct in_addr tmp;
int ret;
/* Argument is expected. */
if (!arg)
return -1;
size = arg->size;
/* Bit-mask fill is not supported. */
if (arg->mask || size != sizeof(tmp))
goto error;
/* Only network endian is supported. */
if (!arg->hton)
goto error;
memcpy(str2, str, len);
str2[len] = '\0';
ret = inet_pton(AF_INET, str2, &tmp);
if (ret != 1) {
/* Attempt integer parsing. */
push_args(ctx, arg);
return parse_int(ctx, token, str, len, buf, size);
}
if (!ctx->object)
return len;
buf = (uint8_t *)ctx->object + arg->offset;
memcpy(buf, &tmp, size);
if (ctx->objmask)
memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
return len;
error:
push_args(ctx, arg);
return -1;
}
/**
* Parse an IPv6 address.
*
* Last argument (ctx->args) is retrieved to determine storage size and
* location.
*/
static int
parse_ipv6_addr(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
const struct arg *arg = pop_args(ctx);
char str2[len + 1];
struct in6_addr tmp;
int ret;
(void)token;
/* Argument is expected. */
if (!arg)
return -1;
size = arg->size;
/* Bit-mask fill is not supported. */
if (arg->mask || size != sizeof(tmp))
goto error;
/* Only network endian is supported. */
if (!arg->hton)
goto error;
memcpy(str2, str, len);
str2[len] = '\0';
ret = inet_pton(AF_INET6, str2, &tmp);
if (ret != 1)
goto error;
if (!ctx->object)
return len;
buf = (uint8_t *)ctx->object + arg->offset;
memcpy(buf, &tmp, size);
if (ctx->objmask)
memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
return len;
error:
push_args(ctx, arg);
return -1;
}
/** Boolean values (even indices stand for false). */
static const char *const boolean_name[] = {
"0", "1",
"false", "true",
"no", "yes",
"N", "Y",
NULL,
};
/**
* Parse a boolean value.
*
* Last argument (ctx->args) is retrieved to determine storage size and
* location.
*/
static int
parse_boolean(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
const struct arg *arg = pop_args(ctx);
unsigned int i;
int ret;
/* Argument is expected. */
if (!arg)
return -1;
for (i = 0; boolean_name[i]; ++i)
if (!strncmp(str, boolean_name[i], len))
break;
/* Process token as integer. */
if (boolean_name[i])
str = i & 1 ? "1" : "0";
push_args(ctx, arg);
ret = parse_int(ctx, token, str, strlen(str), buf, size);
return ret > 0 ? (int)len : ret;
}
/** Parse port and update context. */
static int
parse_port(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = &(struct buffer){ .port = 0 };
int ret;
if (buf)
out = buf;
else {
ctx->objdata = 0;
ctx->object = out;
ctx->objmask = NULL;
size = sizeof(*out);
}
ret = parse_int(ctx, token, str, len, out, size);
if (ret >= 0)
ctx->port = out->port;
if (!buf)
ctx->object = NULL;
return ret;
}
/** No completion. */
static int
comp_none(struct context *ctx, const struct token *token,
unsigned int ent, char *buf, unsigned int size)
{
(void)ctx;
(void)token;
(void)ent;
(void)buf;
(void)size;
return 0;
}
/** Complete boolean values. */
static int
comp_boolean(struct context *ctx, const struct token *token,
unsigned int ent, char *buf, unsigned int size)
{
unsigned int i;
(void)ctx;
(void)token;
for (i = 0; boolean_name[i]; ++i)
if (buf && i == ent)
return snprintf(buf, size, "%s", boolean_name[i]);
if (buf)
return -1;
return i;
}
/** Complete action names. */
static int
comp_action(struct context *ctx, const struct token *token,
unsigned int ent, char *buf, unsigned int size)
{
unsigned int i;
(void)ctx;
(void)token;
for (i = 0; next_action[i]; ++i)
if (buf && i == ent)
return snprintf(buf, size, "%s",
token_list[next_action[i]].name);
if (buf)
return -1;
return i;
}
/** Complete available ports. */
static int
comp_port(struct context *ctx, const struct token *token,
unsigned int ent, char *buf, unsigned int size)
{
unsigned int i = 0;
portid_t p;
(void)ctx;
(void)token;
RTE_ETH_FOREACH_DEV(p) {
if (buf && i == ent)
return snprintf(buf, size, "%u", p);
++i;
}
if (buf)
return -1;
return i;
}
/** Complete available rule IDs. */
static int
comp_rule_id(struct context *ctx, const struct token *token,
unsigned int ent, char *buf, unsigned int size)
{
unsigned int i = 0;
struct rte_port *port;
struct port_flow *pf;
(void)token;
if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
ctx->port == (uint16_t)RTE_PORT_ALL)
return -1;
port = &ports[ctx->port];
for (pf = port->flow_list; pf != NULL; pf = pf->next) {
if (buf && i == ent)
return snprintf(buf, size, "%u", pf->id);
++i;
}
if (buf)
return -1;
return i;
}
/** Complete queue field for RSS action. */
static int
comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
unsigned int ent, char *buf, unsigned int size)
{
static const char *const str[] = { "", "end", NULL };
unsigned int i;
(void)ctx;
(void)token;
for (i = 0; str[i] != NULL; ++i)
if (buf && i == ent)
return snprintf(buf, size, "%s", str[i]);
if (buf)
return -1;
return i;
}
/** Internal context. */
static struct context cmd_flow_context;
/** Global parser instance (cmdline API). */
cmdline_parse_inst_t cmd_flow;
/** Initialize context. */
static void
cmd_flow_context_init(struct context *ctx)
{
/* A full memset() is not necessary. */
ctx->curr = ZERO;
ctx->prev = ZERO;
ctx->next_num = 0;
ctx->args_num = 0;
ctx->reparse = 0;
ctx->eol = 0;
ctx->last = 0;
ctx->port = 0;
ctx->objdata = 0;
ctx->object = NULL;
ctx->objmask = NULL;
}
/** Parse a token (cmdline API). */
static int
cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
unsigned int size)
{
struct context *ctx = &cmd_flow_context;
const struct token *token;
const enum index *list;
int len;
int i;
(void)hdr;
/* Restart as requested. */
if (ctx->reparse)
cmd_flow_context_init(ctx);
token = &token_list[ctx->curr];
/* Check argument length. */
ctx->eol = 0;
ctx->last = 1;
for (len = 0; src[len]; ++len)
if (src[len] == '#' || isspace(src[len]))
break;
if (!len)
return -1;
/* Last argument and EOL detection. */
for (i = len; src[i]; ++i)
if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
break;
else if (!isspace(src[i])) {
ctx->last = 0;
break;
}
for (; src[i]; ++i)
if (src[i] == '\r' || src[i] == '\n') {
ctx->eol = 1;
break;
}
/* Initialize context if necessary. */
if (!ctx->next_num) {
if (!token->next)
return 0;
ctx->next[ctx->next_num++] = token->next[0];
}
/* Process argument through candidates. */
ctx->prev = ctx->curr;
list = ctx->next[ctx->next_num - 1];
for (i = 0; list[i]; ++i) {
const struct token *next = &token_list[list[i]];
int tmp;
ctx->curr = list[i];
if (next->call)
tmp = next->call(ctx, next, src, len, result, size);
else
tmp = parse_default(ctx, next, src, len, result, size);
if (tmp == -1 || tmp != len)
continue;
token = next;
break;
}
if (!list[i])
return -1;
--ctx->next_num;
/* Push subsequent tokens if any. */
if (token->next)
for (i = 0; token->next[i]; ++i) {
if (ctx->next_num == RTE_DIM(ctx->next))
return -1;
ctx->next[ctx->next_num++] = token->next[i];
}
/* Push arguments if any. */
if (token->args)
for (i = 0; token->args[i]; ++i) {
if (ctx->args_num == RTE_DIM(ctx->args))
return -1;
ctx->args[ctx->args_num++] = token->args[i];
}
return len;
}
/** Return number of completion entries (cmdline API). */
static int
cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
{
struct context *ctx = &cmd_flow_context;
const struct token *token = &token_list[ctx->curr];
const enum index *list;
int i;
(void)hdr;
/* Tell cmd_flow_parse() that context must be reinitialized. */
ctx->reparse = 1;
/* Count number of tokens in current list. */
if (ctx->next_num)
list = ctx->next[ctx->next_num - 1];
else
list = token->next[0];
for (i = 0; list[i]; ++i)
;
if (!i)
return 0;
/*
* If there is a single token, use its completion callback, otherwise
* return the number of entries.
*/
token = &token_list[list[0]];
if (i == 1 && token->comp) {
/* Save index for cmd_flow_get_help(). */
ctx->prev = list[0];
return token->comp(ctx, token, 0, NULL, 0);
}
return i;
}
/** Return a completion entry (cmdline API). */
static int
cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
char *dst, unsigned int size)
{
struct context *ctx = &cmd_flow_context;
const struct token *token = &token_list[ctx->curr];
const enum index *list;
int i;
(void)hdr;
/* Tell cmd_flow_parse() that context must be reinitialized. */
ctx->reparse = 1;
/* Count number of tokens in current list. */
if (ctx->next_num)
list = ctx->next[ctx->next_num - 1];
else
list = token->next[0];
for (i = 0; list[i]; ++i)
;
if (!i)
return -1;
/* If there is a single token, use its completion callback. */
token = &token_list[list[0]];
if (i == 1 && token->comp) {
/* Save index for cmd_flow_get_help(). */
ctx->prev = list[0];
return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
}
/* Otherwise make sure the index is valid and use defaults. */
if (index >= i)
return -1;
token = &token_list[list[index]];
snprintf(dst, size, "%s", token->name);
/* Save index for cmd_flow_get_help(). */
ctx->prev = list[index];
return 0;
}
/** Populate help strings for current token (cmdline API). */
static int
cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
{
struct context *ctx = &cmd_flow_context;
const struct token *token = &token_list[ctx->prev];
(void)hdr;
/* Tell cmd_flow_parse() that context must be reinitialized. */
ctx->reparse = 1;
if (!size)
return -1;
/* Set token type and update global help with details. */
snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
if (token->help)
cmd_flow.help_str = token->help;
else
cmd_flow.help_str = token->name;
return 0;
}
/** Token definition template (cmdline API). */
static struct cmdline_token_hdr cmd_flow_token_hdr = {
.ops = &(struct cmdline_token_ops){
.parse = cmd_flow_parse,
.complete_get_nb = cmd_flow_complete_get_nb,
.complete_get_elt = cmd_flow_complete_get_elt,
.get_help = cmd_flow_get_help,
},
.offset = 0,
};
/** Populate the next dynamic token. */
static void
cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
cmdline_parse_token_hdr_t *(*hdrs)[])
{
struct context *ctx = &cmd_flow_context;
/* Always reinitialize context before requesting the first token. */
if (!(hdr - *hdrs))
cmd_flow_context_init(ctx);
/* Return NULL when no more tokens are expected. */
if (!ctx->next_num && ctx->curr) {
*hdr = NULL;
return;
}
/* Determine if command should end here. */
if (ctx->eol && ctx->last && ctx->next_num) {
const enum index *list = ctx->next[ctx->next_num - 1];
int i;
for (i = 0; list[i]; ++i) {
if (list[i] != END)
continue;
*hdr = NULL;
return;
}
}
*hdr = &cmd_flow_token_hdr;
}
/** Dispatch parsed buffer to function calls. */
static void
cmd_flow_parsed(const struct buffer *in)
{
switch (in->command) {
case VALIDATE:
port_flow_validate(in->port, &in->args.vc.attr,
in->args.vc.pattern, in->args.vc.actions);
break;
case CREATE:
port_flow_create(in->port, &in->args.vc.attr,
in->args.vc.pattern, in->args.vc.actions);
break;
case DESTROY:
port_flow_destroy(in->port, in->args.destroy.rule_n,
in->args.destroy.rule);
break;
case FLUSH:
port_flow_flush(in->port);
break;
case QUERY:
port_flow_query(in->port, in->args.query.rule,
in->args.query.action);
break;
case LIST:
port_flow_list(in->port, in->args.list.group_n,
in->args.list.group);
break;
default:
break;
}
}
/** Token generator and output processing callback (cmdline API). */
static void
cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
{
if (cl == NULL)
cmd_flow_tok(arg0, arg2);
else
cmd_flow_parsed(arg0);
}
/** Global parser instance (cmdline API). */
cmdline_parse_inst_t cmd_flow = {
.f = cmd_flow_cb,
.data = NULL, /**< Unused. */
.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
.tokens = {
NULL,
}, /**< Tokens are returned by cmd_flow_tok(). */
};