numam-dpdk/app/test/test_pie.c
Jie Zhou 3c60274c09 test: skip unsupported tests on Windows
Skip tests which are not yet supported for Windows:
- The libraries that tests depend on are not enabled on Windows yet
- The tests can compile but with issue still under investigation
    * test_func_reentrancy:
      Windows EAL has no protection against repeated calls.
    * test_lcores:
      Execution enters an infinite loops, requires investigation.
    * test_rcu_qsbr_perf:
      Execution hangs on Windows, requires investigation.

Signed-off-by: Jie Zhou <jizh@linux.microsoft.com>
Signed-off-by: Dmitry Kozlyuk <dmitry.kozliuk@gmail.com>
Acked-by: Tyler Retzlaff <roretzla@linux.microsoft.com>
2022-02-08 14:19:40 +01:00

1093 lines
26 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include "test.h"
#ifdef RTE_EXEC_ENV_WINDOWS
static int
test_pie(void)
{
printf("pie not supported on Windows, skipping test\n");
return TEST_SKIPPED;
}
static int
test_pie_perf(void)
{
printf("pie_perf not supported on Windows, skipping test\n");
return TEST_SKIPPED;
}
static int
test_pie_all(void)
{
printf("pie_all not supported on Windows, skipping test\n");
return TEST_SKIPPED;
}
#else
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/time.h>
#include <time.h>
#include <math.h>
#include <rte_pie.h>
#ifdef __INTEL_COMPILER
#pragma warning(disable:2259) /* conversion may lose significant bits */
#pragma warning(disable:181) /* Arg incompatible with format string */
#endif
/**< structures for testing rte_pie performance and function */
struct test_rte_pie_config { /**< Test structure for RTE_PIE config */
struct rte_pie_config *pconfig; /**< RTE_PIE configuration parameters */
uint8_t num_cfg; /**< Number of RTE_PIE configs to test */
uint16_t qdelay_ref; /**< Latency Target (milliseconds) */
uint16_t *dp_update_interval; /**< Update interval for drop probability
* (milliseconds)
*/
uint16_t *max_burst; /**< Max Burst Allowance (milliseconds) */
uint16_t tailq_th; /**< Tailq drop threshold (packet counts) */
};
struct test_queue { /**< Test structure for RTE_PIE Queues */
struct rte_pie *pdata_in; /**< RTE_PIE runtime data input */
struct rte_pie *pdata_out; /**< RTE_PIE runtime data output*/
uint32_t num_queues; /**< Number of RTE_PIE queues to test */
uint32_t *qlen; /**< Queue size */
uint32_t q_ramp_up; /**< Num of enqueues to ramp up the queue */
double drop_tolerance; /**< Drop tolerance of packets not enqueued */
};
struct test_var { /**< Test variables used for testing RTE_PIE */
uint32_t num_iterations; /**< Number of test iterations */
uint32_t num_ops; /**< Number of test operations */
uint64_t clk_freq; /**< CPU clock frequency */
uint32_t *dropped; /**< Test operations dropped */
uint32_t *enqueued; /**< Test operations enqueued */
uint32_t *dequeued; /**< Test operations dequeued */
};
struct test_config { /**< Primary test structure for RTE_PIE */
const char *ifname; /**< Interface name */
const char *msg; /**< Test message for display */
const char *htxt; /**< Header txt display for result output */
struct test_rte_pie_config *tconfig; /**< Test structure for RTE_PIE config */
struct test_queue *tqueue; /**< Test structure for RTE_PIE Queues */
struct test_var *tvar; /**< Test variables used for testing RTE_PIE */
uint32_t *tlevel; /**< Queue levels */
};
enum test_result {
FAIL = 0,
PASS
};
/**< Test structure to define tests to run */
struct tests {
struct test_config *testcfg;
enum test_result (*testfn)(struct test_config *cfg);
};
struct rdtsc_prof {
uint64_t clk_start;
uint64_t clk_min; /**< min clocks */
uint64_t clk_max; /**< max clocks */
uint64_t clk_avgc; /**< count to calc average */
double clk_avg; /**< cumulative sum to calc average */
const char *name;
};
static const uint64_t port_speed_bytes = (10ULL*1000ULL*1000ULL*1000ULL)/8ULL;
static double inv_cycles_per_byte;
static void init_port_ts(uint64_t cpu_clock)
{
double cycles_per_byte = (double)(cpu_clock) / (double)(port_speed_bytes);
inv_cycles_per_byte = 1.0 / cycles_per_byte;
}
static uint64_t get_port_ts(void)
{
return (uint64_t)((double)rte_rdtsc() * inv_cycles_per_byte);
}
static void rdtsc_prof_init(struct rdtsc_prof *p, const char *name)
{
p->clk_min = (uint64_t)(-1LL);
p->clk_max = 0;
p->clk_avg = 0;
p->clk_avgc = 0;
p->name = name;
}
static inline void rdtsc_prof_start(struct rdtsc_prof *p)
{
p->clk_start = rte_rdtsc_precise();
}
static inline void rdtsc_prof_end(struct rdtsc_prof *p)
{
uint64_t clk_start = rte_rdtsc() - p->clk_start;
p->clk_avgc++;
p->clk_avg += (double) clk_start;
if (clk_start > p->clk_max)
p->clk_max = clk_start;
if (clk_start < p->clk_min)
p->clk_min = clk_start;
}
static void rdtsc_prof_print(struct rdtsc_prof *p)
{
if (p->clk_avgc > 0) {
printf("RDTSC stats for %s: n=%" PRIu64 ", min=%" PRIu64
",max=%" PRIu64 ", avg=%.1f\n",
p->name,
p->clk_avgc,
p->clk_min,
p->clk_max,
(p->clk_avg / ((double) p->clk_avgc)));
}
}
static uint16_t rte_pie_get_active(const struct rte_pie_config *pie_cfg,
struct rte_pie *pie)
{
/**< Flag for activating/deactivating pie */
RTE_SET_USED(pie_cfg);
return pie->active;
}
static void rte_pie_set_active(const struct rte_pie_config *pie_cfg,
struct rte_pie *pie,
uint16_t active)
{
/**< Flag for activating/deactivating pie */
RTE_SET_USED(pie_cfg);
pie->active = active;
}
/**
* Read the drop probability
*/
static double rte_pie_get_drop_prob(const struct rte_pie_config *pie_cfg,
struct rte_pie *pie)
{
/**< Current packet drop probability */
RTE_SET_USED(pie_cfg);
return pie->drop_prob;
}
static double rte_pie_get_avg_dq_time(const struct rte_pie_config *pie_cfg,
struct rte_pie *pie)
{
/**< Current packet drop probability */
RTE_SET_USED(pie_cfg);
return pie->avg_dq_time;
}
static double calc_drop_rate(uint32_t enqueued, uint32_t dropped)
{
return (double)dropped / ((double)enqueued + (double)dropped);
}
/**
* check if drop rate matches drop probability within tolerance
*/
static int check_drop_rate(double *diff, double drop_rate, double drop_prob,
double tolerance)
{
double abs_diff = 0.0;
int ret = 1;
abs_diff = fabs(drop_rate - drop_prob);
if ((int)abs_diff == 0) {
*diff = 0.0;
} else {
*diff = (abs_diff / drop_prob) * 100.0;
if (*diff > tolerance)
ret = 0;
}
return ret;
}
/**
* initialize the test rte_pie config
*/
static enum test_result
test_rte_pie_init(struct test_config *tcfg)
{
unsigned int i = 0;
tcfg->tvar->clk_freq = rte_get_timer_hz();
init_port_ts(tcfg->tvar->clk_freq);
for (i = 0; i < tcfg->tconfig->num_cfg; i++) {
if (rte_pie_config_init(&tcfg->tconfig->pconfig[i],
(uint16_t)tcfg->tconfig->qdelay_ref,
(uint16_t)tcfg->tconfig->dp_update_interval[i],
(uint16_t)tcfg->tconfig->max_burst[i],
(uint16_t)tcfg->tconfig->tailq_th) != 0) {
return FAIL;
}
}
*tcfg->tqueue->qlen = 0;
*tcfg->tvar->dropped = 0;
*tcfg->tvar->enqueued = 0;
return PASS;
}
/**
* enqueue until actual queue size reaches target level
*/
static int
increase_qsize(struct rte_pie_config *pie_cfg,
struct rte_pie *pie,
uint32_t *qlen,
uint32_t pkt_len,
uint32_t attempts)
{
uint32_t i = 0;
for (i = 0; i < attempts; i++) {
int ret = 0;
/**
* enqueue
*/
ret = rte_pie_enqueue(pie_cfg, pie, *qlen, pkt_len, get_port_ts());
/**
* check if target actual queue size has been reached
*/
if (ret == 0)
return 0;
}
/**
* no success
*/
return -1;
}
/**
* functional test enqueue/dequeue packets
*/
static void
enqueue_dequeue_func(struct rte_pie_config *pie_cfg,
struct rte_pie *pie,
uint32_t *qlen,
uint32_t num_ops,
uint32_t *enqueued,
uint32_t *dropped)
{
uint32_t i = 0;
for (i = 0; i < num_ops; i++) {
int ret = 0;
/**
* enqueue
*/
ret = rte_pie_enqueue(pie_cfg, pie, *qlen, sizeof(uint32_t),
get_port_ts());
if (ret == 0)
(*enqueued)++;
else
(*dropped)++;
}
}
/**
* setup default values for the Functional test structures
*/
static struct rte_pie_config ft_wpconfig[1];
static struct rte_pie ft_rtdata[1];
static uint32_t ft_q[] = {0};
static uint32_t ft_dropped[] = {0};
static uint32_t ft_enqueued[] = {0};
static uint16_t ft_max_burst[] = {64};
static uint16_t ft_dp_update_interval[] = {150};
static struct test_rte_pie_config ft_tconfig = {
.pconfig = ft_wpconfig,
.num_cfg = RTE_DIM(ft_wpconfig),
.qdelay_ref = 15,
.dp_update_interval = ft_dp_update_interval,
.max_burst = ft_max_burst,
.tailq_th = 15,
};
static struct test_queue ft_tqueue = {
.pdata_in = ft_rtdata,
.num_queues = RTE_DIM(ft_rtdata),
.qlen = ft_q,
.q_ramp_up = 10,
.drop_tolerance = 0,
};
static struct test_var ft_tvar = {
.num_iterations = 0,
.num_ops = 10000,
.clk_freq = 0,
.dropped = ft_dropped,
.enqueued = ft_enqueued,
};
/**
* Test F1: functional test 1
*/
static uint32_t ft_tlevels[] = {6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66,
72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144};
static struct test_config func_test_config1 = {
.ifname = "functional test interface",
.msg = "functional test : use one pie configuration\n\n",
.htxt = " "
"drop probability "
"enqueued "
"dropped "
"drop prob % "
"drop rate % "
"diff % "
"tolerance % "
"active "
"\n",
.tconfig = &ft_tconfig,
.tqueue = &ft_tqueue,
.tvar = &ft_tvar,
.tlevel = ft_tlevels,
};
static enum test_result func_test1(struct test_config *tcfg)
{
enum test_result result = PASS;
uint32_t i = 0;
printf("%s", tcfg->msg);
if (test_rte_pie_init(tcfg) != PASS) {
result = FAIL;
goto out;
}
printf("%s", tcfg->htxt);
/**
* reset rte_pie run-time data
*/
rte_pie_rt_data_init(tcfg->tqueue->pdata_in);
rte_pie_set_active(NULL, tcfg->tqueue->pdata_in, 1);
*tcfg->tvar->enqueued = 0;
*tcfg->tvar->dropped = 0;
if (increase_qsize(&tcfg->tconfig->pconfig[i],
tcfg->tqueue->pdata_in,
tcfg->tqueue->qlen,
tcfg->tlevel[i],
tcfg->tqueue->q_ramp_up) != 0) {
fprintf(stderr, "Fail: increase qsize\n");
result = FAIL;
goto out;
}
for (i = 0; i < RTE_DIM(ft_tlevels); i++) {
const char *label = NULL;
uint16_t prob = 0;
uint16_t active = 0;
double drop_rate = 1.0;
double drop_prob = 0.0;
double diff = 0.0;
enqueue_dequeue_func(&tcfg->tconfig->pconfig[i],
tcfg->tqueue->pdata_in,
tcfg->tqueue->qlen,
tcfg->tvar->num_ops,
tcfg->tvar->enqueued,
tcfg->tvar->dropped);
drop_rate = calc_drop_rate(*tcfg->tvar->enqueued,
*tcfg->tvar->dropped);
drop_prob = rte_pie_get_drop_prob(NULL, tcfg->tqueue->pdata_in);
if (drop_prob != 0) {
fprintf(stderr, "Fail: check drop prob\n");
result = FAIL;
}
if (drop_rate != 0) {
fprintf(stderr, "Fail: check drop rate\n");
result = FAIL;
}
label = "Summary ";
active = rte_pie_get_active(NULL, tcfg->tqueue->pdata_in);
printf("%s%-16u%-12u%-12u%-12.4lf%-12.4lf%-12.4lf%-12.4lf%-8i\n",
label, prob, *tcfg->tvar->enqueued, *tcfg->tvar->dropped,
drop_prob * 100.0, drop_rate * 100.0, diff,
(double)tcfg->tqueue->drop_tolerance, active);
}
out:
return result;
}
/**
* Test F2: functional test 2
*/
static uint32_t ft2_tlevel[] = {127};
static uint16_t ft2_max_burst[] = {1, 2, 8, 16, 32, 64, 128, 256, 512, 1024};
static uint16_t ft2_dp_update_interval[] = {
10, 20, 50, 150, 300, 600, 900, 1200, 1500, 3000};
static struct rte_pie_config ft2_pconfig[10];
static struct test_rte_pie_config ft2_tconfig = {
.pconfig = ft2_pconfig,
.num_cfg = RTE_DIM(ft2_pconfig),
.qdelay_ref = 15,
.dp_update_interval = ft2_dp_update_interval,
.max_burst = ft2_max_burst,
.tailq_th = 15,
};
static struct test_config func_test_config2 = {
.ifname = "functional test 2 interface",
.msg = "functional test 2 : use several PIE configurations,\n"
" compare drop rate to drop probability\n\n",
.htxt = "PIE config "
"avg queue size "
"enqueued "
"dropped "
"drop prob % "
"drop rate % "
"diff % "
"tolerance % "
"\n",
.tconfig = &ft2_tconfig,
.tqueue = &ft_tqueue,
.tvar = &ft_tvar,
.tlevel = ft2_tlevel,
};
static enum test_result func_test2(struct test_config *tcfg)
{
enum test_result result = PASS;
uint32_t i = 0;
printf("%s", tcfg->msg);
printf("%s", tcfg->htxt);
for (i = 0; i < tcfg->tconfig->num_cfg; i++) {
uint32_t avg = 0;
double drop_rate = 0.0;
double drop_prob = 0.0;
double diff = 0.0;
if (test_rte_pie_init(tcfg) != PASS) {
result = FAIL;
goto out;
}
rte_pie_rt_data_init(tcfg->tqueue->pdata_in);
rte_pie_set_active(NULL, tcfg->tqueue->pdata_in, 1);
*tcfg->tvar->enqueued = 0;
*tcfg->tvar->dropped = 0;
if (increase_qsize(&tcfg->tconfig->pconfig[i],
tcfg->tqueue->pdata_in,
tcfg->tqueue->qlen,
*tcfg->tlevel,
tcfg->tqueue->q_ramp_up) != 0) {
result = FAIL;
goto out;
}
enqueue_dequeue_func(&tcfg->tconfig->pconfig[i],
tcfg->tqueue->pdata_in,
tcfg->tqueue->qlen,
tcfg->tvar->num_ops,
tcfg->tvar->enqueued,
tcfg->tvar->dropped);
avg = rte_pie_get_avg_dq_time(NULL, tcfg->tqueue->pdata_in);
drop_rate = calc_drop_rate(*tcfg->tvar->enqueued,
*tcfg->tvar->dropped);
drop_prob = rte_pie_get_drop_prob(NULL, tcfg->tqueue->pdata_in);
if (!check_drop_rate(&diff, drop_rate, drop_prob,
(double)tcfg->tqueue->drop_tolerance)) {
fprintf(stderr, "Fail: drop rate outside tolerance\n");
result = FAIL;
}
printf("%-15u%-15u%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf\n",
i, avg, *tcfg->tvar->enqueued, *tcfg->tvar->dropped,
drop_prob * 100.0, drop_rate * 100.0, diff,
(double)tcfg->tqueue->drop_tolerance);
}
out:
return result;
}
static uint32_t ft3_qlen[] = {100};
static struct test_rte_pie_config ft3_tconfig = {
.pconfig = ft_wpconfig,
.num_cfg = RTE_DIM(ft_wpconfig),
.qdelay_ref = 15,
.dp_update_interval = ft_dp_update_interval,
.max_burst = ft_max_burst,
.tailq_th = 15,
};
static struct test_queue ft3_tqueue = {
.pdata_in = ft_rtdata,
.num_queues = RTE_DIM(ft_rtdata),
.qlen = ft3_qlen,
.q_ramp_up = 10,
.drop_tolerance = 0,
};
static struct test_var ft3_tvar = {
.num_iterations = 0,
.num_ops = 10000,
.clk_freq = 0,
.dropped = ft_dropped,
.enqueued = ft_enqueued,
};
/**
* Test F3: functional test 3
*/
static uint32_t ft3_tlevels[] = {64, 127, 222};
static struct test_config func_test_config3 = {
.ifname = "functional test interface",
.msg = "functional test 2 : use one pie configuration\n"
"using non zero qlen\n\n",
.htxt = " "
"drop probability "
"enqueued "
"dropped "
"drop prob % "
"drop rate % "
"diff % "
"tolerance % "
"active "
"\n",
.tconfig = &ft3_tconfig,
.tqueue = &ft3_tqueue,
.tvar = &ft3_tvar,
.tlevel = ft3_tlevels,
};
static enum test_result func_test3(struct test_config *tcfg)
{
enum test_result result = PASS;
uint32_t i = 0;
printf("%s", tcfg->msg);
if (test_rte_pie_init(tcfg) != PASS) {
result = FAIL;
goto out;
}
printf("%s", tcfg->htxt);
/**
* reset rte_pie run-time data
*/
rte_pie_rt_data_init(tcfg->tqueue->pdata_in);
rte_pie_set_active(NULL, tcfg->tqueue->pdata_in, 1);
*tcfg->tvar->enqueued = 0;
*tcfg->tvar->dropped = 0;
if (increase_qsize(&tcfg->tconfig->pconfig[i],
tcfg->tqueue->pdata_in,
tcfg->tqueue->qlen,
tcfg->tlevel[i],
tcfg->tqueue->q_ramp_up) != 0) {
fprintf(stderr, "Fail: increase qsize\n");
result = FAIL;
goto out;
}
for (i = 0; i < RTE_DIM(ft_tlevels); i++) {
const char *label = NULL;
uint16_t prob = 0;
uint16_t active = 0;
double drop_rate = 1.0;
double drop_prob = 0.0;
double diff = 0.0;
enqueue_dequeue_func(&tcfg->tconfig->pconfig[i],
tcfg->tqueue->pdata_in,
tcfg->tqueue->qlen,
tcfg->tvar->num_ops,
tcfg->tvar->enqueued,
tcfg->tvar->dropped);
drop_rate = calc_drop_rate(*tcfg->tvar->enqueued,
*tcfg->tvar->dropped);
drop_prob = rte_pie_get_drop_prob(NULL, tcfg->tqueue->pdata_in);
if (drop_prob != 0) {
fprintf(stderr, "Fail: check drop prob\n");
result = FAIL;
}
if (drop_rate != 0) {
fprintf(stderr, "Fail: check drop rate\n");
result = FAIL;
}
label = "Summary ";
active = rte_pie_get_active(NULL, tcfg->tqueue->pdata_in);
printf("%s%-16u%-12u%-12u%-12.4lf%-12.4lf%-12.4lf%-12.4lf%-8i\n",
label, prob, *tcfg->tvar->enqueued, *tcfg->tvar->dropped,
drop_prob * 100.0, drop_rate * 100.0, diff,
(double)tcfg->tqueue->drop_tolerance, active);
}
out:
return result;
}
/**
* setup default values for the Performance test structures
*/
static struct rte_pie_config pt_wrconfig[1];
static struct rte_pie pt_rtdata[1];
static struct rte_pie pt_wtdata[1];
static uint32_t pt_q[] = {0};
static uint32_t pt_dropped[] = {0};
static uint32_t pt_enqueued[] = {0};
static uint32_t pt_dequeued[] = {0};
static uint16_t pt_max_burst[] = {64};
static uint16_t pt_dp_update_interval[] = {150};
static struct test_rte_pie_config pt_tconfig = {
.pconfig = pt_wrconfig,
.num_cfg = RTE_DIM(pt_wrconfig),
.qdelay_ref = 15,
.dp_update_interval = pt_dp_update_interval,
.max_burst = pt_max_burst,
.tailq_th = 150,
};
static struct test_queue pt_tqueue = {
.pdata_in = pt_rtdata,
.num_queues = RTE_DIM(pt_rtdata),
.qlen = pt_q,
.q_ramp_up = 1000000,
.drop_tolerance = 0, /* 0 percent */
};
static struct test_rte_pie_config pt_tconfig2 = {
.pconfig = pt_wrconfig,
.num_cfg = RTE_DIM(pt_wrconfig),
.qdelay_ref = 15,
.dp_update_interval = pt_dp_update_interval,
.max_burst = pt_max_burst,
.tailq_th = 150,
};
static struct test_queue pt_tqueue2 = {
.pdata_in = pt_rtdata,
.pdata_out = pt_wtdata,
.num_queues = RTE_DIM(pt_rtdata),
.qlen = pt_q,
.q_ramp_up = 1000000,
.drop_tolerance = 0, /* 0 percent */
};
/**
* enqueue/dequeue packets
* aka
* rte_sched_port_enqueue(port, in_mbufs, 10);
* rte_sched_port_dequeue(port, out_mbufs, 10);
*/
static void enqueue_dequeue_perf(struct rte_pie_config *pie_cfg,
struct rte_pie *pie_in,
struct rte_pie *pie_out,
uint32_t *qlen,
uint32_t num_ops,
uint32_t *enqueued,
uint32_t *dropped,
uint32_t *dequeued,
struct rdtsc_prof *prof)
{
uint32_t i = 0;
if (pie_cfg == NULL) {
printf("%s: Error: PIE configuration cannot be empty.\n", __func__);
return;
}
if (pie_in == NULL) {
printf("%s: Error: PIE enqueue data cannot be empty.\n", __func__);
return;
}
for (i = 0; i < num_ops; i++) {
uint64_t ts = 0;
int ret = 0;
/**
* enqueue
*/
ts = get_port_ts();
rdtsc_prof_start(prof);
ret = rte_pie_enqueue(pie_cfg, pie_in, *qlen,
1000*sizeof(uint32_t), ts);
rdtsc_prof_end(prof);
if (ret == 0)
(*enqueued)++;
else
(*dropped)++;
if (pie_out != NULL) {
ts = get_port_ts();
rdtsc_prof_start(prof);
rte_pie_dequeue(pie_out, 1000*sizeof(uint32_t), ts);
rdtsc_prof_end(prof);
(*dequeued)++;
}
}
}
/**
* Setup test structures for tests P1
* performance tests 1
*/
static uint32_t pt1_tlevel[] = {80};
static struct test_var perf1_tvar = {
.num_iterations = 0,
.num_ops = 30000,
.clk_freq = 0,
.dropped = pt_dropped,
.enqueued = pt_enqueued
};
static struct test_config perf_test_config = {
.ifname = "performance test 1 interface",
.msg = "performance test 1 : use one PIE configuration,\n"
" measure enqueue performance\n\n",
.tconfig = &pt_tconfig,
.tqueue = &pt_tqueue,
.tvar = &perf1_tvar,
.tlevel = pt1_tlevel,
};
/**
* Performance test function to measure enqueue performance.
*
*/
static enum test_result perf_test(struct test_config *tcfg)
{
enum test_result result = PASS;
struct rdtsc_prof prof = {0, 0, 0, 0, 0.0, NULL};
uint32_t total = 0;
printf("%s", tcfg->msg);
rdtsc_prof_init(&prof, "enqueue");
if (test_rte_pie_init(tcfg) != PASS) {
result = FAIL;
goto out;
}
/**
* initialize the rte_pie run time data structure
*/
rte_pie_rt_data_init(tcfg->tqueue->pdata_in);
rte_pie_set_active(NULL, tcfg->tqueue->pdata_in, 1);
*tcfg->tvar->enqueued = 0;
*tcfg->tvar->dropped = 0;
enqueue_dequeue_perf(tcfg->tconfig->pconfig,
tcfg->tqueue->pdata_in,
NULL,
tcfg->tqueue->qlen,
tcfg->tvar->num_ops,
tcfg->tvar->enqueued,
tcfg->tvar->dropped,
tcfg->tvar->dequeued,
&prof);
total = *tcfg->tvar->enqueued + *tcfg->tvar->dropped;
printf("\ntotal: %u, enqueued: %u (%.2lf%%), dropped: %u (%.2lf%%)\n",
total, *tcfg->tvar->enqueued,
((double)(*tcfg->tvar->enqueued) / (double)total) * 100.0,
*tcfg->tvar->dropped,
((double)(*tcfg->tvar->dropped) / (double)total) * 100.0);
rdtsc_prof_print(&prof);
out:
return result;
}
/**
* Setup test structures for tests P2
* performance tests 2
*/
static uint32_t pt2_tlevel[] = {80};
static struct test_var perf2_tvar = {
.num_iterations = 0,
.num_ops = 30000,
.clk_freq = 0,
.dropped = pt_dropped,
.enqueued = pt_enqueued,
.dequeued = pt_dequeued
};
static struct test_config perf_test_config2 = {
.ifname = "performance test 2 interface",
.msg = "performance test 2 : use one PIE configuration,\n"
" measure enqueue & dequeue performance\n\n",
.tconfig = &pt_tconfig2,
.tqueue = &pt_tqueue2,
.tvar = &perf2_tvar,
.tlevel = pt2_tlevel,
};
/**
* Performance test function to measure enqueue & dequeue performance.
*
*/
static enum test_result perf_test2(struct test_config *tcfg)
{
enum test_result result = PASS;
struct rdtsc_prof prof = {0, 0, 0, 0, 0.0, NULL};
uint32_t total = 0;
printf("%s", tcfg->msg);
rdtsc_prof_init(&prof, "enqueue");
if (test_rte_pie_init(tcfg) != PASS) {
result = FAIL;
goto out;
}
/**
* initialize the rte_pie run time data structure
*/
rte_pie_rt_data_init(tcfg->tqueue->pdata_in);
rte_pie_set_active(NULL, tcfg->tqueue->pdata_in, 1);
*tcfg->tvar->enqueued = 0;
*tcfg->tvar->dequeued = 0;
*tcfg->tvar->dropped = 0;
enqueue_dequeue_perf(tcfg->tconfig->pconfig,
tcfg->tqueue->pdata_in,
tcfg->tqueue->pdata_out,
tcfg->tqueue->qlen,
tcfg->tvar->num_ops,
tcfg->tvar->enqueued,
tcfg->tvar->dropped,
tcfg->tvar->dequeued,
&prof);
total = *tcfg->tvar->enqueued + *tcfg->tvar->dropped;
printf("\ntotal: %u, dequeued: %u (%.2lf%%), dropped: %u (%.2lf%%)\n",
total, *tcfg->tvar->dequeued,
((double)(*tcfg->tvar->dequeued) / (double)total) * 100.0,
*tcfg->tvar->dropped,
((double)(*tcfg->tvar->dropped) / (double)total) * 100.0);
rdtsc_prof_print(&prof);
out:
return result;
}
/**
* define the functional tests to be executed fast
*/
struct tests func_pie_tests_quick[] = {
{ &func_test_config1, func_test1 },
{ &func_test_config2, func_test2 },
};
/**
* define the functional and performance tests to be executed
*/
struct tests func_pie_tests[] = {
{ &func_test_config1, func_test1 },
{ &func_test_config2, func_test2 },
{ &func_test_config3, func_test3 },
};
struct tests perf_pie_tests[] = {
{ &perf_test_config, perf_test },
{ &perf_test_config2, perf_test2 },
};
/**
* function to execute the required pie tests
*/
static void run_tests(struct tests *test_type, uint32_t test_count,
uint32_t *num_tests, uint32_t *num_pass)
{
enum test_result result = PASS;
uint32_t i = 0;
static const char *bar_str = "-------------------------------------"
"-------------------------------------------";
static const char *bar_pass_str = "-------------------------------------"
"<pass>-------------------------------------";
static const char *bar_fail_str = "-------------------------------------"
"<fail>-------------------------------------";
for (i = 0; i < test_count; i++) {
printf("\n%s\n", bar_str);
result = test_type[i].testfn(test_type[i].testcfg);
(*num_tests)++;
if (result == PASS) {
(*num_pass)++;
printf("%s\n", bar_pass_str);
} else {
printf("%s\n", bar_fail_str);
}
}
}
/**
* check if functions accept invalid parameters
*
* First, all functions will be called without initialized PIE
* Then, all of them will be called with NULL/invalid parameters
*
* Some functions are not tested as they are performance-critical and thus
* don't do any parameter checking.
*/
static int
test_invalid_parameters(void)
{
struct rte_pie_config config;
static const char *shf_str = "rte_pie_config_init should have failed!";
static const char *shf_rt_str = "rte_pie_rt_data_init should have failed!";
/* NULL config */
if (rte_pie_rt_data_init(NULL) == 0) {
printf("%i: %s\n", __LINE__, shf_rt_str);
return -1;
}
/* NULL config */
if (rte_pie_config_init(NULL, 0, 0, 0, 0) == 0) {
printf("%i%s\n", __LINE__, shf_str);
return -1;
}
/* qdelay_ref <= 0 */
if (rte_pie_config_init(&config, 0, 1, 1, 1) == 0) {
printf("%i%s\n", __LINE__, shf_str);
return -1;
}
/* dp_update_interval <= 0 */
if (rte_pie_config_init(&config, 1, 0, 1, 1) == 0) {
printf("%i%s\n", __LINE__, shf_str);
return -1;
}
/* max_burst <= 0 */
if (rte_pie_config_init(&config, 1, 1, 0, 1) == 0) {
printf("%i%s\n", __LINE__, shf_str);
return -1;
}
/* tailq_th <= 0 */
if (rte_pie_config_init(&config, 1, 1, 1, 0) == 0) {
printf("%i%s\n", __LINE__, shf_str);
return -1;
}
RTE_SET_USED(config);
return 0;
}
static void
show_stats(const uint32_t num_tests, const uint32_t num_pass)
{
if (num_pass == num_tests)
printf("[total: %u, pass: %u]\n", num_tests, num_pass);
else
printf("[total: %u, pass: %u, fail: %u]\n", num_tests, num_pass,
num_tests - num_pass);
}
static int
tell_the_result(const uint32_t num_tests, const uint32_t num_pass)
{
return (num_pass == num_tests) ? 0 : 1;
}
static int
test_pie(void)
{
uint32_t num_tests = 0;
uint32_t num_pass = 0;
if (test_invalid_parameters() < 0)
return -1;
run_tests(func_pie_tests_quick, RTE_DIM(func_pie_tests_quick),
&num_tests, &num_pass);
show_stats(num_tests, num_pass);
return tell_the_result(num_tests, num_pass);
}
static int
test_pie_perf(void)
{
uint32_t num_tests = 0;
uint32_t num_pass = 0;
run_tests(perf_pie_tests, RTE_DIM(perf_pie_tests), &num_tests, &num_pass);
show_stats(num_tests, num_pass);
return tell_the_result(num_tests, num_pass);
}
static int
test_pie_all(void)
{
uint32_t num_tests = 0;
uint32_t num_pass = 0;
if (test_invalid_parameters() < 0)
return -1;
run_tests(func_pie_tests, RTE_DIM(func_pie_tests), &num_tests, &num_pass);
run_tests(perf_pie_tests, RTE_DIM(perf_pie_tests), &num_tests, &num_pass);
show_stats(num_tests, num_pass);
return tell_the_result(num_tests, num_pass);
}
#endif /* !RTE_EXEC_ENV_WINDOWS */
REGISTER_TEST_COMMAND(pie_autotest, test_pie);
REGISTER_TEST_COMMAND(pie_perf, test_pie_perf);
REGISTER_TEST_COMMAND(pie_all, test_pie_all);