numam-dpdk/drivers/net/bnxt/bnxt_ethdev.c
Ajit Khaparde 9cea9e5672 net/bnxt: fix HWRM command failures during VF unload
In some cases when a VF driver is unloaded after the PF driver,
certain HWRM commands are returned with an error.
Instead the PF can tell the FW to permit these commands in order
to allow a clean unload.

Signed-off-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
2017-11-01 22:17:06 +01:00

3121 lines
85 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) Broadcom Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Broadcom Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <inttypes.h>
#include <stdbool.h>
#include <rte_dev.h>
#include <rte_ethdev.h>
#include <rte_ethdev_pci.h>
#include <rte_malloc.h>
#include <rte_cycles.h>
#include "bnxt.h"
#include "bnxt_cpr.h"
#include "bnxt_filter.h"
#include "bnxt_hwrm.h"
#include "bnxt_irq.h"
#include "bnxt_ring.h"
#include "bnxt_rxq.h"
#include "bnxt_rxr.h"
#include "bnxt_stats.h"
#include "bnxt_txq.h"
#include "bnxt_txr.h"
#include "bnxt_vnic.h"
#include "hsi_struct_def_dpdk.h"
#include "bnxt_nvm_defs.h"
#define DRV_MODULE_NAME "bnxt"
static const char bnxt_version[] =
"Broadcom Cumulus driver " DRV_MODULE_NAME "\n";
#define PCI_VENDOR_ID_BROADCOM 0x14E4
#define BROADCOM_DEV_ID_STRATUS_NIC_VF 0x1609
#define BROADCOM_DEV_ID_STRATUS_NIC 0x1614
#define BROADCOM_DEV_ID_57414_VF 0x16c1
#define BROADCOM_DEV_ID_57301 0x16c8
#define BROADCOM_DEV_ID_57302 0x16c9
#define BROADCOM_DEV_ID_57304_PF 0x16ca
#define BROADCOM_DEV_ID_57304_VF 0x16cb
#define BROADCOM_DEV_ID_57417_MF 0x16cc
#define BROADCOM_DEV_ID_NS2 0x16cd
#define BROADCOM_DEV_ID_57311 0x16ce
#define BROADCOM_DEV_ID_57312 0x16cf
#define BROADCOM_DEV_ID_57402 0x16d0
#define BROADCOM_DEV_ID_57404 0x16d1
#define BROADCOM_DEV_ID_57406_PF 0x16d2
#define BROADCOM_DEV_ID_57406_VF 0x16d3
#define BROADCOM_DEV_ID_57402_MF 0x16d4
#define BROADCOM_DEV_ID_57407_RJ45 0x16d5
#define BROADCOM_DEV_ID_57412 0x16d6
#define BROADCOM_DEV_ID_57414 0x16d7
#define BROADCOM_DEV_ID_57416_RJ45 0x16d8
#define BROADCOM_DEV_ID_57417_RJ45 0x16d9
#define BROADCOM_DEV_ID_5741X_VF 0x16dc
#define BROADCOM_DEV_ID_57412_MF 0x16de
#define BROADCOM_DEV_ID_57314 0x16df
#define BROADCOM_DEV_ID_57317_RJ45 0x16e0
#define BROADCOM_DEV_ID_5731X_VF 0x16e1
#define BROADCOM_DEV_ID_57417_SFP 0x16e2
#define BROADCOM_DEV_ID_57416_SFP 0x16e3
#define BROADCOM_DEV_ID_57317_SFP 0x16e4
#define BROADCOM_DEV_ID_57404_MF 0x16e7
#define BROADCOM_DEV_ID_57406_MF 0x16e8
#define BROADCOM_DEV_ID_57407_SFP 0x16e9
#define BROADCOM_DEV_ID_57407_MF 0x16ea
#define BROADCOM_DEV_ID_57414_MF 0x16ec
#define BROADCOM_DEV_ID_57416_MF 0x16ee
static const struct rte_pci_id bnxt_pci_id_map[] = {
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
BROADCOM_DEV_ID_STRATUS_NIC_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
{ .vendor_id = 0, /* sentinel */ },
};
#define BNXT_ETH_RSS_SUPPORT ( \
ETH_RSS_IPV4 | \
ETH_RSS_NONFRAG_IPV4_TCP | \
ETH_RSS_NONFRAG_IPV4_UDP | \
ETH_RSS_IPV6 | \
ETH_RSS_NONFRAG_IPV6_TCP | \
ETH_RSS_NONFRAG_IPV6_UDP)
static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
/***********************/
/*
* High level utility functions
*/
static void bnxt_free_mem(struct bnxt *bp)
{
bnxt_free_filter_mem(bp);
bnxt_free_vnic_attributes(bp);
bnxt_free_vnic_mem(bp);
bnxt_free_stats(bp);
bnxt_free_tx_rings(bp);
bnxt_free_rx_rings(bp);
bnxt_free_def_cp_ring(bp);
}
static int bnxt_alloc_mem(struct bnxt *bp)
{
int rc;
/* Default completion ring */
rc = bnxt_init_def_ring_struct(bp, SOCKET_ID_ANY);
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_rings(bp, 0, NULL, NULL,
bp->def_cp_ring, "def_cp");
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_vnic_mem(bp);
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_vnic_attributes(bp);
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_filter_mem(bp);
if (rc)
goto alloc_mem_err;
return 0;
alloc_mem_err:
bnxt_free_mem(bp);
return rc;
}
static int bnxt_init_chip(struct bnxt *bp)
{
unsigned int i, rss_idx, fw_idx;
struct rte_eth_link new;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint32_t intr_vector = 0;
uint32_t queue_id, base = BNXT_MISC_VEC_ID;
uint32_t vec = BNXT_MISC_VEC_ID;
int rc;
/* disable uio/vfio intr/eventfd mapping */
rte_intr_disable(intr_handle);
if (bp->eth_dev->data->mtu > ETHER_MTU) {
bp->eth_dev->data->dev_conf.rxmode.jumbo_frame = 1;
bp->flags |= BNXT_FLAG_JUMBO;
} else {
bp->eth_dev->data->dev_conf.rxmode.jumbo_frame = 0;
bp->flags &= ~BNXT_FLAG_JUMBO;
}
rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
if (rc) {
RTE_LOG(ERR, PMD, "HWRM stat ctx alloc failure rc: %x\n", rc);
goto err_out;
}
rc = bnxt_alloc_hwrm_rings(bp);
if (rc) {
RTE_LOG(ERR, PMD, "HWRM ring alloc failure rc: %x\n", rc);
goto err_out;
}
rc = bnxt_alloc_all_hwrm_ring_grps(bp);
if (rc) {
RTE_LOG(ERR, PMD, "HWRM ring grp alloc failure: %x\n", rc);
goto err_out;
}
rc = bnxt_mq_rx_configure(bp);
if (rc) {
RTE_LOG(ERR, PMD, "MQ mode configure failure rc: %x\n", rc);
goto err_out;
}
/* VNIC configuration */
for (i = 0; i < bp->nr_vnics; i++) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
rc = bnxt_hwrm_vnic_alloc(bp, vnic);
if (rc) {
RTE_LOG(ERR, PMD, "HWRM vnic %d alloc failure rc: %x\n",
i, rc);
goto err_out;
}
rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic);
if (rc) {
RTE_LOG(ERR, PMD,
"HWRM vnic %d ctx alloc failure rc: %x\n",
i, rc);
goto err_out;
}
rc = bnxt_hwrm_vnic_cfg(bp, vnic);
if (rc) {
RTE_LOG(ERR, PMD, "HWRM vnic %d cfg failure rc: %x\n",
i, rc);
goto err_out;
}
rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
if (rc) {
RTE_LOG(ERR, PMD,
"HWRM vnic %d filter failure rc: %x\n",
i, rc);
goto err_out;
}
if (vnic->rss_table && vnic->hash_type) {
/*
* Fill the RSS hash & redirection table with
* ring group ids for all VNICs
*/
for (rss_idx = 0, fw_idx = 0;
rss_idx < HW_HASH_INDEX_SIZE;
rss_idx++, fw_idx++) {
if (vnic->fw_grp_ids[fw_idx] ==
INVALID_HW_RING_ID)
fw_idx = 0;
vnic->rss_table[rss_idx] =
vnic->fw_grp_ids[fw_idx];
}
rc = bnxt_hwrm_vnic_rss_cfg(bp, vnic);
if (rc) {
RTE_LOG(ERR, PMD,
"HWRM vnic %d set RSS failure rc: %x\n",
i, rc);
goto err_out;
}
}
bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
if (bp->eth_dev->data->dev_conf.rxmode.enable_lro)
bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
else
bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
}
rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
if (rc) {
RTE_LOG(ERR, PMD,
"HWRM cfa l2 rx mask failure rc: %x\n", rc);
goto err_out;
}
/* check and configure queue intr-vector mapping */
if ((rte_intr_cap_multiple(intr_handle) ||
!RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
intr_vector = bp->eth_dev->data->nb_rx_queues;
RTE_LOG(INFO, PMD, "%s(): intr_vector = %d\n", __func__,
intr_vector);
if (intr_vector > bp->rx_cp_nr_rings) {
RTE_LOG(ERR, PMD, "At most %d intr queues supported",
bp->rx_cp_nr_rings);
return -ENOTSUP;
}
if (rte_intr_efd_enable(intr_handle, intr_vector))
return -1;
}
if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
intr_handle->intr_vec =
rte_zmalloc("intr_vec",
bp->eth_dev->data->nb_rx_queues *
sizeof(int), 0);
if (intr_handle->intr_vec == NULL) {
RTE_LOG(ERR, PMD, "Failed to allocate %d rx_queues"
" intr_vec", bp->eth_dev->data->nb_rx_queues);
return -ENOMEM;
}
RTE_LOG(DEBUG, PMD, "%s(): intr_handle->intr_vec = %p "
"intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
__func__, intr_handle->intr_vec, intr_handle->nb_efd,
intr_handle->max_intr);
}
for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
queue_id++) {
intr_handle->intr_vec[queue_id] = vec;
if (vec < base + intr_handle->nb_efd - 1)
vec++;
}
/* enable uio/vfio intr/eventfd mapping */
rte_intr_enable(intr_handle);
rc = bnxt_get_hwrm_link_config(bp, &new);
if (rc) {
RTE_LOG(ERR, PMD, "HWRM Get link config failure rc: %x\n", rc);
goto err_out;
}
if (!bp->link_info.link_up) {
rc = bnxt_set_hwrm_link_config(bp, true);
if (rc) {
RTE_LOG(ERR, PMD,
"HWRM link config failure rc: %x\n", rc);
goto err_out;
}
}
return 0;
err_out:
bnxt_free_all_hwrm_resources(bp);
return rc;
}
static int bnxt_shutdown_nic(struct bnxt *bp)
{
bnxt_free_all_hwrm_resources(bp);
bnxt_free_all_filters(bp);
bnxt_free_all_vnics(bp);
return 0;
}
static int bnxt_init_nic(struct bnxt *bp)
{
int rc;
bnxt_init_ring_grps(bp);
bnxt_init_vnics(bp);
bnxt_init_filters(bp);
rc = bnxt_init_chip(bp);
if (rc)
return rc;
return 0;
}
/*
* Device configuration and status function
*/
static void bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
struct rte_eth_dev_info *dev_info)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
uint16_t max_vnics, i, j, vpool, vrxq;
unsigned int max_rx_rings;
dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
/* MAC Specifics */
dev_info->max_mac_addrs = bp->max_l2_ctx;
dev_info->max_hash_mac_addrs = 0;
/* PF/VF specifics */
if (BNXT_PF(bp))
dev_info->max_vfs = bp->pdev->max_vfs;
max_rx_rings = RTE_MIN(bp->max_vnics, RTE_MIN(bp->max_l2_ctx,
RTE_MIN(bp->max_rsscos_ctx,
bp->max_stat_ctx)));
/* For the sake of symmetry, max_rx_queues = max_tx_queues */
dev_info->max_rx_queues = max_rx_rings;
dev_info->max_tx_queues = max_rx_rings;
dev_info->reta_size = bp->max_rsscos_ctx;
dev_info->hash_key_size = 40;
max_vnics = bp->max_vnics;
/* Fast path specifics */
dev_info->min_rx_bufsize = 1;
dev_info->max_rx_pktlen = BNXT_MAX_MTU + ETHER_HDR_LEN + ETHER_CRC_LEN
+ VLAN_TAG_SIZE;
dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GRE_TNL_TSO |
DEV_TX_OFFLOAD_IPIP_TNL_TSO |
DEV_TX_OFFLOAD_GENEVE_TNL_TSO;
/* *INDENT-OFF* */
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = 8,
.hthresh = 8,
.wthresh = 0,
},
.rx_free_thresh = 32,
.rx_drop_en = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = 32,
.hthresh = 0,
.wthresh = 0,
},
.tx_free_thresh = 32,
.tx_rs_thresh = 32,
.txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
ETH_TXQ_FLAGS_NOOFFLOADS,
};
eth_dev->data->dev_conf.intr_conf.lsc = 1;
eth_dev->data->dev_conf.intr_conf.rxq = 1;
/* *INDENT-ON* */
/*
* TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
* need further investigation.
*/
/* VMDq resources */
vpool = 64; /* ETH_64_POOLS */
vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
for (i = 0; i < 4; vpool >>= 1, i++) {
if (max_vnics > vpool) {
for (j = 0; j < 5; vrxq >>= 1, j++) {
if (dev_info->max_rx_queues > vrxq) {
if (vpool > vrxq)
vpool = vrxq;
goto found;
}
}
/* Not enough resources to support VMDq */
break;
}
}
/* Not enough resources to support VMDq */
vpool = 0;
vrxq = 0;
found:
dev_info->max_vmdq_pools = vpool;
dev_info->vmdq_queue_num = vrxq;
dev_info->vmdq_pool_base = 0;
dev_info->vmdq_queue_base = 0;
}
/* Configure the device based on the configuration provided */
static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
bp->rx_queues = (void *)eth_dev->data->rx_queues;
bp->tx_queues = (void *)eth_dev->data->tx_queues;
/* Inherit new configurations */
bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
bp->rx_cp_nr_rings = bp->rx_nr_rings;
bp->tx_cp_nr_rings = bp->tx_nr_rings;
if (eth_dev->data->dev_conf.rxmode.jumbo_frame)
eth_dev->data->mtu =
eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
ETHER_HDR_LEN - ETHER_CRC_LEN - VLAN_TAG_SIZE;
return 0;
}
static inline int
rte_bnxt_atomic_write_link_status(struct rte_eth_dev *eth_dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = &eth_dev->data->dev_link;
struct rte_eth_link *src = link;
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return 1;
return 0;
}
static void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
{
struct rte_eth_link *link = &eth_dev->data->dev_link;
if (link->link_status)
RTE_LOG(INFO, PMD, "Port %d Link Up - speed %u Mbps - %s\n",
eth_dev->data->port_id,
(uint32_t)link->link_speed,
(link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
("full-duplex") : ("half-duplex\n"));
else
RTE_LOG(INFO, PMD, "Port %d Link Down\n",
eth_dev->data->port_id);
}
static int bnxt_dev_lsc_intr_setup(struct rte_eth_dev *eth_dev)
{
bnxt_print_link_info(eth_dev);
return 0;
}
static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
int vlan_mask = 0;
int rc;
if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
RTE_LOG(ERR, PMD,
"RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
}
bp->dev_stopped = 0;
rc = bnxt_init_nic(bp);
if (rc)
goto error;
bnxt_link_update_op(eth_dev, 0);
if (eth_dev->data->dev_conf.rxmode.hw_vlan_filter)
vlan_mask |= ETH_VLAN_FILTER_MASK;
if (eth_dev->data->dev_conf.rxmode.hw_vlan_strip)
vlan_mask |= ETH_VLAN_STRIP_MASK;
rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
if (rc)
goto error;
return 0;
error:
bnxt_shutdown_nic(bp);
bnxt_free_tx_mbufs(bp);
bnxt_free_rx_mbufs(bp);
return rc;
}
static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
eth_dev->data->dev_link.link_status = 1;
bnxt_set_hwrm_link_config(bp, true);
return 0;
}
static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
eth_dev->data->dev_link.link_status = 0;
bnxt_set_hwrm_link_config(bp, false);
return 0;
}
/* Unload the driver, release resources */
static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
if (bp->eth_dev->data->dev_started) {
/* TBD: STOP HW queues DMA */
eth_dev->data->dev_link.link_status = 0;
}
bnxt_set_hwrm_link_config(bp, false);
bnxt_hwrm_port_clr_stats(bp);
bnxt_shutdown_nic(bp);
bp->dev_stopped = 1;
}
static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
if (bp->dev_stopped == 0)
bnxt_dev_stop_op(eth_dev);
bnxt_free_tx_mbufs(bp);
bnxt_free_rx_mbufs(bp);
bnxt_free_mem(bp);
if (eth_dev->data->mac_addrs != NULL) {
rte_free(eth_dev->data->mac_addrs);
eth_dev->data->mac_addrs = NULL;
}
if (bp->grp_info != NULL) {
rte_free(bp->grp_info);
bp->grp_info = NULL;
}
}
static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
uint32_t index)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
struct bnxt_vnic_info *vnic;
struct bnxt_filter_info *filter, *temp_filter;
uint32_t pool = RTE_MIN(MAX_FF_POOLS, ETH_64_POOLS);
uint32_t i;
/*
* Loop through all VNICs from the specified filter flow pools to
* remove the corresponding MAC addr filter
*/
for (i = 0; i < pool; i++) {
if (!(pool_mask & (1ULL << i)))
continue;
STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
filter = STAILQ_FIRST(&vnic->filter);
while (filter) {
temp_filter = STAILQ_NEXT(filter, next);
if (filter->mac_index == index) {
STAILQ_REMOVE(&vnic->filter, filter,
bnxt_filter_info, next);
bnxt_hwrm_clear_l2_filter(bp, filter);
filter->mac_index = INVALID_MAC_INDEX;
memset(&filter->l2_addr, 0,
ETHER_ADDR_LEN);
STAILQ_INSERT_TAIL(
&bp->free_filter_list,
filter, next);
}
filter = temp_filter;
}
}
}
}
static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
struct ether_addr *mac_addr,
uint32_t index, uint32_t pool)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
struct bnxt_vnic_info *vnic = STAILQ_FIRST(&bp->ff_pool[pool]);
struct bnxt_filter_info *filter;
if (BNXT_VF(bp)) {
RTE_LOG(ERR, PMD, "Cannot add MAC address to a VF interface\n");
return -ENOTSUP;
}
if (!vnic) {
RTE_LOG(ERR, PMD, "VNIC not found for pool %d!\n", pool);
return -EINVAL;
}
/* Attach requested MAC address to the new l2_filter */
STAILQ_FOREACH(filter, &vnic->filter, next) {
if (filter->mac_index == index) {
RTE_LOG(ERR, PMD,
"MAC addr already existed for pool %d\n", pool);
return -EINVAL;
}
}
filter = bnxt_alloc_filter(bp);
if (!filter) {
RTE_LOG(ERR, PMD, "L2 filter alloc failed\n");
return -ENODEV;
}
STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
filter->mac_index = index;
memcpy(filter->l2_addr, mac_addr, ETHER_ADDR_LEN);
return bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
}
int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
{
int rc = 0;
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
struct rte_eth_link new;
unsigned int cnt = BNXT_LINK_WAIT_CNT;
memset(&new, 0, sizeof(new));
do {
/* Retrieve link info from hardware */
rc = bnxt_get_hwrm_link_config(bp, &new);
if (rc) {
new.link_speed = ETH_LINK_SPEED_100M;
new.link_duplex = ETH_LINK_FULL_DUPLEX;
RTE_LOG(ERR, PMD,
"Failed to retrieve link rc = 0x%x!\n", rc);
goto out;
}
rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
if (!wait_to_complete)
break;
} while (!new.link_status && cnt--);
out:
/* Timed out or success */
if (new.link_status != eth_dev->data->dev_link.link_status ||
new.link_speed != eth_dev->data->dev_link.link_speed) {
rte_bnxt_atomic_write_link_status(eth_dev, &new);
bnxt_print_link_info(eth_dev);
}
return rc;
}
static void bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
struct bnxt_vnic_info *vnic;
if (bp->vnic_info == NULL)
return;
vnic = &bp->vnic_info[0];
vnic->flags |= BNXT_VNIC_INFO_PROMISC;
bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
}
static void bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
struct bnxt_vnic_info *vnic;
if (bp->vnic_info == NULL)
return;
vnic = &bp->vnic_info[0];
vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
}
static void bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
struct bnxt_vnic_info *vnic;
if (bp->vnic_info == NULL)
return;
vnic = &bp->vnic_info[0];
vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
}
static void bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
struct bnxt_vnic_info *vnic;
if (bp->vnic_info == NULL)
return;
vnic = &bp->vnic_info[0];
vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
}
static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
struct bnxt_vnic_info *vnic;
int i;
if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
return -EINVAL;
if (reta_size != HW_HASH_INDEX_SIZE) {
RTE_LOG(ERR, PMD, "The configured hash table lookup size "
"(%d) must equal the size supported by the hardware "
"(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
return -EINVAL;
}
/* Update the RSS VNIC(s) */
for (i = 0; i < MAX_FF_POOLS; i++) {
STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
memcpy(vnic->rss_table, reta_conf, reta_size);
bnxt_hwrm_vnic_rss_cfg(bp, vnic);
}
}
return 0;
}
static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
struct rte_intr_handle *intr_handle
= &bp->pdev->intr_handle;
/* Retrieve from the default VNIC */
if (!vnic)
return -EINVAL;
if (!vnic->rss_table)
return -EINVAL;
if (reta_size != HW_HASH_INDEX_SIZE) {
RTE_LOG(ERR, PMD, "The configured hash table lookup size "
"(%d) must equal the size supported by the hardware "
"(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
return -EINVAL;
}
/* EW - need to revisit here copying from u64 to u16 */
memcpy(reta_conf, vnic->rss_table, reta_size);
if (rte_intr_allow_others(intr_handle)) {
if (eth_dev->data->dev_conf.intr_conf.lsc != 0)
bnxt_dev_lsc_intr_setup(eth_dev);
}
return 0;
}
static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
struct rte_eth_rss_conf *rss_conf)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
struct bnxt_vnic_info *vnic;
uint16_t hash_type = 0;
int i;
/*
* If RSS enablement were different than dev_configure,
* then return -EINVAL
*/
if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
if (!rss_conf->rss_hf)
RTE_LOG(ERR, PMD, "Hash type NONE\n");
} else {
if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
return -EINVAL;
}
bp->flags |= BNXT_FLAG_UPDATE_HASH;
memcpy(&bp->rss_conf, rss_conf, sizeof(*rss_conf));
if (rss_conf->rss_hf & ETH_RSS_IPV4)
hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
if (rss_conf->rss_hf & ETH_RSS_IPV6)
hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
/* Update the RSS VNIC(s) */
for (i = 0; i < MAX_FF_POOLS; i++) {
STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
vnic->hash_type = hash_type;
/*
* Use the supplied key if the key length is
* acceptable and the rss_key is not NULL
*/
if (rss_conf->rss_key &&
rss_conf->rss_key_len <= HW_HASH_KEY_SIZE)
memcpy(vnic->rss_hash_key, rss_conf->rss_key,
rss_conf->rss_key_len);
bnxt_hwrm_vnic_rss_cfg(bp, vnic);
}
}
return 0;
}
static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
struct rte_eth_rss_conf *rss_conf)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
int len;
uint32_t hash_types;
/* RSS configuration is the same for all VNICs */
if (vnic && vnic->rss_hash_key) {
if (rss_conf->rss_key) {
len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
}
hash_types = vnic->hash_type;
rss_conf->rss_hf = 0;
if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
rss_conf->rss_hf |= ETH_RSS_IPV4;
hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
}
if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
hash_types &=
~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
}
if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
hash_types &=
~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
}
if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
rss_conf->rss_hf |= ETH_RSS_IPV6;
hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
}
if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
hash_types &=
~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
}
if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
hash_types &=
~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
}
if (hash_types) {
RTE_LOG(ERR, PMD,
"Unknwon RSS config from firmware (%08x), RSS disabled",
vnic->hash_type);
return -ENOTSUP;
}
} else {
rss_conf->rss_hf = 0;
}
return 0;
}
static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
struct rte_eth_link link_info;
int rc;
rc = bnxt_get_hwrm_link_config(bp, &link_info);
if (rc)
return rc;
memset(fc_conf, 0, sizeof(*fc_conf));
if (bp->link_info.auto_pause)
fc_conf->autoneg = 1;
switch (bp->link_info.pause) {
case 0:
fc_conf->mode = RTE_FC_NONE;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
fc_conf->mode = RTE_FC_TX_PAUSE;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
fc_conf->mode = RTE_FC_RX_PAUSE;
break;
case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
fc_conf->mode = RTE_FC_FULL;
break;
}
return 0;
}
static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
if (BNXT_NPAR_PF(bp) || BNXT_VF(bp)) {
RTE_LOG(ERR, PMD, "Flow Control Settings cannot be modified\n");
return -ENOTSUP;
}
switch (fc_conf->mode) {
case RTE_FC_NONE:
bp->link_info.auto_pause = 0;
bp->link_info.force_pause = 0;
break;
case RTE_FC_RX_PAUSE:
if (fc_conf->autoneg) {
bp->link_info.auto_pause =
HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
bp->link_info.force_pause = 0;
} else {
bp->link_info.auto_pause = 0;
bp->link_info.force_pause =
HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
}
break;
case RTE_FC_TX_PAUSE:
if (fc_conf->autoneg) {
bp->link_info.auto_pause =
HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
bp->link_info.force_pause = 0;
} else {
bp->link_info.auto_pause = 0;
bp->link_info.force_pause =
HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
}
break;
case RTE_FC_FULL:
if (fc_conf->autoneg) {
bp->link_info.auto_pause =
HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
bp->link_info.force_pause = 0;
} else {
bp->link_info.auto_pause = 0;
bp->link_info.force_pause =
HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
}
break;
}
return bnxt_set_hwrm_link_config(bp, true);
}
/* Add UDP tunneling port */
static int
bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
struct rte_eth_udp_tunnel *udp_tunnel)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
uint16_t tunnel_type = 0;
int rc = 0;
switch (udp_tunnel->prot_type) {
case RTE_TUNNEL_TYPE_VXLAN:
if (bp->vxlan_port_cnt) {
RTE_LOG(ERR, PMD, "Tunnel Port %d already programmed\n",
udp_tunnel->udp_port);
if (bp->vxlan_port != udp_tunnel->udp_port) {
RTE_LOG(ERR, PMD, "Only one port allowed\n");
return -ENOSPC;
}
bp->vxlan_port_cnt++;
return 0;
}
tunnel_type =
HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
bp->vxlan_port_cnt++;
break;
case RTE_TUNNEL_TYPE_GENEVE:
if (bp->geneve_port_cnt) {
RTE_LOG(ERR, PMD, "Tunnel Port %d already programmed\n",
udp_tunnel->udp_port);
if (bp->geneve_port != udp_tunnel->udp_port) {
RTE_LOG(ERR, PMD, "Only one port allowed\n");
return -ENOSPC;
}
bp->geneve_port_cnt++;
return 0;
}
tunnel_type =
HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
bp->geneve_port_cnt++;
break;
default:
RTE_LOG(ERR, PMD, "Tunnel type is not supported\n");
return -ENOTSUP;
}
rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
tunnel_type);
return rc;
}
static int
bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
struct rte_eth_udp_tunnel *udp_tunnel)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
uint16_t tunnel_type = 0;
uint16_t port = 0;
int rc = 0;
switch (udp_tunnel->prot_type) {
case RTE_TUNNEL_TYPE_VXLAN:
if (!bp->vxlan_port_cnt) {
RTE_LOG(ERR, PMD, "No Tunnel port configured yet\n");
return -EINVAL;
}
if (bp->vxlan_port != udp_tunnel->udp_port) {
RTE_LOG(ERR, PMD, "Req Port: %d. Configured port: %d\n",
udp_tunnel->udp_port, bp->vxlan_port);
return -EINVAL;
}
if (--bp->vxlan_port_cnt)
return 0;
tunnel_type =
HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
port = bp->vxlan_fw_dst_port_id;
break;
case RTE_TUNNEL_TYPE_GENEVE:
if (!bp->geneve_port_cnt) {
RTE_LOG(ERR, PMD, "No Tunnel port configured yet\n");
return -EINVAL;
}
if (bp->geneve_port != udp_tunnel->udp_port) {
RTE_LOG(ERR, PMD, "Req Port: %d. Configured port: %d\n",
udp_tunnel->udp_port, bp->geneve_port);
return -EINVAL;
}
if (--bp->geneve_port_cnt)
return 0;
tunnel_type =
HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
port = bp->geneve_fw_dst_port_id;
break;
default:
RTE_LOG(ERR, PMD, "Tunnel type is not supported\n");
return -ENOTSUP;
}
rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
if (!rc) {
if (tunnel_type ==
HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN)
bp->vxlan_port = 0;
if (tunnel_type ==
HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE)
bp->geneve_port = 0;
}
return rc;
}
static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
{
struct bnxt_filter_info *filter, *temp_filter, *new_filter;
struct bnxt_vnic_info *vnic;
unsigned int i;
int rc = 0;
uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
/* Cycle through all VNICs */
for (i = 0; i < bp->nr_vnics; i++) {
/*
* For each VNIC and each associated filter(s)
* if VLAN exists && VLAN matches vlan_id
* remove the MAC+VLAN filter
* add a new MAC only filter
* else
* VLAN filter doesn't exist, just skip and continue
*/
STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
filter = STAILQ_FIRST(&vnic->filter);
while (filter) {
temp_filter = STAILQ_NEXT(filter, next);
if (filter->enables & chk &&
filter->l2_ovlan == vlan_id) {
/* Must delete the filter */
STAILQ_REMOVE(&vnic->filter, filter,
bnxt_filter_info, next);
bnxt_hwrm_clear_l2_filter(bp, filter);
STAILQ_INSERT_TAIL(
&bp->free_filter_list,
filter, next);
/*
* Need to examine to see if the MAC
* filter already existed or not before
* allocating a new one
*/
new_filter = bnxt_alloc_filter(bp);
if (!new_filter) {
RTE_LOG(ERR, PMD,
"MAC/VLAN filter alloc failed\n");
rc = -ENOMEM;
goto exit;
}
STAILQ_INSERT_TAIL(&vnic->filter,
new_filter, next);
/* Inherit MAC from previous filter */
new_filter->mac_index =
filter->mac_index;
memcpy(new_filter->l2_addr,
filter->l2_addr, ETHER_ADDR_LEN);
/* MAC only filter */
rc = bnxt_hwrm_set_l2_filter(bp,
vnic->fw_vnic_id,
new_filter);
if (rc)
goto exit;
RTE_LOG(INFO, PMD,
"Del Vlan filter for %d\n",
vlan_id);
}
filter = temp_filter;
}
}
}
exit:
return rc;
}
static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
{
struct bnxt_filter_info *filter, *temp_filter, *new_filter;
struct bnxt_vnic_info *vnic;
unsigned int i;
int rc = 0;
uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN |
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN_MASK;
uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
/* Cycle through all VNICs */
for (i = 0; i < bp->nr_vnics; i++) {
/*
* For each VNIC and each associated filter(s)
* if VLAN exists:
* if VLAN matches vlan_id
* VLAN filter already exists, just skip and continue
* else
* add a new MAC+VLAN filter
* else
* Remove the old MAC only filter
* Add a new MAC+VLAN filter
*/
STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
filter = STAILQ_FIRST(&vnic->filter);
while (filter) {
temp_filter = STAILQ_NEXT(filter, next);
if (filter->enables & chk) {
if (filter->l2_ovlan == vlan_id)
goto cont;
} else {
/* Must delete the MAC filter */
STAILQ_REMOVE(&vnic->filter, filter,
bnxt_filter_info, next);
bnxt_hwrm_clear_l2_filter(bp, filter);
filter->l2_ovlan = 0;
STAILQ_INSERT_TAIL(
&bp->free_filter_list,
filter, next);
}
new_filter = bnxt_alloc_filter(bp);
if (!new_filter) {
RTE_LOG(ERR, PMD,
"MAC/VLAN filter alloc failed\n");
rc = -ENOMEM;
goto exit;
}
STAILQ_INSERT_TAIL(&vnic->filter, new_filter,
next);
/* Inherit MAC from the previous filter */
new_filter->mac_index = filter->mac_index;
memcpy(new_filter->l2_addr, filter->l2_addr,
ETHER_ADDR_LEN);
/* MAC + VLAN ID filter */
new_filter->l2_ovlan = vlan_id;
new_filter->l2_ovlan_mask = 0xF000;
new_filter->enables |= en;
rc = bnxt_hwrm_set_l2_filter(bp,
vnic->fw_vnic_id,
new_filter);
if (rc)
goto exit;
RTE_LOG(INFO, PMD,
"Added Vlan filter for %d\n", vlan_id);
cont:
filter = temp_filter;
}
}
}
exit:
return rc;
}
static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
uint16_t vlan_id, int on)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
/* These operations apply to ALL existing MAC/VLAN filters */
if (on)
return bnxt_add_vlan_filter(bp, vlan_id);
else
return bnxt_del_vlan_filter(bp, vlan_id);
}
static int
bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
unsigned int i;
if (mask & ETH_VLAN_FILTER_MASK) {
if (!dev->data->dev_conf.rxmode.hw_vlan_filter) {
/* Remove any VLAN filters programmed */
for (i = 0; i < 4095; i++)
bnxt_del_vlan_filter(bp, i);
}
RTE_LOG(INFO, PMD, "VLAN Filtering: %d\n",
dev->data->dev_conf.rxmode.hw_vlan_filter);
}
if (mask & ETH_VLAN_STRIP_MASK) {
/* Enable or disable VLAN stripping */
for (i = 0; i < bp->nr_vnics; i++) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
if (dev->data->dev_conf.rxmode.hw_vlan_strip)
vnic->vlan_strip = true;
else
vnic->vlan_strip = false;
bnxt_hwrm_vnic_cfg(bp, vnic);
}
RTE_LOG(INFO, PMD, "VLAN Strip Offload: %d\n",
dev->data->dev_conf.rxmode.hw_vlan_strip);
}
if (mask & ETH_VLAN_EXTEND_MASK)
RTE_LOG(ERR, PMD, "Extend VLAN Not supported\n");
return 0;
}
static void
bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev, struct ether_addr *addr)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
/* Default Filter is tied to VNIC 0 */
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
struct bnxt_filter_info *filter;
int rc;
if (BNXT_VF(bp))
return;
memcpy(bp->mac_addr, addr, sizeof(bp->mac_addr));
memcpy(&dev->data->mac_addrs[0], bp->mac_addr, ETHER_ADDR_LEN);
STAILQ_FOREACH(filter, &vnic->filter, next) {
/* Default Filter is at Index 0 */
if (filter->mac_index != 0)
continue;
rc = bnxt_hwrm_clear_l2_filter(bp, filter);
if (rc)
break;
memcpy(filter->l2_addr, bp->mac_addr, ETHER_ADDR_LEN);
memset(filter->l2_addr_mask, 0xff, ETHER_ADDR_LEN);
filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
filter->enables |=
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK;
rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
if (rc)
break;
filter->mac_index = 0;
RTE_LOG(DEBUG, PMD, "Set MAC addr\n");
}
}
static int
bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
struct ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
char *mc_addr_list = (char *)mc_addr_set;
struct bnxt_vnic_info *vnic;
uint32_t off = 0, i = 0;
vnic = &bp->vnic_info[0];
if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
goto allmulti;
}
/* TODO Check for Duplicate mcast addresses */
vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
for (i = 0; i < nb_mc_addr; i++) {
memcpy(vnic->mc_list + off, &mc_addr_list[i], ETHER_ADDR_LEN);
off += ETHER_ADDR_LEN;
}
vnic->mc_addr_cnt = i;
allmulti:
return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
}
static int
bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
int ret;
ret = snprintf(fw_version, fw_size, "%d.%d.%d",
fw_major, fw_minor, fw_updt);
ret += 1; /* add the size of '\0' */
if (fw_size < (uint32_t)ret)
return ret;
else
return 0;
}
static void
bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct bnxt_rx_queue *rxq;
rxq = dev->data->rx_queues[queue_id];
qinfo->mp = rxq->mb_pool;
qinfo->scattered_rx = dev->data->scattered_rx;
qinfo->nb_desc = rxq->nb_rx_desc;
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
qinfo->conf.rx_drop_en = 0;
qinfo->conf.rx_deferred_start = 0;
}
static void
bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_txq_info *qinfo)
{
struct bnxt_tx_queue *txq;
txq = dev->data->tx_queues[queue_id];
qinfo->nb_desc = txq->nb_tx_desc;
qinfo->conf.tx_thresh.pthresh = txq->pthresh;
qinfo->conf.tx_thresh.hthresh = txq->hthresh;
qinfo->conf.tx_thresh.wthresh = txq->wthresh;
qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
qinfo->conf.tx_rs_thresh = 0;
qinfo->conf.txq_flags = txq->txq_flags;
qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
}
static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
{
struct bnxt *bp = eth_dev->data->dev_private;
struct rte_eth_dev_info dev_info;
uint32_t max_dev_mtu;
uint32_t rc = 0;
uint32_t i;
bnxt_dev_info_get_op(eth_dev, &dev_info);
max_dev_mtu = dev_info.max_rx_pktlen -
ETHER_HDR_LEN - ETHER_CRC_LEN - VLAN_TAG_SIZE * 2;
if (new_mtu < ETHER_MIN_MTU || new_mtu > max_dev_mtu) {
RTE_LOG(ERR, PMD, "MTU requested must be within (%d, %d)\n",
ETHER_MIN_MTU, max_dev_mtu);
return -EINVAL;
}
if (new_mtu > ETHER_MTU) {
bp->flags |= BNXT_FLAG_JUMBO;
eth_dev->data->dev_conf.rxmode.jumbo_frame = 1;
} else {
eth_dev->data->dev_conf.rxmode.jumbo_frame = 0;
bp->flags &= ~BNXT_FLAG_JUMBO;
}
eth_dev->data->dev_conf.rxmode.max_rx_pkt_len =
new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
eth_dev->data->mtu = new_mtu;
RTE_LOG(INFO, PMD, "New MTU is %d\n", eth_dev->data->mtu);
for (i = 0; i < bp->nr_vnics; i++) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
vnic->mru = bp->eth_dev->data->mtu + ETHER_HDR_LEN +
ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
rc = bnxt_hwrm_vnic_cfg(bp, vnic);
if (rc)
break;
rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
if (rc)
return rc;
}
return rc;
}
static int
bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
uint16_t vlan = bp->vlan;
int rc;
if (BNXT_NPAR_PF(bp) || BNXT_VF(bp)) {
RTE_LOG(ERR, PMD,
"PVID cannot be modified for this function\n");
return -ENOTSUP;
}
bp->vlan = on ? pvid : 0;
rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
if (rc)
bp->vlan = vlan;
return rc;
}
static int
bnxt_dev_led_on_op(struct rte_eth_dev *dev)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
return bnxt_hwrm_port_led_cfg(bp, true);
}
static int
bnxt_dev_led_off_op(struct rte_eth_dev *dev)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
return bnxt_hwrm_port_led_cfg(bp, false);
}
static uint32_t
bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
uint32_t desc = 0, raw_cons = 0, cons;
struct bnxt_cp_ring_info *cpr;
struct bnxt_rx_queue *rxq;
struct rx_pkt_cmpl *rxcmp;
uint16_t cmp_type;
uint8_t cmp = 1;
bool valid;
rxq = dev->data->rx_queues[rx_queue_id];
cpr = rxq->cp_ring;
valid = cpr->valid;
while (raw_cons < rxq->nb_rx_desc) {
cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
if (!CMPL_VALID(rxcmp, valid))
goto nothing_to_do;
valid = FLIP_VALID(cons, cpr->cp_ring_struct->ring_mask, valid);
cmp_type = CMP_TYPE(rxcmp);
if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
cmp = (rte_le_to_cpu_32(
((struct rx_tpa_end_cmpl *)
(rxcmp))->agg_bufs_v1) &
RX_TPA_END_CMPL_AGG_BUFS_MASK) >>
RX_TPA_END_CMPL_AGG_BUFS_SFT;
desc++;
} else if (cmp_type == 0x11) {
desc++;
cmp = (rxcmp->agg_bufs_v1 &
RX_PKT_CMPL_AGG_BUFS_MASK) >>
RX_PKT_CMPL_AGG_BUFS_SFT;
} else {
cmp = 1;
}
nothing_to_do:
raw_cons += cmp ? cmp : 2;
}
return desc;
}
static int
bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
{
struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
struct bnxt_rx_ring_info *rxr;
struct bnxt_cp_ring_info *cpr;
struct bnxt_sw_rx_bd *rx_buf;
struct rx_pkt_cmpl *rxcmp;
uint32_t cons, cp_cons;
if (!rxq)
return -EINVAL;
cpr = rxq->cp_ring;
rxr = rxq->rx_ring;
if (offset >= rxq->nb_rx_desc)
return -EINVAL;
cons = RING_CMP(cpr->cp_ring_struct, offset);
cp_cons = cpr->cp_raw_cons;
rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
if (cons > cp_cons) {
if (CMPL_VALID(rxcmp, cpr->valid))
return RTE_ETH_RX_DESC_DONE;
} else {
if (CMPL_VALID(rxcmp, !cpr->valid))
return RTE_ETH_RX_DESC_DONE;
}
rx_buf = &rxr->rx_buf_ring[cons];
if (rx_buf->mbuf == NULL)
return RTE_ETH_RX_DESC_UNAVAIL;
return RTE_ETH_RX_DESC_AVAIL;
}
static int
bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
{
struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
struct bnxt_tx_ring_info *txr;
struct bnxt_cp_ring_info *cpr;
struct bnxt_sw_tx_bd *tx_buf;
struct tx_pkt_cmpl *txcmp;
uint32_t cons, cp_cons;
if (!txq)
return -EINVAL;
cpr = txq->cp_ring;
txr = txq->tx_ring;
if (offset >= txq->nb_tx_desc)
return -EINVAL;
cons = RING_CMP(cpr->cp_ring_struct, offset);
txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
cp_cons = cpr->cp_raw_cons;
if (cons > cp_cons) {
if (CMPL_VALID(txcmp, cpr->valid))
return RTE_ETH_TX_DESC_UNAVAIL;
} else {
if (CMPL_VALID(txcmp, !cpr->valid))
return RTE_ETH_TX_DESC_UNAVAIL;
}
tx_buf = &txr->tx_buf_ring[cons];
if (tx_buf->mbuf == NULL)
return RTE_ETH_TX_DESC_DONE;
return RTE_ETH_TX_DESC_FULL;
}
static struct bnxt_filter_info *
bnxt_match_and_validate_ether_filter(struct bnxt *bp,
struct rte_eth_ethertype_filter *efilter,
struct bnxt_vnic_info *vnic0,
struct bnxt_vnic_info *vnic,
int *ret)
{
struct bnxt_filter_info *mfilter = NULL;
int match = 0;
*ret = 0;
if (efilter->ether_type != ETHER_TYPE_IPv4 &&
efilter->ether_type != ETHER_TYPE_IPv6) {
RTE_LOG(ERR, PMD, "unsupported ether_type(0x%04x) in"
" ethertype filter.", efilter->ether_type);
*ret = -EINVAL;
goto exit;
}
if (efilter->queue >= bp->rx_nr_rings) {
RTE_LOG(ERR, PMD, "Invalid queue %d\n", efilter->queue);
*ret = -EINVAL;
goto exit;
}
vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
vnic = STAILQ_FIRST(&bp->ff_pool[efilter->queue]);
if (vnic == NULL) {
RTE_LOG(ERR, PMD, "Invalid queue %d\n", efilter->queue);
*ret = -EINVAL;
goto exit;
}
if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
if ((!memcmp(efilter->mac_addr.addr_bytes,
mfilter->l2_addr, ETHER_ADDR_LEN) &&
mfilter->flags ==
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
mfilter->ethertype == efilter->ether_type)) {
match = 1;
break;
}
}
} else {
STAILQ_FOREACH(mfilter, &vnic->filter, next)
if ((!memcmp(efilter->mac_addr.addr_bytes,
mfilter->l2_addr, ETHER_ADDR_LEN) &&
mfilter->ethertype == efilter->ether_type &&
mfilter->flags ==
HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
match = 1;
break;
}
}
if (match)
*ret = -EEXIST;
exit:
return mfilter;
}
static int
bnxt_ethertype_filter(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
struct rte_eth_ethertype_filter *efilter =
(struct rte_eth_ethertype_filter *)arg;
struct bnxt_filter_info *bfilter, *filter1;
struct bnxt_vnic_info *vnic, *vnic0;
int ret;
if (filter_op == RTE_ETH_FILTER_NOP)
return 0;
if (arg == NULL) {
RTE_LOG(ERR, PMD, "arg shouldn't be NULL for operation %u.",
filter_op);
return -EINVAL;
}
vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
vnic = STAILQ_FIRST(&bp->ff_pool[efilter->queue]);
switch (filter_op) {
case RTE_ETH_FILTER_ADD:
bnxt_match_and_validate_ether_filter(bp, efilter,
vnic0, vnic, &ret);
if (ret < 0)
return ret;
bfilter = bnxt_get_unused_filter(bp);
if (bfilter == NULL) {
RTE_LOG(ERR, PMD,
"Not enough resources for a new filter.\n");
return -ENOMEM;
}
bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
ETHER_ADDR_LEN);
memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
ETHER_ADDR_LEN);
bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
bfilter->ethertype = efilter->ether_type;
bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
if (filter1 == NULL) {
ret = -1;
goto cleanup;
}
bfilter->enables |=
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
bfilter->dst_id = vnic->fw_vnic_id;
if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
bfilter->flags =
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
}
ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
if (ret)
goto cleanup;
STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
break;
case RTE_ETH_FILTER_DELETE:
filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
vnic0, vnic, &ret);
if (ret == -EEXIST) {
ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
next);
bnxt_free_filter(bp, filter1);
} else if (ret == 0) {
RTE_LOG(ERR, PMD, "No matching filter found\n");
}
break;
default:
RTE_LOG(ERR, PMD, "unsupported operation %u.", filter_op);
ret = -EINVAL;
goto error;
}
return ret;
cleanup:
bnxt_free_filter(bp, bfilter);
error:
return ret;
}
static inline int
parse_ntuple_filter(struct bnxt *bp,
struct rte_eth_ntuple_filter *nfilter,
struct bnxt_filter_info *bfilter)
{
uint32_t en = 0;
if (nfilter->queue >= bp->rx_nr_rings) {
RTE_LOG(ERR, PMD, "Invalid queue %d\n", nfilter->queue);
return -EINVAL;
}
switch (nfilter->dst_port_mask) {
case UINT16_MAX:
bfilter->dst_port_mask = -1;
bfilter->dst_port = nfilter->dst_port;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT |
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
break;
default:
RTE_LOG(ERR, PMD, "invalid dst_port mask.");
return -EINVAL;
}
bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
switch (nfilter->proto_mask) {
case UINT8_MAX:
if (nfilter->proto == 17) /* IPPROTO_UDP */
bfilter->ip_protocol = 17;
else if (nfilter->proto == 6) /* IPPROTO_TCP */
bfilter->ip_protocol = 6;
else
return -EINVAL;
en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
break;
default:
RTE_LOG(ERR, PMD, "invalid protocol mask.");
return -EINVAL;
}
switch (nfilter->dst_ip_mask) {
case UINT32_MAX:
bfilter->dst_ipaddr_mask[0] = -1;
bfilter->dst_ipaddr[0] = nfilter->dst_ip;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR |
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
break;
default:
RTE_LOG(ERR, PMD, "invalid dst_ip mask.");
return -EINVAL;
}
switch (nfilter->src_ip_mask) {
case UINT32_MAX:
bfilter->src_ipaddr_mask[0] = -1;
bfilter->src_ipaddr[0] = nfilter->src_ip;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
break;
default:
RTE_LOG(ERR, PMD, "invalid src_ip mask.");
return -EINVAL;
}
switch (nfilter->src_port_mask) {
case UINT16_MAX:
bfilter->src_port_mask = -1;
bfilter->src_port = nfilter->src_port;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
break;
default:
RTE_LOG(ERR, PMD, "invalid src_port mask.");
return -EINVAL;
}
//TODO Priority
//nfilter->priority = (uint8_t)filter->priority;
bfilter->enables = en;
return 0;
}
static struct bnxt_filter_info*
bnxt_match_ntuple_filter(struct bnxt_vnic_info *vnic,
struct bnxt_filter_info *bfilter)
{
struct bnxt_filter_info *mfilter = NULL;
STAILQ_FOREACH(mfilter, &vnic->filter, next) {
if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] &&
bfilter->src_ipaddr_mask[0] ==
mfilter->src_ipaddr_mask[0] &&
bfilter->src_port == mfilter->src_port &&
bfilter->src_port_mask == mfilter->src_port_mask &&
bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] &&
bfilter->dst_ipaddr_mask[0] ==
mfilter->dst_ipaddr_mask[0] &&
bfilter->dst_port == mfilter->dst_port &&
bfilter->dst_port_mask == mfilter->dst_port_mask &&
bfilter->flags == mfilter->flags &&
bfilter->enables == mfilter->enables)
return mfilter;
}
return NULL;
}
static int
bnxt_cfg_ntuple_filter(struct bnxt *bp,
struct rte_eth_ntuple_filter *nfilter,
enum rte_filter_op filter_op)
{
struct bnxt_filter_info *bfilter, *mfilter, *filter1;
struct bnxt_vnic_info *vnic, *vnic0;
int ret;
if (nfilter->flags != RTE_5TUPLE_FLAGS) {
RTE_LOG(ERR, PMD, "only 5tuple is supported.");
return -EINVAL;
}
if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
RTE_LOG(ERR, PMD, "Ntuple filter: TCP flags not supported\n");
return -EINVAL;
}
bfilter = bnxt_get_unused_filter(bp);
if (bfilter == NULL) {
RTE_LOG(ERR, PMD,
"Not enough resources for a new filter.\n");
return -ENOMEM;
}
ret = parse_ntuple_filter(bp, nfilter, bfilter);
if (ret < 0)
goto free_filter;
vnic = STAILQ_FIRST(&bp->ff_pool[nfilter->queue]);
vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
filter1 = STAILQ_FIRST(&vnic0->filter);
if (filter1 == NULL) {
ret = -1;
goto free_filter;
}
bfilter->dst_id = vnic->fw_vnic_id;
bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
bfilter->enables |=
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
bfilter->ethertype = 0x800;
bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
mfilter = bnxt_match_ntuple_filter(vnic, bfilter);
if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD) {
RTE_LOG(ERR, PMD, "filter exists.");
ret = -EEXIST;
goto free_filter;
}
if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
RTE_LOG(ERR, PMD, "filter doesn't exist.");
ret = -ENOENT;
goto free_filter;
}
if (filter_op == RTE_ETH_FILTER_ADD) {
bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
if (ret)
goto free_filter;
STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
} else {
if (mfilter == NULL) {
/* This should not happen. But for Coverity! */
ret = -ENOENT;
goto free_filter;
}
ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter);
STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info,
next);
bnxt_free_filter(bp, mfilter);
bfilter->fw_l2_filter_id = -1;
bnxt_free_filter(bp, bfilter);
}
return 0;
free_filter:
bfilter->fw_l2_filter_id = -1;
bnxt_free_filter(bp, bfilter);
return ret;
}
static int
bnxt_ntuple_filter(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
int ret;
if (filter_op == RTE_ETH_FILTER_NOP)
return 0;
if (arg == NULL) {
RTE_LOG(ERR, PMD, "arg shouldn't be NULL for operation %u.",
filter_op);
return -EINVAL;
}
switch (filter_op) {
case RTE_ETH_FILTER_ADD:
ret = bnxt_cfg_ntuple_filter(bp,
(struct rte_eth_ntuple_filter *)arg,
filter_op);
break;
case RTE_ETH_FILTER_DELETE:
ret = bnxt_cfg_ntuple_filter(bp,
(struct rte_eth_ntuple_filter *)arg,
filter_op);
break;
default:
RTE_LOG(ERR, PMD, "unsupported operation %u.", filter_op);
ret = -EINVAL;
break;
}
return ret;
}
static int
bnxt_parse_fdir_filter(struct bnxt *bp,
struct rte_eth_fdir_filter *fdir,
struct bnxt_filter_info *filter)
{
enum rte_fdir_mode fdir_mode =
bp->eth_dev->data->dev_conf.fdir_conf.mode;
struct bnxt_vnic_info *vnic0, *vnic;
struct bnxt_filter_info *filter1;
uint32_t en = 0;
int i;
if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
return -EINVAL;
filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
switch (fdir->input.flow_type) {
case RTE_ETH_FLOW_IPV4:
case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
/* FALLTHROUGH */
filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
filter->ip_addr_type =
NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
filter->src_ipaddr_mask[0] = 0xffffffff;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
filter->dst_ipaddr_mask[0] = 0xffffffff;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
filter->ethertype = 0x800;
filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
break;
case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
filter->src_port = fdir->input.flow.tcp4_flow.src_port;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
filter->dst_port_mask = 0xffff;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
filter->src_port_mask = 0xffff;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
filter->ip_protocol = 6;
en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
filter->ip_addr_type =
NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
filter->src_ipaddr_mask[0] = 0xffffffff;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
filter->dst_ipaddr_mask[0] = 0xffffffff;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
filter->ethertype = 0x800;
filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
break;
case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
filter->src_port = fdir->input.flow.udp4_flow.src_port;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
filter->dst_port_mask = 0xffff;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
filter->src_port_mask = 0xffff;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
filter->ip_protocol = 17;
en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
filter->ip_addr_type =
NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
filter->src_ipaddr_mask[0] = 0xffffffff;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
filter->dst_ipaddr_mask[0] = 0xffffffff;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
filter->ethertype = 0x800;
filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
break;
case RTE_ETH_FLOW_IPV6:
case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
/* FALLTHROUGH */
filter->ip_addr_type =
NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
rte_memcpy(filter->src_ipaddr,
fdir->input.flow.ipv6_flow.src_ip, 16);
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
rte_memcpy(filter->dst_ipaddr,
fdir->input.flow.ipv6_flow.dst_ip, 16);
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
memset(filter->dst_ipaddr_mask, 0xff, 16);
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
memset(filter->src_ipaddr_mask, 0xff, 16);
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
filter->ethertype = 0x86dd;
filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
break;
case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
filter->src_port = fdir->input.flow.tcp6_flow.src_port;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
filter->dst_port_mask = 0xffff;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
filter->src_port_mask = 0xffff;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
filter->ip_addr_type =
NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
rte_memcpy(filter->src_ipaddr,
fdir->input.flow.tcp6_flow.ip.src_ip, 16);
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
rte_memcpy(filter->dst_ipaddr,
fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
memset(filter->dst_ipaddr_mask, 0xff, 16);
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
memset(filter->src_ipaddr_mask, 0xff, 16);
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
filter->ethertype = 0x86dd;
filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
break;
case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
filter->src_port = fdir->input.flow.udp6_flow.src_port;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
filter->dst_port_mask = 0xffff;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
filter->src_port_mask = 0xffff;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
filter->ip_addr_type =
NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
rte_memcpy(filter->src_ipaddr,
fdir->input.flow.udp6_flow.ip.src_ip, 16);
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
rte_memcpy(filter->dst_ipaddr,
fdir->input.flow.udp6_flow.ip.dst_ip, 16);
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
memset(filter->dst_ipaddr_mask, 0xff, 16);
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
memset(filter->src_ipaddr_mask, 0xff, 16);
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
filter->ethertype = 0x86dd;
filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
break;
case RTE_ETH_FLOW_L2_PAYLOAD:
filter->ethertype = fdir->input.flow.l2_flow.ether_type;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
break;
case RTE_ETH_FLOW_VXLAN:
if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
return -EINVAL;
filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
filter->tunnel_type =
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
break;
case RTE_ETH_FLOW_NVGRE:
if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
return -EINVAL;
filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
filter->tunnel_type =
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
break;
case RTE_ETH_FLOW_UNKNOWN:
case RTE_ETH_FLOW_RAW:
case RTE_ETH_FLOW_FRAG_IPV4:
case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
case RTE_ETH_FLOW_FRAG_IPV6:
case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
case RTE_ETH_FLOW_IPV6_EX:
case RTE_ETH_FLOW_IPV6_TCP_EX:
case RTE_ETH_FLOW_IPV6_UDP_EX:
case RTE_ETH_FLOW_GENEVE:
/* FALLTHROUGH */
default:
return -EINVAL;
}
vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
vnic = STAILQ_FIRST(&bp->ff_pool[fdir->action.rx_queue]);
if (vnic == NULL) {
RTE_LOG(ERR, PMD, "Invalid queue %d\n", fdir->action.rx_queue);
return -EINVAL;
}
if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
rte_memcpy(filter->dst_macaddr,
fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
}
if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
filter1 = STAILQ_FIRST(&vnic0->filter);
//filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
} else {
filter->dst_id = vnic->fw_vnic_id;
for (i = 0; i < ETHER_ADDR_LEN; i++)
if (filter->dst_macaddr[i] == 0x00)
filter1 = STAILQ_FIRST(&vnic0->filter);
else
filter1 = bnxt_get_l2_filter(bp, filter, vnic);
}
if (filter1 == NULL)
return -EINVAL;
en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
filter->enables = en;
return 0;
}
static struct bnxt_filter_info *
bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf)
{
struct bnxt_filter_info *mf = NULL;
int i;
for (i = bp->nr_vnics - 1; i >= 0; i--) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
STAILQ_FOREACH(mf, &vnic->filter, next) {
if (mf->filter_type == nf->filter_type &&
mf->flags == nf->flags &&
mf->src_port == nf->src_port &&
mf->src_port_mask == nf->src_port_mask &&
mf->dst_port == nf->dst_port &&
mf->dst_port_mask == nf->dst_port_mask &&
mf->ip_protocol == nf->ip_protocol &&
mf->ip_addr_type == nf->ip_addr_type &&
mf->ethertype == nf->ethertype &&
mf->vni == nf->vni &&
mf->tunnel_type == nf->tunnel_type &&
mf->l2_ovlan == nf->l2_ovlan &&
mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
mf->l2_ivlan == nf->l2_ivlan &&
mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
!memcmp(mf->l2_addr, nf->l2_addr, ETHER_ADDR_LEN) &&
!memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
ETHER_ADDR_LEN) &&
!memcmp(mf->src_macaddr, nf->src_macaddr,
ETHER_ADDR_LEN) &&
!memcmp(mf->dst_macaddr, nf->dst_macaddr,
ETHER_ADDR_LEN) &&
!memcmp(mf->src_ipaddr, nf->src_ipaddr,
sizeof(nf->src_ipaddr)) &&
!memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
sizeof(nf->src_ipaddr_mask)) &&
!memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
sizeof(nf->dst_ipaddr)) &&
!memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
sizeof(nf->dst_ipaddr_mask)))
return mf;
}
}
return NULL;
}
static int
bnxt_fdir_filter(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
struct rte_eth_fdir_filter *fdir = (struct rte_eth_fdir_filter *)arg;
struct bnxt_filter_info *filter, *match;
struct bnxt_vnic_info *vnic;
int ret = 0, i;
if (filter_op == RTE_ETH_FILTER_NOP)
return 0;
if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
return -EINVAL;
switch (filter_op) {
case RTE_ETH_FILTER_ADD:
case RTE_ETH_FILTER_DELETE:
/* FALLTHROUGH */
filter = bnxt_get_unused_filter(bp);
if (filter == NULL) {
RTE_LOG(ERR, PMD,
"Not enough resources for a new flow.\n");
return -ENOMEM;
}
ret = bnxt_parse_fdir_filter(bp, fdir, filter);
if (ret != 0)
goto free_filter;
filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
match = bnxt_match_fdir(bp, filter);
if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
RTE_LOG(ERR, PMD, "Flow already exists.\n");
ret = -EEXIST;
goto free_filter;
}
if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
RTE_LOG(ERR, PMD, "Flow does not exist.\n");
ret = -ENOENT;
goto free_filter;
}
if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
vnic = STAILQ_FIRST(&bp->ff_pool[0]);
else
vnic =
STAILQ_FIRST(&bp->ff_pool[fdir->action.rx_queue]);
if (filter_op == RTE_ETH_FILTER_ADD) {
ret = bnxt_hwrm_set_ntuple_filter(bp,
filter->dst_id,
filter);
if (ret)
goto free_filter;
STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
} else {
ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
STAILQ_REMOVE(&vnic->filter, match,
bnxt_filter_info, next);
bnxt_free_filter(bp, match);
filter->fw_l2_filter_id = -1;
bnxt_free_filter(bp, filter);
}
break;
case RTE_ETH_FILTER_FLUSH:
for (i = bp->nr_vnics - 1; i >= 0; i--) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
STAILQ_FOREACH(filter, &vnic->filter, next) {
if (filter->filter_type ==
HWRM_CFA_NTUPLE_FILTER) {
ret =
bnxt_hwrm_clear_ntuple_filter(bp,
filter);
STAILQ_REMOVE(&vnic->filter, filter,
bnxt_filter_info, next);
}
}
}
return ret;
case RTE_ETH_FILTER_UPDATE:
case RTE_ETH_FILTER_STATS:
case RTE_ETH_FILTER_INFO:
/* FALLTHROUGH */
RTE_LOG(ERR, PMD, "operation %u not implemented", filter_op);
break;
default:
RTE_LOG(ERR, PMD, "unknown operation %u", filter_op);
ret = -EINVAL;
break;
}
return ret;
free_filter:
filter->fw_l2_filter_id = -1;
bnxt_free_filter(bp, filter);
return ret;
}
static int
bnxt_filter_ctrl_op(struct rte_eth_dev *dev __rte_unused,
enum rte_filter_type filter_type,
enum rte_filter_op filter_op, void *arg)
{
int ret = 0;
switch (filter_type) {
case RTE_ETH_FILTER_TUNNEL:
RTE_LOG(ERR, PMD,
"filter type: %d: To be implemented\n", filter_type);
break;
case RTE_ETH_FILTER_FDIR:
ret = bnxt_fdir_filter(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_NTUPLE:
ret = bnxt_ntuple_filter(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_ETHERTYPE:
ret = bnxt_ethertype_filter(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_GENERIC:
if (filter_op != RTE_ETH_FILTER_GET)
return -EINVAL;
*(const void **)arg = &bnxt_flow_ops;
break;
default:
RTE_LOG(ERR, PMD,
"Filter type (%d) not supported", filter_type);
ret = -EINVAL;
break;
}
return ret;
}
static const uint32_t *
bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
{
static const uint32_t ptypes[] = {
RTE_PTYPE_L2_ETHER_VLAN,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_L4_ICMP,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_INNER_L4_ICMP,
RTE_PTYPE_INNER_L4_TCP,
RTE_PTYPE_INNER_L4_UDP,
RTE_PTYPE_UNKNOWN
};
if (dev->rx_pkt_burst == bnxt_recv_pkts)
return ptypes;
return NULL;
}
static int
bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
int rc;
uint32_t dir_entries;
uint32_t entry_length;
RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x\n",
__func__, bp->pdev->addr.domain, bp->pdev->addr.bus,
bp->pdev->addr.devid, bp->pdev->addr.function);
rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
if (rc != 0)
return rc;
return dir_entries * entry_length;
}
static int
bnxt_get_eeprom_op(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *in_eeprom)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
uint32_t index;
uint32_t offset;
RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x in_eeprom->offset = %d "
"len = %d\n", __func__, bp->pdev->addr.domain,
bp->pdev->addr.bus, bp->pdev->addr.devid,
bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
if (in_eeprom->offset == 0) /* special offset value to get directory */
return bnxt_get_nvram_directory(bp, in_eeprom->length,
in_eeprom->data);
index = in_eeprom->offset >> 24;
offset = in_eeprom->offset & 0xffffff;
if (index != 0)
return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
in_eeprom->length, in_eeprom->data);
return 0;
}
static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
{
switch (dir_type) {
case BNX_DIR_TYPE_CHIMP_PATCH:
case BNX_DIR_TYPE_BOOTCODE:
case BNX_DIR_TYPE_BOOTCODE_2:
case BNX_DIR_TYPE_APE_FW:
case BNX_DIR_TYPE_APE_PATCH:
case BNX_DIR_TYPE_KONG_FW:
case BNX_DIR_TYPE_KONG_PATCH:
case BNX_DIR_TYPE_BONO_FW:
case BNX_DIR_TYPE_BONO_PATCH:
return true;
}
return false;
}
static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
{
switch (dir_type) {
case BNX_DIR_TYPE_AVS:
case BNX_DIR_TYPE_EXP_ROM_MBA:
case BNX_DIR_TYPE_PCIE:
case BNX_DIR_TYPE_TSCF_UCODE:
case BNX_DIR_TYPE_EXT_PHY:
case BNX_DIR_TYPE_CCM:
case BNX_DIR_TYPE_ISCSI_BOOT:
case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
return true;
}
return false;
}
static bool bnxt_dir_type_is_executable(uint16_t dir_type)
{
return bnxt_dir_type_is_ape_bin_format(dir_type) ||
bnxt_dir_type_is_other_exec_format(dir_type);
}
static int
bnxt_set_eeprom_op(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *in_eeprom)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
uint8_t index, dir_op;
uint16_t type, ext, ordinal, attr;
RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x in_eeprom->offset = %d "
"len = %d\n", __func__, bp->pdev->addr.domain,
bp->pdev->addr.bus, bp->pdev->addr.devid,
bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
if (!BNXT_PF(bp)) {
RTE_LOG(ERR, PMD, "NVM write not supported from a VF\n");
return -EINVAL;
}
type = in_eeprom->magic >> 16;
if (type == 0xffff) { /* special value for directory operations */
index = in_eeprom->magic & 0xff;
dir_op = in_eeprom->magic >> 8;
if (index == 0)
return -EINVAL;
switch (dir_op) {
case 0x0e: /* erase */
if (in_eeprom->offset != ~in_eeprom->magic)
return -EINVAL;
return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
default:
return -EINVAL;
}
}
/* Create or re-write an NVM item: */
if (bnxt_dir_type_is_executable(type) == true)
return -EOPNOTSUPP;
ext = in_eeprom->magic & 0xffff;
ordinal = in_eeprom->offset >> 16;
attr = in_eeprom->offset & 0xffff;
return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
in_eeprom->data, in_eeprom->length);
return 0;
}
/*
* Initialization
*/
static const struct eth_dev_ops bnxt_dev_ops = {
.dev_infos_get = bnxt_dev_info_get_op,
.dev_close = bnxt_dev_close_op,
.dev_configure = bnxt_dev_configure_op,
.dev_start = bnxt_dev_start_op,
.dev_stop = bnxt_dev_stop_op,
.dev_set_link_up = bnxt_dev_set_link_up_op,
.dev_set_link_down = bnxt_dev_set_link_down_op,
.stats_get = bnxt_stats_get_op,
.stats_reset = bnxt_stats_reset_op,
.rx_queue_setup = bnxt_rx_queue_setup_op,
.rx_queue_release = bnxt_rx_queue_release_op,
.tx_queue_setup = bnxt_tx_queue_setup_op,
.tx_queue_release = bnxt_tx_queue_release_op,
.rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
.rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
.reta_update = bnxt_reta_update_op,
.reta_query = bnxt_reta_query_op,
.rss_hash_update = bnxt_rss_hash_update_op,
.rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
.link_update = bnxt_link_update_op,
.promiscuous_enable = bnxt_promiscuous_enable_op,
.promiscuous_disable = bnxt_promiscuous_disable_op,
.allmulticast_enable = bnxt_allmulticast_enable_op,
.allmulticast_disable = bnxt_allmulticast_disable_op,
.mac_addr_add = bnxt_mac_addr_add_op,
.mac_addr_remove = bnxt_mac_addr_remove_op,
.flow_ctrl_get = bnxt_flow_ctrl_get_op,
.flow_ctrl_set = bnxt_flow_ctrl_set_op,
.udp_tunnel_port_add = bnxt_udp_tunnel_port_add_op,
.udp_tunnel_port_del = bnxt_udp_tunnel_port_del_op,
.vlan_filter_set = bnxt_vlan_filter_set_op,
.vlan_offload_set = bnxt_vlan_offload_set_op,
.vlan_pvid_set = bnxt_vlan_pvid_set_op,
.mtu_set = bnxt_mtu_set_op,
.mac_addr_set = bnxt_set_default_mac_addr_op,
.xstats_get = bnxt_dev_xstats_get_op,
.xstats_get_names = bnxt_dev_xstats_get_names_op,
.xstats_reset = bnxt_dev_xstats_reset_op,
.fw_version_get = bnxt_fw_version_get,
.set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
.rxq_info_get = bnxt_rxq_info_get_op,
.txq_info_get = bnxt_txq_info_get_op,
.dev_led_on = bnxt_dev_led_on_op,
.dev_led_off = bnxt_dev_led_off_op,
.xstats_get_by_id = bnxt_dev_xstats_get_by_id_op,
.xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op,
.rx_queue_count = bnxt_rx_queue_count_op,
.rx_descriptor_status = bnxt_rx_descriptor_status_op,
.tx_descriptor_status = bnxt_tx_descriptor_status_op,
.filter_ctrl = bnxt_filter_ctrl_op,
.dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
.get_eeprom_length = bnxt_get_eeprom_length_op,
.get_eeprom = bnxt_get_eeprom_op,
.set_eeprom = bnxt_set_eeprom_op,
};
static bool bnxt_vf_pciid(uint16_t id)
{
if (id == BROADCOM_DEV_ID_57304_VF ||
id == BROADCOM_DEV_ID_57406_VF ||
id == BROADCOM_DEV_ID_5731X_VF ||
id == BROADCOM_DEV_ID_5741X_VF ||
id == BROADCOM_DEV_ID_57414_VF ||
id == BROADCOM_DEV_ID_STRATUS_NIC_VF)
return true;
return false;
}
static int bnxt_init_board(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = eth_dev->data->dev_private;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
int rc;
/* enable device (incl. PCI PM wakeup), and bus-mastering */
if (!pci_dev->mem_resource[0].addr) {
RTE_LOG(ERR, PMD,
"Cannot find PCI device base address, aborting\n");
rc = -ENODEV;
goto init_err_disable;
}
bp->eth_dev = eth_dev;
bp->pdev = pci_dev;
bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
if (!bp->bar0) {
RTE_LOG(ERR, PMD, "Cannot map device registers, aborting\n");
rc = -ENOMEM;
goto init_err_release;
}
return 0;
init_err_release:
if (bp->bar0)
bp->bar0 = NULL;
init_err_disable:
return rc;
}
static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
#define ALLOW_FUNC(x) \
{ \
typeof(x) arg = (x); \
bp->pf.vf_req_fwd[((arg) >> 5)] &= \
~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \
}
static int
bnxt_dev_init(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz = NULL;
static int version_printed;
uint32_t total_alloc_len;
rte_iova_t mz_phys_addr;
struct bnxt *bp;
int rc;
if (version_printed++ == 0)
RTE_LOG(INFO, PMD, "%s\n", bnxt_version);
rte_eth_copy_pci_info(eth_dev, pci_dev);
bp = eth_dev->data->dev_private;
rte_atomic64_init(&bp->rx_mbuf_alloc_fail);
bp->dev_stopped = 1;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
goto skip_init;
if (bnxt_vf_pciid(pci_dev->id.device_id))
bp->flags |= BNXT_FLAG_VF;
rc = bnxt_init_board(eth_dev);
if (rc) {
RTE_LOG(ERR, PMD,
"Board initialization failed rc: %x\n", rc);
goto error;
}
skip_init:
eth_dev->dev_ops = &bnxt_dev_ops;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
if (BNXT_PF(bp) && pci_dev->id.device_id != BROADCOM_DEV_ID_NS2) {
snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
"bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
pci_dev->addr.bus, pci_dev->addr.devid,
pci_dev->addr.function, "rx_port_stats");
mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
mz = rte_memzone_lookup(mz_name);
total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
sizeof(struct rx_port_stats) + 512);
if (!mz) {
mz = rte_memzone_reserve(mz_name, total_alloc_len,
SOCKET_ID_ANY,
RTE_MEMZONE_2MB |
RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL)
return -ENOMEM;
}
memset(mz->addr, 0, mz->len);
mz_phys_addr = mz->iova;
if ((unsigned long)mz->addr == mz_phys_addr) {
RTE_LOG(WARNING, PMD,
"Memzone physical address same as virtual.\n");
RTE_LOG(WARNING, PMD,
"Using rte_mem_virt2iova()\n");
mz_phys_addr = rte_mem_virt2iova(mz->addr);
if (mz_phys_addr == 0) {
RTE_LOG(ERR, PMD,
"unable to map address to physical memory\n");
return -ENOMEM;
}
}
bp->rx_mem_zone = (const void *)mz;
bp->hw_rx_port_stats = mz->addr;
bp->hw_rx_port_stats_map = mz_phys_addr;
snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
"bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
pci_dev->addr.bus, pci_dev->addr.devid,
pci_dev->addr.function, "tx_port_stats");
mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
mz = rte_memzone_lookup(mz_name);
total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
sizeof(struct tx_port_stats) + 512);
if (!mz) {
mz = rte_memzone_reserve(mz_name, total_alloc_len,
SOCKET_ID_ANY,
RTE_MEMZONE_2MB |
RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL)
return -ENOMEM;
}
memset(mz->addr, 0, mz->len);
mz_phys_addr = mz->iova;
if ((unsigned long)mz->addr == mz_phys_addr) {
RTE_LOG(WARNING, PMD,
"Memzone physical address same as virtual.\n");
RTE_LOG(WARNING, PMD,
"Using rte_mem_virt2iova()\n");
mz_phys_addr = rte_mem_virt2iova(mz->addr);
if (mz_phys_addr == 0) {
RTE_LOG(ERR, PMD,
"unable to map address to physical memory\n");
return -ENOMEM;
}
}
bp->tx_mem_zone = (const void *)mz;
bp->hw_tx_port_stats = mz->addr;
bp->hw_tx_port_stats_map = mz_phys_addr;
bp->flags |= BNXT_FLAG_PORT_STATS;
}
rc = bnxt_alloc_hwrm_resources(bp);
if (rc) {
RTE_LOG(ERR, PMD,
"hwrm resource allocation failure rc: %x\n", rc);
goto error_free;
}
rc = bnxt_hwrm_ver_get(bp);
if (rc)
goto error_free;
bnxt_hwrm_queue_qportcfg(bp);
bnxt_hwrm_func_qcfg(bp);
/* Get the MAX capabilities for this function */
rc = bnxt_hwrm_func_qcaps(bp);
if (rc) {
RTE_LOG(ERR, PMD, "hwrm query capability failure rc: %x\n", rc);
goto error_free;
}
if (bp->max_tx_rings == 0) {
RTE_LOG(ERR, PMD, "No TX rings available!\n");
rc = -EBUSY;
goto error_free;
}
eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
ETHER_ADDR_LEN * bp->max_l2_ctx, 0);
if (eth_dev->data->mac_addrs == NULL) {
RTE_LOG(ERR, PMD,
"Failed to alloc %u bytes needed to store MAC addr tbl",
ETHER_ADDR_LEN * bp->max_l2_ctx);
rc = -ENOMEM;
goto error_free;
}
/* Copy the permanent MAC from the qcap response address now. */
memcpy(bp->mac_addr, bp->dflt_mac_addr, sizeof(bp->mac_addr));
memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, ETHER_ADDR_LEN);
bp->grp_info = rte_zmalloc("bnxt_grp_info",
sizeof(*bp->grp_info) * bp->max_ring_grps, 0);
if (!bp->grp_info) {
RTE_LOG(ERR, PMD,
"Failed to alloc %zu bytes needed to store group info table\n",
sizeof(*bp->grp_info) * bp->max_ring_grps);
rc = -ENOMEM;
goto error_free;
}
/* Forward all requests if firmware is new enough */
if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) &&
(bp->fw_ver < ((20 << 24) | (7 << 16)))) ||
((bp->fw_ver >= ((20 << 24) | (8 << 16))))) {
memset(bp->pf.vf_req_fwd, 0xff, sizeof(bp->pf.vf_req_fwd));
} else {
RTE_LOG(WARNING, PMD,
"Firmware too old for VF mailbox functionality\n");
memset(bp->pf.vf_req_fwd, 0, sizeof(bp->pf.vf_req_fwd));
}
/*
* The following are used for driver cleanup. If we disallow these,
* VF drivers can't clean up cleanly.
*/
ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR);
ALLOW_FUNC(HWRM_VNIC_FREE);
ALLOW_FUNC(HWRM_RING_FREE);
ALLOW_FUNC(HWRM_RING_GRP_FREE);
ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE);
ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE);
ALLOW_FUNC(HWRM_STAT_CTX_FREE);
ALLOW_FUNC(HWRM_PORT_PHY_QCFG);
ALLOW_FUNC(HWRM_VNIC_TPA_CFG);
rc = bnxt_hwrm_func_driver_register(bp);
if (rc) {
RTE_LOG(ERR, PMD,
"Failed to register driver");
rc = -EBUSY;
goto error_free;
}
RTE_LOG(INFO, PMD,
DRV_MODULE_NAME " found at mem %" PRIx64 ", node addr %pM\n",
pci_dev->mem_resource[0].phys_addr,
pci_dev->mem_resource[0].addr);
rc = bnxt_hwrm_func_reset(bp);
if (rc) {
RTE_LOG(ERR, PMD, "hwrm chip reset failure rc: %x\n", rc);
rc = -1;
goto error_free;
}
if (BNXT_PF(bp)) {
//if (bp->pf.active_vfs) {
// TODO: Deallocate VF resources?
//}
if (bp->pdev->max_vfs) {
rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
if (rc) {
RTE_LOG(ERR, PMD, "Failed to allocate VFs\n");
goto error_free;
}
} else {
rc = bnxt_hwrm_allocate_pf_only(bp);
if (rc) {
RTE_LOG(ERR, PMD,
"Failed to allocate PF resources\n");
goto error_free;
}
}
}
bnxt_hwrm_port_led_qcaps(bp);
rc = bnxt_setup_int(bp);
if (rc)
goto error_free;
rc = bnxt_alloc_mem(bp);
if (rc)
goto error_free_int;
rc = bnxt_request_int(bp);
if (rc)
goto error_free_int;
rc = bnxt_alloc_def_cp_ring(bp);
if (rc)
goto error_free_int;
bnxt_enable_int(bp);
return 0;
error_free_int:
bnxt_disable_int(bp);
bnxt_free_def_cp_ring(bp);
bnxt_hwrm_func_buf_unrgtr(bp);
bnxt_free_int(bp);
bnxt_free_mem(bp);
error_free:
bnxt_dev_uninit(eth_dev);
error:
return rc;
}
static int
bnxt_dev_uninit(struct rte_eth_dev *eth_dev) {
struct bnxt *bp = eth_dev->data->dev_private;
int rc;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -EPERM;
bnxt_disable_int(bp);
bnxt_free_int(bp);
bnxt_free_mem(bp);
if (eth_dev->data->mac_addrs != NULL) {
rte_free(eth_dev->data->mac_addrs);
eth_dev->data->mac_addrs = NULL;
}
if (bp->grp_info != NULL) {
rte_free(bp->grp_info);
bp->grp_info = NULL;
}
rc = bnxt_hwrm_func_driver_unregister(bp, 0);
bnxt_free_hwrm_resources(bp);
rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
if (bp->dev_stopped == 0)
bnxt_dev_close_op(eth_dev);
if (bp->pf.vf_info)
rte_free(bp->pf.vf_info);
eth_dev->dev_ops = NULL;
eth_dev->rx_pkt_burst = NULL;
eth_dev->tx_pkt_burst = NULL;
return rc;
}
static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct bnxt),
bnxt_dev_init);
}
static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, bnxt_dev_uninit);
}
static struct rte_pci_driver bnxt_rte_pmd = {
.id_table = bnxt_pci_id_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING |
RTE_PCI_DRV_INTR_LSC,
.probe = bnxt_pci_probe,
.remove = bnxt_pci_remove,
};
static bool
is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
{
if (strcmp(dev->device->driver->name, drv->driver.name))
return false;
return true;
}
bool is_bnxt_supported(struct rte_eth_dev *dev)
{
return is_device_supported(dev, &bnxt_rte_pmd);
}
RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");