numam-dpdk/app/test/test_malloc_perf.c
Dmitry Kozlyuk c62b318a9f app/test: add allocator performance benchmark
Memory allocator performance is crucial to applications that deal
with large amount of memory or allocate frequently. DPDK allocator
performance is affected by EAL options, API used and, at least,
allocation size. New autotest is intended to be run with different
EAL options. It measures performance with a range of sizes
for dirrerent APIs: rte_malloc, rte_zmalloc, and rte_memzone_reserve.

Work distribution between allocation and deallocation depends on EAL
options. The test prints both times and total time to ease comparison.

Memory can be filled with zeroes at different points of allocation path,
but it always takes considerable fraction of overall timing. This is why
the test measures filling speed and prints how long clearing takes
for each size as a reference (for rte_memzone_reserve estimations
are printed).

Signed-off-by: Dmitry Kozlyuk <dkozlyuk@nvidia.com>
Reviewed-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
Acked-by: Aaron Conole <aconole@redhat.com>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
2022-02-08 21:32:53 +01:00

175 lines
4.2 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) 2021 NVIDIA Corporation & Affiliates
*/
#include <inttypes.h>
#include <string.h>
#include <rte_cycles.h>
#include <rte_errno.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include "test.h"
#define TEST_LOG(level, ...) RTE_LOG(level, USER1, __VA_ARGS__)
typedef void * (alloc_t)(const char *name, size_t size, unsigned int align);
typedef void (free_t)(void *addr);
typedef void * (memset_t)(void *addr, int value, size_t size);
static const uint64_t KB = 1 << 10;
static const uint64_t GB = 1 << 30;
static double
tsc_to_us(uint64_t tsc, size_t runs)
{
return (double)tsc / rte_get_tsc_hz() * US_PER_S / runs;
}
static int
test_memset_perf(double *us_per_gb)
{
static const size_t RUNS = 20;
void *ptr;
size_t i;
uint64_t tsc;
TEST_LOG(INFO, "Reference: memset\n");
ptr = rte_malloc(NULL, GB, 0);
if (ptr == NULL) {
TEST_LOG(ERR, "rte_malloc(size=%"PRIx64") failed\n", GB);
return -1;
}
tsc = rte_rdtsc_precise();
for (i = 0; i < RUNS; i++)
memset(ptr, 0, GB);
tsc = rte_rdtsc_precise() - tsc;
*us_per_gb = tsc_to_us(tsc, RUNS);
TEST_LOG(INFO, "Result: %f.3 GiB/s <=> %.2f us/MiB\n",
US_PER_S / *us_per_gb, *us_per_gb / KB);
rte_free(ptr);
TEST_LOG(INFO, "\n");
return 0;
}
static int
test_alloc_perf(const char *name, alloc_t *alloc_fn, free_t *free_fn,
memset_t *memset_fn, double memset_gb_us, size_t max_runs)
{
static const size_t SIZES[] = {
1 << 6, 1 << 7, 1 << 10, 1 << 12, 1 << 16, 1 << 20,
1 << 21, 1 << 22, 1 << 24, 1 << 30 };
size_t i, j;
void **ptrs;
TEST_LOG(INFO, "Performance: %s\n", name);
ptrs = calloc(max_runs, sizeof(ptrs[0]));
if (ptrs == NULL) {
TEST_LOG(ERR, "Cannot allocate memory for pointers");
return -1;
}
TEST_LOG(INFO, "%12s%8s%12s%12s%12s%17s\n", "Size (B)", "Runs",
"Alloc (us)", "Free (us)", "Total (us)",
memset_fn != NULL ? "memset (us)" : "est.memset (us)");
for (i = 0; i < RTE_DIM(SIZES); i++) {
size_t size = SIZES[i];
size_t runs_done;
uint64_t tsc_start, tsc_alloc, tsc_memset = 0, tsc_free;
double alloc_time, free_time, memset_time;
tsc_start = rte_rdtsc_precise();
for (j = 0; j < max_runs; j++) {
ptrs[j] = alloc_fn(NULL, size, 0);
if (ptrs[j] == NULL)
break;
}
tsc_alloc = rte_rdtsc_precise() - tsc_start;
if (j == 0) {
TEST_LOG(INFO, "%12zu Interrupted: out of memory.\n",
size);
break;
}
runs_done = j;
if (memset_fn != NULL) {
tsc_start = rte_rdtsc_precise();
for (j = 0; j < runs_done && ptrs[j] != NULL; j++)
memset_fn(ptrs[j], 0, size);
tsc_memset = rte_rdtsc_precise() - tsc_start;
}
tsc_start = rte_rdtsc_precise();
for (j = 0; j < runs_done && ptrs[j] != NULL; j++)
free_fn(ptrs[j]);
tsc_free = rte_rdtsc_precise() - tsc_start;
alloc_time = tsc_to_us(tsc_alloc, runs_done);
free_time = tsc_to_us(tsc_free, runs_done);
memset_time = memset_fn != NULL ?
tsc_to_us(tsc_memset, runs_done) :
memset_gb_us * size / GB;
TEST_LOG(INFO, "%12zu%8zu%12.2f%12.2f%12.2f%17.2f\n",
size, runs_done, alloc_time, free_time,
alloc_time + free_time, memset_time);
memset(ptrs, 0, max_runs * sizeof(ptrs[0]));
}
free(ptrs);
TEST_LOG(INFO, "\n");
return 0;
}
static void *
memzone_alloc(const char *name __rte_unused, size_t size, unsigned int align)
{
const struct rte_memzone *mz;
char gen_name[RTE_MEMZONE_NAMESIZE];
snprintf(gen_name, sizeof(gen_name), "test-mz-%"PRIx64, rte_rdtsc());
mz = rte_memzone_reserve_aligned(gen_name, size, SOCKET_ID_ANY,
RTE_MEMZONE_1GB | RTE_MEMZONE_SIZE_HINT_ONLY, align);
return (void *)(uintptr_t)mz;
}
static void
memzone_free(void *addr)
{
rte_memzone_free((struct rte_memzone *)addr);
}
static int
test_malloc_perf(void)
{
static const size_t MAX_RUNS = 10000;
double memset_us_gb = 0;
if (test_memset_perf(&memset_us_gb) < 0)
return -1;
if (test_alloc_perf("rte_malloc", rte_malloc, rte_free, memset,
memset_us_gb, MAX_RUNS) < 0)
return -1;
if (test_alloc_perf("rte_zmalloc", rte_zmalloc, rte_free, memset,
memset_us_gb, MAX_RUNS) < 0)
return -1;
if (test_alloc_perf("rte_memzone_reserve", memzone_alloc, memzone_free,
NULL, memset_us_gb, RTE_MAX_MEMZONE - 1) < 0)
return -1;
return 0;
}
REGISTER_TEST_COMMAND(malloc_perf_autotest, test_malloc_perf);