f2fc83b40f
There is a common macro __rte_unused, avoiding warnings, which is now used where appropriate for consistency. Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
233 lines
6.3 KiB
C
233 lines
6.3 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2017 Intel Corporation
|
|
*/
|
|
|
|
#include <rte_malloc.h>
|
|
#include <rte_mbuf_pool_ops.h>
|
|
|
|
#include "cperf_test_common.h"
|
|
|
|
struct obj_params {
|
|
uint32_t src_buf_offset;
|
|
uint32_t dst_buf_offset;
|
|
uint16_t segment_sz;
|
|
uint16_t headroom_sz;
|
|
uint16_t data_len;
|
|
uint16_t segments_nb;
|
|
};
|
|
|
|
static void
|
|
fill_single_seg_mbuf(struct rte_mbuf *m, struct rte_mempool *mp,
|
|
void *obj, uint32_t mbuf_offset, uint16_t segment_sz,
|
|
uint16_t headroom, uint16_t data_len)
|
|
{
|
|
uint32_t mbuf_hdr_size = sizeof(struct rte_mbuf);
|
|
|
|
/* start of buffer is after mbuf structure and priv data */
|
|
m->priv_size = 0;
|
|
m->buf_addr = (char *)m + mbuf_hdr_size;
|
|
m->buf_iova = rte_mempool_virt2iova(obj) +
|
|
mbuf_offset + mbuf_hdr_size;
|
|
m->buf_len = segment_sz;
|
|
m->data_len = data_len;
|
|
m->pkt_len = data_len;
|
|
|
|
/* Use headroom specified for the buffer */
|
|
m->data_off = headroom;
|
|
|
|
/* init some constant fields */
|
|
m->pool = mp;
|
|
m->nb_segs = 1;
|
|
m->port = 0xff;
|
|
rte_mbuf_refcnt_set(m, 1);
|
|
m->next = NULL;
|
|
}
|
|
|
|
static void
|
|
fill_multi_seg_mbuf(struct rte_mbuf *m, struct rte_mempool *mp,
|
|
void *obj, uint32_t mbuf_offset, uint16_t segment_sz,
|
|
uint16_t headroom, uint16_t data_len, uint16_t segments_nb)
|
|
{
|
|
uint16_t mbuf_hdr_size = sizeof(struct rte_mbuf);
|
|
uint16_t remaining_segments = segments_nb;
|
|
struct rte_mbuf *next_mbuf;
|
|
rte_iova_t next_seg_phys_addr = rte_mempool_virt2iova(obj) +
|
|
mbuf_offset + mbuf_hdr_size;
|
|
|
|
do {
|
|
/* start of buffer is after mbuf structure and priv data */
|
|
m->priv_size = 0;
|
|
m->buf_addr = (char *)m + mbuf_hdr_size;
|
|
m->buf_iova = next_seg_phys_addr;
|
|
next_seg_phys_addr += mbuf_hdr_size + segment_sz;
|
|
m->buf_len = segment_sz;
|
|
m->data_len = data_len;
|
|
|
|
/* Use headroom specified for the buffer */
|
|
m->data_off = headroom;
|
|
|
|
/* init some constant fields */
|
|
m->pool = mp;
|
|
m->nb_segs = segments_nb;
|
|
m->port = 0xff;
|
|
rte_mbuf_refcnt_set(m, 1);
|
|
next_mbuf = (struct rte_mbuf *) ((uint8_t *) m +
|
|
mbuf_hdr_size + segment_sz);
|
|
m->next = next_mbuf;
|
|
m = next_mbuf;
|
|
remaining_segments--;
|
|
|
|
} while (remaining_segments > 0);
|
|
|
|
m->next = NULL;
|
|
}
|
|
|
|
static void
|
|
mempool_obj_init(struct rte_mempool *mp,
|
|
void *opaque_arg,
|
|
void *obj,
|
|
__rte_unused unsigned int i)
|
|
{
|
|
struct obj_params *params = opaque_arg;
|
|
struct rte_crypto_op *op = obj;
|
|
struct rte_mbuf *m = (struct rte_mbuf *) ((uint8_t *) obj +
|
|
params->src_buf_offset);
|
|
/* Set crypto operation */
|
|
op->type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
|
|
op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
|
|
op->sess_type = RTE_CRYPTO_OP_WITH_SESSION;
|
|
op->phys_addr = rte_mem_virt2iova(obj);
|
|
op->mempool = mp;
|
|
|
|
/* Set source buffer */
|
|
op->sym->m_src = m;
|
|
if (params->segments_nb == 1)
|
|
fill_single_seg_mbuf(m, mp, obj, params->src_buf_offset,
|
|
params->segment_sz, params->headroom_sz,
|
|
params->data_len);
|
|
else
|
|
fill_multi_seg_mbuf(m, mp, obj, params->src_buf_offset,
|
|
params->segment_sz, params->headroom_sz,
|
|
params->data_len, params->segments_nb);
|
|
|
|
|
|
/* Set destination buffer */
|
|
if (params->dst_buf_offset) {
|
|
m = (struct rte_mbuf *) ((uint8_t *) obj +
|
|
params->dst_buf_offset);
|
|
fill_single_seg_mbuf(m, mp, obj, params->dst_buf_offset,
|
|
params->segment_sz, params->headroom_sz,
|
|
params->data_len);
|
|
op->sym->m_dst = m;
|
|
} else
|
|
op->sym->m_dst = NULL;
|
|
}
|
|
|
|
int
|
|
cperf_alloc_common_memory(const struct cperf_options *options,
|
|
const struct cperf_test_vector *test_vector,
|
|
uint8_t dev_id, uint16_t qp_id,
|
|
size_t extra_op_priv_size,
|
|
uint32_t *src_buf_offset,
|
|
uint32_t *dst_buf_offset,
|
|
struct rte_mempool **pool)
|
|
{
|
|
const char *mp_ops_name;
|
|
char pool_name[32] = "";
|
|
int ret;
|
|
|
|
/* Calculate the object size */
|
|
uint16_t crypto_op_size = sizeof(struct rte_crypto_op) +
|
|
sizeof(struct rte_crypto_sym_op);
|
|
uint16_t crypto_op_private_size;
|
|
/*
|
|
* If doing AES-CCM, IV field needs to be 16 bytes long,
|
|
* and AAD field needs to be long enough to have 18 bytes,
|
|
* plus the length of the AAD, and all rounded to a
|
|
* multiple of 16 bytes.
|
|
*/
|
|
if (options->aead_algo == RTE_CRYPTO_AEAD_AES_CCM) {
|
|
crypto_op_private_size = extra_op_priv_size +
|
|
test_vector->cipher_iv.length +
|
|
test_vector->auth_iv.length +
|
|
RTE_ALIGN_CEIL(test_vector->aead_iv.length, 16) +
|
|
RTE_ALIGN_CEIL(options->aead_aad_sz + 18, 16);
|
|
} else {
|
|
crypto_op_private_size = extra_op_priv_size +
|
|
test_vector->cipher_iv.length +
|
|
test_vector->auth_iv.length +
|
|
test_vector->aead_iv.length +
|
|
options->aead_aad_sz;
|
|
}
|
|
|
|
uint16_t crypto_op_total_size = crypto_op_size +
|
|
crypto_op_private_size;
|
|
uint16_t crypto_op_total_size_padded =
|
|
RTE_CACHE_LINE_ROUNDUP(crypto_op_total_size);
|
|
uint32_t mbuf_size = sizeof(struct rte_mbuf) + options->segment_sz;
|
|
uint32_t max_size = options->max_buffer_size + options->digest_sz;
|
|
uint16_t segments_nb = (max_size % options->segment_sz) ?
|
|
(max_size / options->segment_sz) + 1 :
|
|
max_size / options->segment_sz;
|
|
uint32_t obj_size = crypto_op_total_size_padded +
|
|
(mbuf_size * segments_nb);
|
|
|
|
snprintf(pool_name, sizeof(pool_name), "pool_cdev_%u_qp_%u",
|
|
dev_id, qp_id);
|
|
|
|
*src_buf_offset = crypto_op_total_size_padded;
|
|
|
|
struct obj_params params = {
|
|
.segment_sz = options->segment_sz,
|
|
.headroom_sz = options->headroom_sz,
|
|
/* Data len = segment size - (headroom + tailroom) */
|
|
.data_len = options->segment_sz -
|
|
options->headroom_sz -
|
|
options->tailroom_sz,
|
|
.segments_nb = segments_nb,
|
|
.src_buf_offset = crypto_op_total_size_padded,
|
|
.dst_buf_offset = 0
|
|
};
|
|
|
|
if (options->out_of_place) {
|
|
*dst_buf_offset = *src_buf_offset +
|
|
(mbuf_size * segments_nb);
|
|
params.dst_buf_offset = *dst_buf_offset;
|
|
/* Destination buffer will be one segment only */
|
|
obj_size += max_size;
|
|
}
|
|
|
|
*pool = rte_mempool_create_empty(pool_name,
|
|
options->pool_sz, obj_size, 512, 0,
|
|
rte_socket_id(), 0);
|
|
if (*pool == NULL) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Cannot allocate mempool for device %u\n",
|
|
dev_id);
|
|
return -1;
|
|
}
|
|
|
|
mp_ops_name = rte_mbuf_best_mempool_ops();
|
|
|
|
ret = rte_mempool_set_ops_byname(*pool,
|
|
mp_ops_name, NULL);
|
|
if (ret != 0) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Error setting mempool handler for device %u\n",
|
|
dev_id);
|
|
return -1;
|
|
}
|
|
|
|
ret = rte_mempool_populate_default(*pool);
|
|
if (ret < 0) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Error populating mempool for device %u\n",
|
|
dev_id);
|
|
return -1;
|
|
}
|
|
|
|
rte_mempool_obj_iter(*pool, mempool_obj_init, (void *)¶ms);
|
|
|
|
return 0;
|
|
}
|