Rasesh Mody 4dd60a7a93 net/bnx2x: cleanup info logs
Reduced number of INFO logs in BNX2X PMD by converting some INFO
logs to DEBUG and few NOTICE logs to INFO, removing extra new lines,
printing banner bar once for the adapter and device specific info.

Fixes: ba7eeb035a5f ("net/bnx2x: fix logging to include device name")
Fixes: 540a211084a7 ("bnx2x: driver core")
Cc: stable@dpdk.org

Signed-off-by: Rasesh Mody <rasesh.mody@cavium.com>
2018-12-13 16:31:06 +00:00

2029 lines
66 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) 2007-2013 Broadcom Corporation.
*
* Eric Davis <edavis@broadcom.com>
* David Christensen <davidch@broadcom.com>
* Gary Zambrano <zambrano@broadcom.com>
*
* Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
* Copyright (c) 2015-2018 Cavium Inc.
* All rights reserved.
* www.cavium.com
*/
#ifndef __BNX2X_H__
#define __BNX2X_H__
#include <rte_byteorder.h>
#include <rte_spinlock.h>
#include <rte_bus_pci.h>
#include <rte_io.h>
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#ifndef __LITTLE_ENDIAN
#define __LITTLE_ENDIAN RTE_LITTLE_ENDIAN
#endif
#undef __BIG_ENDIAN
#elif RTE_BYTE_ORDER == RTE_BIG_ENDIAN
#ifndef __BIG_ENDIAN
#define __BIG_ENDIAN RTE_BIG_ENDIAN
#endif
#undef __LITTLE_ENDIAN
#endif
#include "bnx2x_ethdev.h"
#include "ecore_mfw_req.h"
#include "ecore_fw_defs.h"
#include "ecore_hsi.h"
#include "ecore_reg.h"
#include "bnx2x_stats.h"
#include "bnx2x_vfpf.h"
#include "elink.h"
#ifndef __FreeBSD__
#include <linux/pci_regs.h>
#define PCIY_PMG PCI_CAP_ID_PM
#define PCIY_MSI PCI_CAP_ID_MSI
#define PCIY_EXPRESS PCI_CAP_ID_EXP
#define PCIY_MSIX PCI_CAP_ID_MSIX
#define PCIR_EXPRESS_DEVICE_STA PCI_EXP_TYPE_RC_EC
#define PCIM_EXP_STA_TRANSACTION_PND PCI_EXP_DEVSTA_TRPND
#define PCIR_EXPRESS_LINK_STA PCI_EXP_LNKSTA
#define PCIM_LINK_STA_WIDTH PCI_EXP_LNKSTA_NLW
#define PCIM_LINK_STA_SPEED PCI_EXP_LNKSTA_CLS
#define PCIR_EXPRESS_DEVICE_CTL PCI_EXP_DEVCTL
#define PCIM_EXP_CTL_MAX_PAYLOAD PCI_EXP_DEVCTL_PAYLOAD
#define PCIM_EXP_CTL_MAX_READ_REQUEST PCI_EXP_DEVCTL_READRQ
#define PCIR_POWER_STATUS PCI_PM_CTRL
#define PCIM_PSTAT_DMASK PCI_PM_CTRL_STATE_MASK
#define PCIM_PSTAT_PME PCI_PM_CTRL_PME_STATUS
#define PCIM_PSTAT_D3 0x3
#define PCIM_PSTAT_PMEENABLE PCI_PM_CTRL_PME_ENABLE
#define PCIR_MSIX_CTRL PCI_MSIX_FLAGS
#define PCIM_MSIXCTRL_TABLE_SIZE PCI_MSIX_FLAGS_QSIZE
#else
#include <dev/pci/pcireg.h>
#endif
#define IFM_10G_CX4 20 /* 10GBase CX4 copper */
#define IFM_10G_TWINAX 22 /* 10GBase Twinax copper */
#define IFM_10G_T 26 /* 10GBase-T - RJ45 */
#ifndef __FreeBSD__
#define PCIR_EXPRESS_DEVICE_STA PCI_EXP_TYPE_RC_EC
#define PCIM_EXP_STA_TRANSACTION_PND PCI_EXP_DEVSTA_TRPND
#define PCIR_EXPRESS_LINK_STA PCI_EXP_LNKSTA
#define PCIM_LINK_STA_WIDTH PCI_EXP_LNKSTA_NLW
#define PCIM_LINK_STA_SPEED PCI_EXP_LNKSTA_CLS
#define PCIR_EXPRESS_DEVICE_CTL PCI_EXP_DEVCTL
#define PCIM_EXP_CTL_MAX_PAYLOAD PCI_EXP_DEVCTL_PAYLOAD
#define PCIM_EXP_CTL_MAX_READ_REQUEST PCI_EXP_DEVCTL_READRQ
#else
#define PCIR_EXPRESS_DEVICE_STA PCIER_DEVICE_STA
#define PCIM_EXP_STA_TRANSACTION_PND PCIEM_STA_TRANSACTION_PND
#define PCIR_EXPRESS_LINK_STA PCIER_LINK_STA
#define PCIM_LINK_STA_WIDTH PCIEM_LINK_STA_WIDTH
#define PCIM_LINK_STA_SPEED PCIEM_LINK_STA_SPEED
#define PCIR_EXPRESS_DEVICE_CTL PCIER_DEVICE_CTL
#define PCIM_EXP_CTL_MAX_PAYLOAD PCIEM_CTL_MAX_PAYLOAD
#define PCIM_EXP_CTL_MAX_READ_REQUEST PCIEM_CTL_MAX_READ_REQUEST
#endif
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
#endif
#ifndef ARRSIZE
#define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
#endif
#ifndef DIV_ROUND_UP
#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
#endif
#ifndef roundup
#define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
#endif
#ifndef ilog2
static inline
int bnx2x_ilog2(int x)
{
int log = 0;
x >>= 1;
while(x) {
log++;
x >>= 1;
}
return log;
}
#define ilog2(x) bnx2x_ilog2(x)
#endif
#include "ecore_sp.h"
struct bnx2x_device_type {
uint16_t bnx2x_vid;
uint16_t bnx2x_did;
uint16_t bnx2x_svid;
uint16_t bnx2x_sdid;
char *bnx2x_name;
};
#define BNX2X_PAGE_SHIFT 12
#define BNX2X_PAGE_SIZE (1 << BNX2X_PAGE_SHIFT)
#define BNX2X_PAGE_MASK (~(BNX2X_PAGE_SIZE - 1))
#define BNX2X_PAGE_ALIGN(addr) ((addr + BNX2X_PAGE_SIZE - 1) & BNX2X_PAGE_MASK)
#if BNX2X_PAGE_SIZE != 4096
#error Page sizes other than 4KB are unsupported!
#endif
#define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
#define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
#define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
/* dropless fc FW/HW related params */
#define BRB_SIZE(sc) (CHIP_IS_E3(sc) ? 1024 : 512)
#define MAX_AGG_QS(sc) ETH_MAX_AGGREGATION_QUEUES_E1H_E2
#define FW_DROP_LEVEL(sc) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
#define FW_PREFETCH_CNT 16U
#define DROPLESS_FC_HEADROOM 100
/*
* Transmit Buffer Descriptor (tx_bd) definitions*
*/
/* NUM_TX_PAGES must be a power of 2. */
#define TOTAL_TX_BD_PER_PAGE (BNX2X_PAGE_SIZE / sizeof(union eth_tx_bd_types)) /* 256 */
#define USABLE_TX_BD_PER_PAGE (TOTAL_TX_BD_PER_PAGE - 1) /* 255 */
#define TOTAL_TX_BD(q) (TOTAL_TX_BD_PER_PAGE * q->nb_tx_pages) /* 512 */
#define USABLE_TX_BD(q) (USABLE_TX_BD_PER_PAGE * q->nb_tx_pages) /* 510 */
#define MAX_TX_BD(q) (TOTAL_TX_BD(q) - 1) /* 511 */
#define NEXT_TX_BD(x) \
((((x) & USABLE_TX_BD_PER_PAGE) == \
(USABLE_TX_BD_PER_PAGE - 1)) ? (x) + 2 : (x) + 1)
#define TX_BD(x, q) ((x) & MAX_TX_BD(q))
#define TX_PAGE(x) (((x) & ~USABLE_TX_BD_PER_PAGE) >> 8)
#define TX_IDX(x) ((x) & USABLE_TX_BD_PER_PAGE)
#define BDS_PER_TX_PKT (3)
/*
* Trigger pending transmits when the number of available BDs is greater
* than 1/8 of the total number of usable BDs.
*/
#define BNX2X_TX_CLEANUP_THRESHOLD(q) (USABLE_TX_BD(q) / 8)
#define BNX2X_TX_TIMEOUT 5
/*
* Receive Buffer Descriptor (rx_bd) definitions*
*/
//#define NUM_RX_PAGES 1
#define TOTAL_RX_BD_PER_PAGE (BNX2X_PAGE_SIZE / sizeof(struct eth_rx_bd)) /* 512 */
#define USABLE_RX_BD_PER_PAGE (TOTAL_RX_BD_PER_PAGE - 2) /* 510 */
#define RX_BD_PER_PAGE_MASK (TOTAL_RX_BD_PER_PAGE - 1) /* 511 */
#define TOTAL_RX_BD(q) (TOTAL_RX_BD_PER_PAGE * q->nb_rx_pages) /* 512 */
#define USABLE_RX_BD(q) (USABLE_RX_BD_PER_PAGE * q->nb_rx_pages) /* 510 */
#define MAX_RX_BD(q) (TOTAL_RX_BD(q) - 1) /* 511 */
#define RX_BD_NEXT_PAGE_DESC_CNT 2
#define NEXT_RX_BD(x) \
((((x) & RX_BD_PER_PAGE_MASK) == \
(USABLE_RX_BD_PER_PAGE - 1)) ? (x) + 3 : (x) + 1)
/* x & 0x3ff */
#define RX_BD(x, q) ((x) & MAX_RX_BD(q))
#define RX_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
#define RX_IDX(x) ((x) & RX_BD_PER_PAGE_MASK)
/*
* Receive Completion Queue definitions*
*/
//#define NUM_RCQ_PAGES (NUM_RX_PAGES * 4)
#define TOTAL_RCQ_ENTRIES_PER_PAGE (BNX2X_PAGE_SIZE / sizeof(union eth_rx_cqe)) /* 128 */
#define USABLE_RCQ_ENTRIES_PER_PAGE (TOTAL_RCQ_ENTRIES_PER_PAGE - 1) /* 127 */
#define TOTAL_RCQ_ENTRIES(q) (TOTAL_RCQ_ENTRIES_PER_PAGE * q->nb_cq_pages) /* 512 */
#define USABLE_RCQ_ENTRIES(q) (USABLE_RCQ_ENTRIES_PER_PAGE * q->nb_cq_pages) /* 508 */
#define MAX_RCQ_ENTRIES(q) (TOTAL_RCQ_ENTRIES(q) - 1) /* 511 */
#define RCQ_NEXT_PAGE_DESC_CNT 1
#define NEXT_RCQ_IDX(x) \
((((x) & USABLE_RCQ_ENTRIES_PER_PAGE) == \
(USABLE_RCQ_ENTRIES_PER_PAGE - 1)) ? (x) + 2 : (x) + 1)
#define CQE_BD_REL \
(sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd))
#define RCQ_BD_PAGES(q) \
(q->nb_rx_pages * CQE_BD_REL)
#define RCQ_ENTRY(x, q) ((x) & MAX_RCQ_ENTRIES(q))
#define RCQ_PAGE(x) (((x) & ~USABLE_RCQ_ENTRIES_PER_PAGE) >> 7)
#define RCQ_IDX(x) ((x) & USABLE_RCQ_ENTRIES_PER_PAGE)
/*
* dropless fc calculations for BDs
* Number of BDs should be as number of buffers in BRB:
* Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
* "next" elements on each page
*/
#define NUM_BD_REQ(sc) \
BRB_SIZE(sc)
#define NUM_BD_PG_REQ(sc) \
((NUM_BD_REQ(sc) + USABLE_RX_BD_PER_PAGE - 1) / USABLE_RX_BD_PER_PAGE)
#define BD_TH_LO(sc) \
(NUM_BD_REQ(sc) + \
NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
FW_DROP_LEVEL(sc))
#define BD_TH_HI(sc) \
(BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
#define MIN_RX_AVAIL(sc) \
((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
/*
* dropless fc calculations for RCQs
* Number of RCQs should be as number of buffers in BRB:
* Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
* "next" elements on each page
*/
#define NUM_RCQ_REQ(sc) \
BRB_SIZE(sc)
#define NUM_RCQ_PG_REQ(sc) \
((NUM_RCQ_REQ(sc) + USABLE_RCQ_ENTRIES_PER_PAGE - 1) / USABLE_RCQ_ENTRIES_PER_PAGE)
#define RCQ_TH_LO(sc) \
(NUM_RCQ_REQ(sc) + \
NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
FW_DROP_LEVEL(sc))
#define RCQ_TH_HI(sc) \
(RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
/* Load / Unload modes */
#define LOAD_NORMAL 0
#define LOAD_OPEN 1
#define LOAD_DIAG 2
#define LOAD_LOOPBACK_EXT 3
#define UNLOAD_NORMAL 0
#define UNLOAD_CLOSE 1
#define UNLOAD_RECOVERY 2
/* Some constants... */
//#define MAX_PATH_NUM 2
//#define E2_MAX_NUM_OF_VFS 64
//#define E1H_FUNC_MAX 8
//#define E2_FUNC_MAX 4 /* per path */
#define MAX_VNIC_NUM 4
#define MAX_FUNC_NUM 8 /* common to all chips */
//#define MAX_NDSB HC_SB_MAX_SB_E2 /* max non-default status block */
#define MAX_RSS_CHAINS 16 /* a constant for HW limit */
#define MAX_MSI_VECTOR 8 /* a constant for HW limit */
#define ILT_NUM_PAGE_ENTRIES 3072
/*
* 57711 we use whole table since we have 8 functions.
* 57712 we have only 4 functions, but use same size per func, so only half
* of the table is used.
*/
#define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES / 8)
#define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
/*
* the phys address is shifted right 12 bits and has an added
* 1=valid bit added to the 53rd bit
* then since this is a wide register(TM)
* we split it into two 32 bit writes
*/
#define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
#define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
#define ETH_HLEN 14
#define ETH_OVERHEAD (ETH_HLEN + 8 + 8)
#define ETH_MIN_PACKET_SIZE 60
#define ETH_MAX_PACKET_SIZE ETHERMTU /* 1500 */
#define ETH_MAX_JUMBO_PACKET_SIZE 9600
/* TCP with Timestamp Option (32) + IPv6 (40) */
/* max supported alignment is 256 (8 shift) */
#define BNX2X_RX_ALIGN_SHIFT RTE_MAX(6, min(8, RTE_CACHE_LINE_SIZE_LOG2))
#define BNX2X_PXP_DRAM_ALIGN (BNX2X_RX_ALIGN_SHIFT - 5)
struct bnx2x_bar {
void *base_addr;
};
/* Used to manage DMA allocations. */
struct bnx2x_dma {
struct bnx2x_softc *sc;
rte_iova_t paddr;
void *vaddr;
int nseg;
char msg[RTE_MEMZONE_NAMESIZE - 6];
};
/* attn group wiring */
#define MAX_DYNAMIC_ATTN_GRPS 8
struct attn_route {
uint32_t sig[5];
};
struct iro {
uint32_t base;
uint16_t m1;
uint16_t m2;
uint16_t m3;
uint16_t size;
};
union bnx2x_host_hc_status_block {
/* pointer to fp status block e2 */
struct host_hc_status_block_e2 *e2_sb;
/* pointer to fp status block e1x */
struct host_hc_status_block_e1x *e1x_sb;
};
union bnx2x_db_prod {
struct doorbell_set_prod data;
uint32_t raw;
};
struct bnx2x_sw_tx_bd {
struct mbuf *m;
uint16_t first_bd;
uint8_t flags;
/* set on the first BD descriptor when there is a split BD */
#define BNX2X_TSO_SPLIT_BD (1 << 0)
};
/*
* This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
* instances of the fastpath structure when using multiple queues.
*/
struct bnx2x_fastpath {
/* pointer back to parent structure */
struct bnx2x_softc *sc;
/* status block */
struct bnx2x_dma sb_dma;
union bnx2x_host_hc_status_block status_block;
rte_iova_t tx_desc_mapping;
rte_iova_t rx_desc_mapping;
rte_iova_t rx_comp_mapping;
uint16_t *sb_index_values;
uint16_t *sb_running_index;
uint32_t ustorm_rx_prods_offset;
uint8_t igu_sb_id; /* status block number in HW */
uint8_t fw_sb_id; /* status block number in FW */
uint32_t rx_buf_size;
int state;
#define BNX2X_FP_STATE_CLOSED 0x01
#define BNX2X_FP_STATE_IRQ 0x02
#define BNX2X_FP_STATE_OPENING 0x04
#define BNX2X_FP_STATE_OPEN 0x08
#define BNX2X_FP_STATE_HALTING 0x10
#define BNX2X_FP_STATE_HALTED 0x20
/* reference back to this fastpath queue number */
uint8_t index; /* this is also the 'cid' */
#define FP_IDX(fp) (fp->index)
/* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
uint8_t cl_id;
#define FP_CL_ID(fp) (fp->cl_id)
uint8_t cl_qzone_id;
uint16_t fp_hc_idx;
union bnx2x_db_prod tx_db;
struct tstorm_per_queue_stats old_tclient;
struct ustorm_per_queue_stats old_uclient;
struct xstorm_per_queue_stats old_xclient;
struct bnx2x_eth_q_stats eth_q_stats;
struct bnx2x_eth_q_stats_old eth_q_stats_old;
/* Pointer to the receive consumer in the status block */
uint16_t *rx_cq_cons_sb;
/* Pointer to the transmit consumer in the status block */
uint16_t *tx_cons_sb;
/* transmit timeout until chip reset */
int watchdog_timer;
}; /* struct bnx2x_fastpath */
#define BNX2X_MAX_NUM_OF_VFS 64
#define BNX2X_VF_ID_INVALID 0xFF
/* maximum number of fast-path interrupt contexts */
#define FP_SB_MAX_E1x 16
#define FP_SB_MAX_E2 HC_SB_MAX_SB_E2
union cdu_context {
struct eth_context eth;
char pad[1024];
};
/* CDU host DB constants */
#define CDU_ILT_PAGE_SZ_HW 2
#define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
#define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
#define CNIC_ISCSI_CID_MAX 256
#define CNIC_FCOE_CID_MAX 2048
#define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
#define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
#define QM_ILT_PAGE_SZ_HW 0
#define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
#define QM_CID_ROUND 1024
/* TM (timers) host DB constants */
#define TM_ILT_PAGE_SZ_HW 0
#define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
/*#define TM_CONN_NUM (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
#define TM_CONN_NUM 1024
#define TM_ILT_SZ (8 * TM_CONN_NUM)
#define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
/* SRC (Searcher) host DB constants */
#define SRC_ILT_PAGE_SZ_HW 0
#define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
#define SRC_HASH_BITS 10
#define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */
#define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM)
#define SRC_T2_SZ SRC_ILT_SZ
#define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
struct hw_context {
struct bnx2x_dma vcxt_dma;
union cdu_context *vcxt;
//rte_iova_t cxt_mapping;
size_t size;
};
#define SM_RX_ID 0
#define SM_TX_ID 1
/* defines for multiple tx priority indices */
#define FIRST_TX_ONLY_COS_INDEX 1
#define FIRST_TX_COS_INDEX 0
#define CID_TO_FP(cid, sc) ((cid) % BNX2X_NUM_NON_CNIC_QUEUES(sc))
#define HC_INDEX_ETH_RX_CQ_CONS 1
#define HC_INDEX_OOO_TX_CQ_CONS 4
#define HC_INDEX_ETH_TX_CQ_CONS_COS0 5
#define HC_INDEX_ETH_TX_CQ_CONS_COS1 6
#define HC_INDEX_ETH_TX_CQ_CONS_COS2 7
#define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
/* congestion management fairness mode */
#define CMNG_FNS_NONE 0
#define CMNG_FNS_MINMAX 1
/* CMNG constants, as derived from system spec calculations */
/* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
#define DEF_MIN_RATE 100
/* resolution of the rate shaping timer - 400 usec */
#define RS_PERIODIC_TIMEOUT_USEC 400
/* number of bytes in single QM arbitration cycle -
* coefficient for calculating the fairness timer */
#define QM_ARB_BYTES 160000
/* resolution of Min algorithm 1:100 */
#define MIN_RES 100
/* how many bytes above threshold for the minimal credit of Min algorithm*/
#define MIN_ABOVE_THRESH 32768
/* fairness algorithm integration time coefficient -
* for calculating the actual Tfair */
#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
/* memory of fairness algorithm - 2 cycles */
#define FAIR_MEM 2
#define HC_SEG_ACCESS_DEF 0 /* Driver decision 0-3 */
#define HC_SEG_ACCESS_ATTN 4
#define HC_SEG_ACCESS_NORM 0 /* Driver decision 0-1 */
/*
* The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
* control by the number of fast-path status blocks supported by the
* device (HW/FW). Each fast-path status block (FP-SB) aka non-default
* status block represents an independent interrupts context that can
* serve a regular L2 networking queue. However special L2 queues such
* as the FCoE queue do not require a FP-SB and other components like
* the CNIC may consume FP-SB reducing the number of possible L2 queues
*
* If the maximum number of FP-SB available is X then:
* a. If CNIC is supported it consumes 1 FP-SB thus the max number of
* regular L2 queues is Y=X-1
* b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
* c. If the FCoE L2 queue is supported the actual number of L2 queues
* is Y+1
* d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
* slow-path interrupts) or Y+2 if CNIC is supported (one additional
* FP interrupt context for the CNIC).
* e. The number of HW context (CID count) is always X or X+1 if FCoE
* L2 queue is supported. the cid for the FCoE L2 queue is always X.
*
* So this is quite simple for now as no ULPs are supported yet. :-)
*/
#define BNX2X_NUM_QUEUES(sc) ((sc)->num_queues)
#define BNX2X_NUM_ETH_QUEUES(sc) BNX2X_NUM_QUEUES(sc)
#define BNX2X_NUM_NON_CNIC_QUEUES(sc) BNX2X_NUM_QUEUES(sc)
#define BNX2X_NUM_RX_QUEUES(sc) BNX2X_NUM_QUEUES(sc)
#define FOR_EACH_QUEUE(sc, var) \
for ((var) = 0; (var) < BNX2X_NUM_QUEUES(sc); (var)++)
#define FOR_EACH_NONDEFAULT_QUEUE(sc, var) \
for ((var) = 1; (var) < BNX2X_NUM_QUEUES(sc); (var)++)
#define FOR_EACH_ETH_QUEUE(sc, var) \
for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(sc); (var)++)
#define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var) \
for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(sc); (var)++)
#define FOR_EACH_COS_IN_TX_QUEUE(sc, var) \
for ((var) = 0; (var) < (sc)->max_cos; (var)++)
#define FOR_EACH_CNIC_QUEUE(sc, var) \
for ((var) = BNX2X_NUM_ETH_QUEUES(sc); \
(var) < BNX2X_NUM_QUEUES(sc); \
(var)++)
enum {
OOO_IDX_OFFSET,
FCOE_IDX_OFFSET,
FWD_IDX_OFFSET,
};
#define FCOE_IDX(sc) (BNX2X_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
#define bnx2x_fcoe_fp(sc) (&sc->fp[FCOE_IDX(sc)])
#define bnx2x_fcoe(sc, var) (bnx2x_fcoe_fp(sc)->var)
#define bnx2x_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
#define bnx2x_fcoe_sp_obj(sc, var) (bnx2x_fcoe_inner_sp_obj(sc)->var)
#define bnx2x_fcoe_tx(sc, var) (bnx2x_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
#define OOO_IDX(sc) (BNX2X_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
#define bnx2x_ooo_fp(sc) (&sc->fp[OOO_IDX(sc)])
#define bnx2x_ooo(sc, var) (bnx2x_ooo_fp(sc)->var)
#define bnx2x_ooo_inner_sp_obj(sc) (&sc->sp_objs[OOO_IDX(sc)])
#define bnx2x_ooo_sp_obj(sc, var) (bnx2x_ooo_inner_sp_obj(sc)->var)
#define FWD_IDX(sc) (BNX2X_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
#define bnx2x_fwd_fp(sc) (&sc->fp[FWD_IDX(sc)])
#define bnx2x_fwd(sc, var) (bnx2x_fwd_fp(sc)->var)
#define bnx2x_fwd_inner_sp_obj(sc) (&sc->sp_objs[FWD_IDX(sc)])
#define bnx2x_fwd_sp_obj(sc, var) (bnx2x_fwd_inner_sp_obj(sc)->var)
#define bnx2x_fwd_txdata(fp) (fp->txdata_ptr[FIRST_TX_COS_INDEX])
#define IS_ETH_FP(fp) ((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->sc))
#define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->sc))
#define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
#define IS_FWD_FP(fp) ((fp)->index == FWD_IDX((fp)->sc))
#define IS_FWD_IDX(idx) ((idx) == FWD_IDX(sc))
#define IS_OOO_FP(fp) ((fp)->index == OOO_IDX((fp)->sc))
#define IS_OOO_IDX(idx) ((idx) == OOO_IDX(sc))
enum {
BNX2X_PORT_QUERY_IDX,
BNX2X_PF_QUERY_IDX,
BNX2X_FCOE_QUERY_IDX,
BNX2X_FIRST_QUEUE_QUERY_IDX,
};
struct bnx2x_fw_stats_req {
struct stats_query_header hdr;
struct stats_query_entry query[FP_SB_MAX_E1x +
BNX2X_FIRST_QUEUE_QUERY_IDX];
};
struct bnx2x_fw_stats_data {
struct stats_counter storm_counters;
struct per_port_stats port;
struct per_pf_stats pf;
struct per_queue_stats queue_stats[1];
};
/* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
#define BNX2X_IGU_STAS_MSG_VF_CNT 64
#define BNX2X_IGU_STAS_MSG_PF_CNT 4
#define MAX_DMAE_C 8
/*
* This is the slowpath data structure. It is mapped into non-paged memory
* so that the hardware can access it's contents directly and must be page
* aligned.
*/
struct bnx2x_slowpath {
/* used by the DMAE command executer */
struct dmae_command dmae[MAX_DMAE_C];
/* statistics completion */
uint32_t stats_comp;
/* firmware defined statistics blocks */
union mac_stats mac_stats;
struct nig_stats nig_stats;
struct host_port_stats port_stats;
struct host_func_stats func_stats;
/* DMAE completion value and data source/sink */
uint32_t wb_comp;
uint32_t wb_data[4];
union {
struct mac_configuration_cmd e1x;
struct eth_classify_rules_ramrod_data e2;
} mac_rdata;
union {
struct tstorm_eth_mac_filter_config e1x;
struct eth_filter_rules_ramrod_data e2;
} rx_mode_rdata;
struct eth_rss_update_ramrod_data rss_rdata;
union {
struct mac_configuration_cmd e1;
struct eth_multicast_rules_ramrod_data e2;
} mcast_rdata;
union {
struct function_start_data func_start;
struct flow_control_configuration pfc_config; /* for DCBX ramrod */
} func_rdata;
/* Queue State related ramrods */
union {
struct client_init_ramrod_data init_data;
struct client_update_ramrod_data update_data;
} q_rdata;
/*
* AFEX ramrod can not be a part of func_rdata union because these
* events might arrive in parallel to other events from func_rdata.
* If they were defined in the same union the data can get corrupted.
*/
struct afex_vif_list_ramrod_data func_afex_rdata;
union drv_info_to_mcp drv_info_to_mcp;
}; /* struct bnx2x_slowpath */
/*
* Port specifc data structure.
*/
struct bnx2x_port {
/*
* Port Management Function (for 57711E only).
* When this field is set the driver instance is
* responsible for managing port specifc
* configurations such as handling link attentions.
*/
uint32_t pmf;
/* Ethernet maximum transmission unit. */
uint16_t ether_mtu;
uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
uint32_t ext_phy_config;
/* Port feature config.*/
uint32_t config;
/* Defines the features supported by the PHY. */
uint32_t supported[ELINK_LINK_CONFIG_SIZE];
/* Defines the features advertised by the PHY. */
uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
#define ADVERTISED_10baseT_Half (1 << 1)
#define ADVERTISED_10baseT_Full (1 << 2)
#define ADVERTISED_100baseT_Half (1 << 3)
#define ADVERTISED_100baseT_Full (1 << 4)
#define ADVERTISED_1000baseT_Half (1 << 5)
#define ADVERTISED_1000baseT_Full (1 << 6)
#define ADVERTISED_TP (1 << 7)
#define ADVERTISED_FIBRE (1 << 8)
#define ADVERTISED_Autoneg (1 << 9)
#define ADVERTISED_Asym_Pause (1 << 10)
#define ADVERTISED_Pause (1 << 11)
#define ADVERTISED_2500baseX_Full (1 << 15)
#define ADVERTISED_10000baseT_Full (1 << 16)
uint32_t phy_addr;
/* Used to synchronize phy accesses. */
rte_spinlock_t phy_mtx;
char phy_mtx_name[32];
#define BNX2X_PHY_LOCK(sc) rte_spinlock_lock(&sc->port.phy_mtx)
#define BNX2X_PHY_UNLOCK(sc) rte_spinlock_unlock(&sc->port.phy_mtx)
/*
* MCP scratchpad address for port specific statistics.
* The device is responsible for writing statistcss
* back to the MCP for use with management firmware such
* as UMP/NC-SI.
*/
uint32_t port_stx;
struct nig_stats old_nig_stats;
}; /* struct bnx2x_port */
struct bnx2x_mf_info {
uint32_t mf_config[E1HVN_MAX];
uint32_t vnics_per_port; /* 1, 2 or 4 */
uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
uint32_t path_has_ovlan; /* MF mode in the path (can be different than the MF mode of the function */
#define IS_MULTI_VNIC(sc) ((sc)->devinfo.mf_info.multi_vnics_mode)
#define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
#define VNICS_PER_PATH(sc) \
((sc)->devinfo.mf_info.vnics_per_port * \
((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
uint8_t min_bw[MAX_VNIC_NUM];
uint8_t max_bw[MAX_VNIC_NUM];
uint16_t ext_id; /* vnic outer vlan or VIF ID */
#define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
#define INVALID_VIF_ID 0xFFFF
#define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
#define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
uint16_t default_vlan;
#define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
uint8_t niv_allowed_priorities;
#define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
uint8_t niv_default_cos;
#define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
uint8_t niv_mba_enabled;
enum mf_cfg_afex_vlan_mode afex_vlan_mode;
#define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
int afex_def_vlan_tag;
uint32_t pending_max;
uint16_t flags;
#define MF_INFO_VALID_MAC 0x0001
uint16_t mf_ov;
uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
#define IS_MF(sc) \
(IS_MULTI_VNIC(sc) && \
((sc)->devinfo.mf_info.mf_mode != 0))
#define IS_MF_SD(sc) \
(IS_MULTI_VNIC(sc) && \
((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
#define IS_MF_SI(sc) \
(IS_MULTI_VNIC(sc) && \
((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
#define IS_MF_AFEX(sc) \
(IS_MULTI_VNIC(sc) && \
((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
#define IS_MF_SD_MODE(sc) IS_MF_SD(sc)
#define IS_MF_SI_MODE(sc) IS_MF_SI(sc)
#define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
uint32_t mf_protos_supported;
#define MF_PROTO_SUPPORT_ETHERNET 0x1
#define MF_PROTO_SUPPORT_ISCSI 0x2
#define MF_PROTO_SUPPORT_FCOE 0x4
}; /* struct bnx2x_mf_info */
/* Device information data structure. */
struct bnx2x_devinfo {
#if 1
#define NAME_SIZE 128
char name[NAME_SIZE];
#endif
/* PCIe info */
uint16_t vendor_id;
uint16_t device_id;
uint16_t subvendor_id;
uint16_t subdevice_id;
/*
* chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
* C = Chip Number (bits 16-31)
* R = Chip Revision (bits 12-15)
* M = Chip Metal (bits 4-11)
* B = Chip Bond ID (bits 0-3)
*/
uint32_t chip_id;
#define CHIP_ID(sc) ((sc)->devinfo.chip_id & 0xffff0000)
#define CHIP_NUM(sc) ((sc)->devinfo.chip_id >> 16)
/* device ids */
#define CHIP_NUM_57710 0x164e
#define CHIP_NUM_57711 0x164f
#define CHIP_NUM_57711E 0x1650
#define CHIP_NUM_57712 0x1662
#define CHIP_NUM_57712_MF 0x1663
#define CHIP_NUM_57712_VF 0x166f
#define CHIP_NUM_57800 0x168a
#define CHIP_NUM_57800_MF 0x16a5
#define CHIP_NUM_57800_VF 0x16a9
#define CHIP_NUM_57810 0x168e
#define CHIP_NUM_57810_MF 0x16ae
#define CHIP_NUM_57810_VF 0x16af
#define CHIP_NUM_57811 0x163d
#define CHIP_NUM_57811_MF 0x163e
#define CHIP_NUM_57811_VF 0x163f
#define CHIP_NUM_57840_OBS 0x168d
#define CHIP_NUM_57840_OBS_MF 0x16ab
#define CHIP_NUM_57840_4_10 0x16a1
#define CHIP_NUM_57840_2_20 0x16a2
#define CHIP_NUM_57840_MF 0x16a4
#define CHIP_NUM_57840_VF 0x16ad
#define CHIP_REV_SHIFT 12
#define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT)
#define CHIP_REV(sc) ((sc)->devinfo.chip_id & CHIP_REV_MASK)
#define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT)
#define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT)
#define CHIP_REV_Cx (0x2 << CHIP_REV_SHIFT)
#define CHIP_REV_IS_SLOW(sc) \
(CHIP_REV(sc) > 0x00005000)
#define CHIP_REV_IS_FPGA(sc) \
(CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
#define CHIP_REV_IS_EMUL(sc) \
(CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
#define CHIP_REV_IS_ASIC(sc) \
(!CHIP_REV_IS_SLOW(sc))
#define CHIP_METAL(sc) ((sc->devinfo.chip_id) & 0x00000ff0)
#define CHIP_BOND_ID(sc) ((sc->devinfo.chip_id) & 0x0000000f)
#define CHIP_IS_E1(sc) (CHIP_NUM(sc) == CHIP_NUM_57710)
#define CHIP_IS_57710(sc) (CHIP_NUM(sc) == CHIP_NUM_57710)
#define CHIP_IS_57711(sc) (CHIP_NUM(sc) == CHIP_NUM_57711)
#define CHIP_IS_57711E(sc) (CHIP_NUM(sc) == CHIP_NUM_57711E)
#define CHIP_IS_E1H(sc) ((CHIP_IS_57711(sc)) || \
(CHIP_IS_57711E(sc)))
#define CHIP_IS_E1x(sc) CHIP_IS_E1H(sc)
#define CHIP_IS_57712(sc) (CHIP_NUM(sc) == CHIP_NUM_57712)
#define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
#define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
#define CHIP_IS_E2(sc) (CHIP_IS_57712(sc) || \
CHIP_IS_57712_MF(sc))
#define CHIP_IS_57800(sc) (CHIP_NUM(sc) == CHIP_NUM_57800)
#define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
#define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
#define CHIP_IS_57810(sc) (CHIP_NUM(sc) == CHIP_NUM_57810)
#define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
#define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
#define CHIP_IS_57811(sc) (CHIP_NUM(sc) == CHIP_NUM_57811)
#define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
#define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
#define CHIP_IS_57840(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS) || \
(CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
(CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
#define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
(CHIP_NUM(sc) == CHIP_NUM_57840_MF))
#define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
#define CHIP_IS_E3(sc) (CHIP_IS_57800(sc) || \
CHIP_IS_57800_MF(sc) || \
CHIP_IS_57800_VF(sc) || \
CHIP_IS_57810(sc) || \
CHIP_IS_57810_MF(sc) || \
CHIP_IS_57810_VF(sc) || \
CHIP_IS_57811(sc) || \
CHIP_IS_57811_MF(sc) || \
CHIP_IS_57811_VF(sc) || \
CHIP_IS_57840(sc) || \
CHIP_IS_57840_MF(sc) || \
CHIP_IS_57840_VF(sc))
#define CHIP_IS_E3A0(sc) (CHIP_IS_E3(sc) && \
(CHIP_REV(sc) == CHIP_REV_Ax))
#define CHIP_IS_E3B0(sc) (CHIP_IS_E3(sc) && \
(CHIP_REV(sc) == CHIP_REV_Bx))
#define USES_WARPCORE(sc) (CHIP_IS_E3(sc))
#define CHIP_IS_E2E3(sc) (CHIP_IS_E2(sc) || \
CHIP_IS_E3(sc))
#define CHIP_IS_MF_CAP(sc) (CHIP_IS_57711E(sc) || \
CHIP_IS_57712_MF(sc) || \
CHIP_IS_E3(sc))
#define IS_VF(sc) ((sc)->flags & BNX2X_IS_VF_FLAG)
#define IS_PF(sc) (!IS_VF(sc))
/*
* This define is used in two main places:
* 1. In the early stages of nic_load, to know if to configure Parser/Searcher
* to nic-only mode or to offload mode. Offload mode is configured if either
* the chip is E1x (where NIC_MODE register is not applicable), or if cnic
* already registered for this port (which means that the user wants storage
* services).
* 2. During cnic-related load, to know if offload mode is already configured
* in the HW or needs to be configrued. Since the transition from nic-mode to
* offload-mode in HW causes traffic coruption, nic-mode is configured only
* in ports on which storage services where never requested.
*/
#define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
uint8_t chip_port_mode;
#define CHIP_4_PORT_MODE 0x0
#define CHIP_2_PORT_MODE 0x1
#define CHIP_PORT_MODE_NONE 0x2
#define CHIP_PORT_MODE(sc) ((sc)->devinfo.chip_port_mode)
#define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
uint8_t int_block;
#define INT_BLOCK_HC 0
#define INT_BLOCK_IGU 1
#define INT_BLOCK_MODE_NORMAL 0
#define INT_BLOCK_MODE_BW_COMP 2
#define CHIP_INT_MODE_IS_NBC(sc) \
(!CHIP_IS_E1x(sc) && \
!((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
#define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
uint32_t shmem_base;
uint32_t shmem2_base;
uint32_t bc_ver;
char bc_ver_str[32];
uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
struct bnx2x_mf_info mf_info;
uint32_t flash_size;
#define NVRAM_1MB_SIZE 0x20000
#define NVRAM_TIMEOUT_COUNT 30000
#define NVRAM_PAGE_SIZE 256
/* PCIe capability information */
uint32_t pcie_cap_flags;
#define BNX2X_PM_CAPABLE_FLAG 0x00000001
#define BNX2X_PCIE_CAPABLE_FLAG 0x00000002
#define BNX2X_MSI_CAPABLE_FLAG 0x00000004
#define BNX2X_MSIX_CAPABLE_FLAG 0x00000008
uint16_t pcie_pm_cap_reg;
uint16_t pcie_link_width;
uint16_t pcie_link_speed;
uint16_t pcie_msi_cap_reg;
uint16_t pcie_msix_cap_reg;
/* device configuration read from bootcode shared memory */
uint32_t hw_config;
uint32_t hw_config2;
}; /* struct bnx2x_devinfo */
struct bnx2x_sp_objs {
struct ecore_vlan_mac_obj mac_obj; /* MACs object */
struct ecore_queue_sp_obj q_obj; /* Queue State object */
}; /* struct bnx2x_sp_objs */
/*
* Data that will be used to create a link report message. We will keep the
* data used for the last link report in order to prevent reporting the same
* link parameters twice.
*/
struct bnx2x_link_report_data {
uint16_t line_speed; /* Effective line speed */
unsigned long link_report_flags; /* BNX2X_LINK_REPORT_XXX flags */
};
enum {
BNX2X_LINK_REPORT_FULL_DUPLEX,
BNX2X_LINK_REPORT_LINK_DOWN,
BNX2X_LINK_REPORT_RX_FC_ON,
BNX2X_LINK_REPORT_TX_FC_ON
};
#define BNX2X_RX_CHAIN_PAGE_SZ BNX2X_PAGE_SIZE
struct bnx2x_pci_cap {
struct bnx2x_pci_cap *next;
uint16_t id;
uint16_t type;
uint16_t addr;
};
struct bnx2x_vfdb;
/* Top level device private data structure. */
struct bnx2x_softc {
void **rx_queues;
void **tx_queues;
uint32_t max_tx_queues;
uint32_t max_rx_queues;
const struct rte_pci_device *pci_dev;
uint32_t pci_val;
struct bnx2x_pci_cap *pci_caps;
#define BNX2X_INTRS_POLL_PERIOD 1
void *firmware;
uint64_t fw_len;
/* MAC address operations */
struct bnx2x_mac_ops mac_ops;
/* structures for VF mbox/response/bulletin */
struct bnx2x_vf_mbx_msg *vf2pf_mbox;
struct bnx2x_dma vf2pf_mbox_mapping;
struct vf_acquire_resp_tlv acquire_resp;
struct bnx2x_vf_bulletin *pf2vf_bulletin;
struct bnx2x_dma pf2vf_bulletin_mapping;
struct bnx2x_vf_bulletin old_bulletin;
rte_spinlock_t vf2pf_lock;
int media;
int state; /* device state */
#define BNX2X_STATE_CLOSED 0x0000
#define BNX2X_STATE_OPENING_WAITING_LOAD 0x1000
#define BNX2X_STATE_OPENING_WAITING_PORT 0x2000
#define BNX2X_STATE_OPEN 0x3000
#define BNX2X_STATE_CLOSING_WAITING_HALT 0x4000
#define BNX2X_STATE_CLOSING_WAITING_DELETE 0x5000
#define BNX2X_STATE_CLOSING_WAITING_UNLOAD 0x6000
#define BNX2X_STATE_DISABLED 0xD000
#define BNX2X_STATE_DIAG 0xE000
#define BNX2X_STATE_ERROR 0xF000
int flags;
#define BNX2X_ONE_PORT_FLAG 0x1
#define BNX2X_NO_FCOE_FLAG 0x2
#define BNX2X_NO_WOL_FLAG 0x4
#define BNX2X_NO_MCP_FLAG 0x8
#define BNX2X_NO_ISCSI_OOO_FLAG 0x10
#define BNX2X_NO_ISCSI_FLAG 0x20
#define BNX2X_MF_FUNC_DIS 0x40
#define BNX2X_TX_SWITCHING 0x80
#define BNX2X_IS_VF_FLAG 0x100
#define BNX2X_ONE_PORT(sc) (sc->flags & BNX2X_ONE_PORT_FLAG)
#define BNX2X_NOFCOE(sc) (sc->flags & BNX2X_NO_FCOE_FLAG)
#define BNX2X_NOMCP(sc) (sc->flags & BNX2X_NO_MCP_FLAG)
#define MAX_BARS 5
struct bnx2x_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
uint16_t doorbell_size;
/* periodic timer callout */
#define PERIODIC_STOP 0
#define PERIODIC_GO 1
volatile unsigned long periodic_flags;
struct bnx2x_fastpath fp[MAX_RSS_CHAINS];
struct bnx2x_sp_objs sp_objs[MAX_RSS_CHAINS];
uint8_t unit; /* driver instance number */
int pcie_bus; /* PCIe bus number */
int pcie_device; /* PCIe device/slot number */
int pcie_func; /* PCIe function number */
uint8_t pfunc_rel; /* function relative */
uint8_t pfunc_abs; /* function absolute */
uint8_t path_id; /* function absolute */
#define SC_PATH(sc) (sc->path_id)
#define SC_PORT(sc) (sc->pfunc_rel & 1)
#define SC_FUNC(sc) (sc->pfunc_rel)
#define SC_ABS_FUNC(sc) (sc->pfunc_abs)
#define SC_VN(sc) (sc->pfunc_rel >> 1)
#define SC_L_ID(sc) (SC_VN(sc) << 2)
#define PORT_ID(sc) SC_PORT(sc)
#define PATH_ID(sc) SC_PATH(sc)
#define VNIC_ID(sc) SC_VN(sc)
#define FUNC_ID(sc) SC_FUNC(sc)
#define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
#define SC_FW_MB_IDX_VN(sc, vn) \
(SC_PORT(sc) + (vn) * \
((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
#define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
int if_capen; /* enabled interface capabilities */
struct bnx2x_devinfo devinfo;
char fw_ver_str[32];
char mf_mode_str[32];
char pci_link_str[32];
struct iro *iro_array;
int dmae_ready;
#define DMAE_READY(sc) (sc->dmae_ready)
struct ecore_credit_pool_obj vlans_pool;
struct ecore_credit_pool_obj macs_pool;
struct ecore_rx_mode_obj rx_mode_obj;
struct ecore_mcast_obj mcast_obj;
struct ecore_rss_config_obj rss_conf_obj;
struct ecore_func_sp_obj func_obj;
uint16_t fw_seq;
uint16_t fw_drv_pulse_wr_seq;
uint32_t func_stx;
struct elink_params link_params;
struct elink_vars link_vars;
uint32_t link_cnt;
struct bnx2x_link_report_data last_reported_link;
char mac_addr_str[32];
uint32_t tx_ring_size;
uint32_t rx_ring_size;
int wol;
int is_leader;
int recovery_state;
#define BNX2X_RECOVERY_DONE 1
#define BNX2X_RECOVERY_INIT 2
#define BNX2X_RECOVERY_WAIT 3
#define BNX2X_RECOVERY_FAILED 4
#define BNX2X_RECOVERY_NIC_LOADING 5
uint32_t rx_mode;
#define BNX2X_RX_MODE_NONE 0
#define BNX2X_RX_MODE_NORMAL 1
#define BNX2X_RX_MODE_ALLMULTI 2
#define BNX2X_RX_MODE_ALLMULTI_PROMISC 3
#define BNX2X_RX_MODE_PROMISC 4
#define BNX2X_MAX_MULTICAST 64
struct bnx2x_port port;
struct cmng_init cmng;
/* user configs */
uint8_t num_queues;
int hc_rx_ticks;
int hc_tx_ticks;
uint32_t rx_budget;
int interrupt_mode;
#define INTR_MODE_INTX 0
#define INTR_MODE_MSI 1
#define INTR_MODE_MSIX 2
#define INTR_MODE_SINGLE_MSIX 3
int udp_rss;
uint8_t igu_dsb_id;
uint8_t igu_base_sb;
uint8_t igu_sb_cnt;
uint32_t igu_base_addr;
uint8_t base_fw_ndsb;
#define DEF_SB_IGU_ID 16
#define DEF_SB_ID HC_SP_SB_ID
/* default status block */
struct bnx2x_dma def_sb_dma;
struct host_sp_status_block *def_sb;
uint16_t def_idx;
uint16_t def_att_idx;
uint32_t attn_state;
struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS];
/* general SP events - stats query, cfc delete, etc */
#define HC_SP_INDEX_ETH_DEF_CONS 3
/* EQ completions */
#define HC_SP_INDEX_EQ_CONS 7
/* FCoE L2 connection completions */
#define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6
#define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4
/* iSCSI L2 */
#define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5
#define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
/* event queue */
struct bnx2x_dma eq_dma;
union event_ring_elem *eq;
uint16_t eq_prod;
uint16_t eq_cons;
uint16_t *eq_cons_sb;
#define NUM_EQ_PAGES 1 /* must be a power of 2 */
#define EQ_DESC_CNT_PAGE (BNX2X_PAGE_SIZE / sizeof(union event_ring_elem))
#define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
#define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
#define EQ_DESC_MASK (NUM_EQ_DESC - 1)
#define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
/* depends on EQ_DESC_CNT_PAGE being a power of 2 */
#define NEXT_EQ_IDX(x) \
((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
((x) + 2) : ((x) + 1))
/* depends on the above and on NUM_EQ_PAGES being a power of 2 */
#define EQ_DESC(x) ((x) & EQ_DESC_MASK)
/* slow path */
struct bnx2x_dma sp_dma;
struct bnx2x_slowpath *sp;
unsigned long sp_state;
/* slow path queue */
struct bnx2x_dma spq_dma;
struct eth_spe *spq;
#define SP_DESC_CNT (BNX2X_PAGE_SIZE / sizeof(struct eth_spe))
#define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
#define MAX_SPQ_PENDING 8
uint16_t spq_prod_idx;
struct eth_spe *spq_prod_bd;
struct eth_spe *spq_last_bd;
uint16_t *dsb_sp_prod;
volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
/* fw decompression buffer */
struct bnx2x_dma gz_buf_dma;
void *gz_buf;
uint32_t gz_outlen;
#define GUNZIP_BUF(sc) (sc->gz_buf)
#define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
#define GUNZIP_PHYS(sc) (rte_iova_t)(sc->gz_buf_dma.paddr)
#define FW_BUF_SIZE 0x40000
struct raw_op *init_ops;
uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
uint32_t *init_data; /* data blob, 32 bit granularity */
uint32_t init_mode_flags;
#define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
/* PRAM blobs - raw data */
const uint8_t *tsem_int_table_data;
const uint8_t *tsem_pram_data;
const uint8_t *usem_int_table_data;
const uint8_t *usem_pram_data;
const uint8_t *xsem_int_table_data;
const uint8_t *xsem_pram_data;
const uint8_t *csem_int_table_data;
const uint8_t *csem_pram_data;
#define INIT_OPS(sc) (sc->init_ops)
#define INIT_OPS_OFFSETS(sc) (sc->init_ops_offsets)
#define INIT_DATA(sc) (sc->init_data)
#define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
#define INIT_TSEM_PRAM_DATA(sc) (sc->tsem_pram_data)
#define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
#define INIT_USEM_PRAM_DATA(sc) (sc->usem_pram_data)
#define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
#define INIT_XSEM_PRAM_DATA(sc) (sc->xsem_pram_data)
#define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
#define INIT_CSEM_PRAM_DATA(sc) (sc->csem_pram_data)
#define PHY_FW_VER_LEN 20
char fw_ver[32];
/* ILT
* For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
* context size we need 8 ILT entries.
*/
#define ILT_MAX_L2_LINES 8
struct hw_context context[ILT_MAX_L2_LINES];
struct ecore_ilt *ilt;
#define ILT_MAX_LINES 256
/* max supported number of RSS queues: IGU SBs minus one for CNIC */
#define BNX2X_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
/* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
#define BNX2X_L2_MAX_CID(sc) \
(BNX2X_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
#define BNX2X_L2_CID_COUNT(sc) \
(BNX2X_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
#define L2_ILT_LINES(sc) \
(DIV_ROUND_UP(BNX2X_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
int qm_cid_count;
uint8_t dropless_fc;
/* total number of FW statistics requests */
uint8_t fw_stats_num;
/*
* This is a memory buffer that will contain both statistics ramrod
* request and data.
*/
struct bnx2x_dma fw_stats_dma;
/*
* FW statistics request shortcut (points at the beginning of fw_stats
* buffer).
*/
int fw_stats_req_size;
struct bnx2x_fw_stats_req *fw_stats_req;
rte_iova_t fw_stats_req_mapping;
/*
* FW statistics data shortcut (points at the beginning of fw_stats
* buffer + fw_stats_req_size).
*/
int fw_stats_data_size;
struct bnx2x_fw_stats_data *fw_stats_data;
rte_iova_t fw_stats_data_mapping;
/* tracking a pending STAT_QUERY ramrod */
uint16_t stats_pending;
/* number of completed statistics ramrods */
uint16_t stats_comp;
uint16_t stats_counter;
uint8_t stats_init;
int stats_state;
struct bnx2x_eth_stats eth_stats;
struct host_func_stats func_stats;
struct bnx2x_eth_stats_old eth_stats_old;
struct bnx2x_net_stats_old net_stats_old;
struct bnx2x_fw_port_stats_old fw_stats_old;
struct dmae_command stats_dmae; /* used by dmae command loader */
int executer_idx;
int mtu;
/* DCB support on/off */
int dcb_state;
#define BNX2X_DCB_STATE_OFF 0
#define BNX2X_DCB_STATE_ON 1
/* DCBX engine mode */
int dcbx_enabled;
#define BNX2X_DCBX_ENABLED_OFF 0
#define BNX2X_DCBX_ENABLED_ON_NEG_OFF 1
#define BNX2X_DCBX_ENABLED_ON_NEG_ON 2
#define BNX2X_DCBX_ENABLED_INVALID -1
uint8_t cnic_support;
uint8_t cnic_enabled;
uint8_t cnic_loaded;
#define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
#define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
#define CNIC_LOADED(sc) 0 /* ((sc)->cnic_loaded) */
/* multiple tx classes of service */
uint8_t max_cos;
#define BNX2X_MAX_PRIORITY 8
/* priority to cos mapping */
uint8_t prio_to_cos[BNX2X_MAX_PRIORITY];
int panic;
}; /* struct bnx2x_softc */
/* IOCTL sub-commands for edebug and firmware upgrade */
#define BNX2X_IOC_RD_NVRAM 1
#define BNX2X_IOC_WR_NVRAM 2
#define BNX2X_IOC_STATS_SHOW_NUM 3
#define BNX2X_IOC_STATS_SHOW_STR 4
#define BNX2X_IOC_STATS_SHOW_CNT 5
struct bnx2x_nvram_data {
uint32_t op; /* ioctl sub-command */
uint32_t offset;
uint32_t len;
uint32_t value[1]; /* variable */
};
union bnx2x_stats_show_data {
uint32_t op; /* ioctl sub-command */
struct {
uint32_t num; /* return number of stats */
uint32_t len; /* length of each string item */
} desc;
/* variable length... */
char str[1]; /* holds names of desc.num stats, each desc.len in length */
/* variable length... */
uint64_t stats[1]; /* holds all stats */
};
/* function init flags */
#define FUNC_FLG_RSS 0x0001
#define FUNC_FLG_STATS 0x0002
/* FUNC_FLG_UNMATCHED 0x0004 */
#define FUNC_FLG_SPQ 0x0010
#define FUNC_FLG_LEADING 0x0020 /* PF only */
struct bnx2x_func_init_params {
rte_iova_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
rte_iova_t spq_map; /* (dma) valid if FUNC_FLG_SPQ */
uint16_t func_flgs;
uint16_t func_id; /* abs function id */
uint16_t pf_id;
uint16_t spq_prod; /* valid if FUNC_FLG_SPQ */
};
/* memory resources reside at BARs 0, 2, 4 */
/* Run `pciconf -lb` to see mappings */
#define BAR0 0
#define BAR1 2
#define BAR2 4
static inline void
bnx2x_reg_write8(struct bnx2x_softc *sc, size_t offset, uint8_t val)
{
PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%02x",
(unsigned long)offset, val);
rte_write8(val, ((uint8_t *)sc->bar[BAR0].base_addr + offset));
}
static inline void
bnx2x_reg_write16(struct bnx2x_softc *sc, size_t offset, uint16_t val)
{
#ifdef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
if ((offset % 2) != 0)
PMD_DRV_LOG(NOTICE, sc, "Unaligned 16-bit write to 0x%08lx",
(unsigned long)offset);
#endif
PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%04x",
(unsigned long)offset, val);
rte_write16(val, ((uint8_t *)sc->bar[BAR0].base_addr + offset));
}
static inline void
bnx2x_reg_write32(struct bnx2x_softc *sc, size_t offset, uint32_t val)
{
#ifdef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
if ((offset % 4) != 0)
PMD_DRV_LOG(NOTICE, sc, "Unaligned 32-bit write to 0x%08lx",
(unsigned long)offset);
#endif
PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%08x",
(unsigned long)offset, val);
rte_write32(val, ((uint8_t *)sc->bar[BAR0].base_addr + offset));
}
static inline uint8_t
bnx2x_reg_read8(struct bnx2x_softc *sc, size_t offset)
{
uint8_t val;
val = rte_read8((uint8_t *)sc->bar[BAR0].base_addr + offset);
PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%02x",
(unsigned long)offset, val);
return val;
}
static inline uint16_t
bnx2x_reg_read16(struct bnx2x_softc *sc, size_t offset)
{
uint16_t val;
#ifdef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
if ((offset % 2) != 0)
PMD_DRV_LOG(NOTICE, sc, "Unaligned 16-bit read from 0x%08lx",
(unsigned long)offset);
#endif
val = rte_read16(((uint8_t *)sc->bar[BAR0].base_addr + offset));
PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%08x",
(unsigned long)offset, val);
return val;
}
static inline uint32_t
bnx2x_reg_read32(struct bnx2x_softc *sc, size_t offset)
{
uint32_t val;
#ifdef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
if ((offset % 4) != 0)
PMD_DRV_LOG(NOTICE, sc, "Unaligned 32-bit read from 0x%08lx",
(unsigned long)offset);
#endif
val = rte_read32(((uint8_t *)sc->bar[BAR0].base_addr + offset));
PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%08x",
(unsigned long)offset, val);
return val;
}
#define REG_ADDR(sc, offset) (((uint64_t)sc->bar[BAR0].base_addr) + (offset))
#define REG_RD8(sc, offset) bnx2x_reg_read8(sc, (offset))
#define REG_RD16(sc, offset) bnx2x_reg_read16(sc, (offset))
#define REG_RD32(sc, offset) bnx2x_reg_read32(sc, (offset))
#define REG_WR8(sc, offset, val) bnx2x_reg_write8(sc, (offset), val)
#define REG_WR16(sc, offset, val) bnx2x_reg_write16(sc, (offset), val)
#define REG_WR32(sc, offset, val) bnx2x_reg_write32(sc, (offset), val)
#define REG_RD(sc, offset) REG_RD32(sc, offset)
#define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
#define BNX2X_SP(sc, var) (&(sc)->sp->var)
#define BNX2X_SP_MAPPING(sc, var) \
(sc->sp_dma.paddr + offsetof(struct bnx2x_slowpath, var))
#define BNX2X_FP(sc, nr, var) ((sc)->fp[(nr)].var)
#define BNX2X_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
#define bnx2x_fp(sc, nr, var) ((sc)->fp[nr].var)
#define REG_RD_DMAE(sc, offset, valp, len32) \
do { \
(void)bnx2x_read_dmae(sc, offset, len32); \
rte_memcpy(valp, BNX2X_SP(sc, wb_data[0]), (len32) * 4); \
} while (0)
#define REG_WR_DMAE(sc, offset, valp, len32) \
do { \
rte_memcpy(BNX2X_SP(sc, wb_data[0]), valp, (len32) * 4); \
(void)bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data), offset, len32); \
} while (0)
#define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
REG_WR_DMAE(sc, offset, valp, len32)
#define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
REG_RD_DMAE(sc, offset, valp, len32)
#define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap) \
do { \
/* if (le32_swap) { */ \
/* PMD_PWARN_LOG(sc, "VIRT_WR_DMAE_LEN with le32_swap=1"); */ \
/* } */ \
rte_memcpy(GUNZIP_BUF(sc), data, len32 * 4); \
ecore_write_big_buf_wb(sc, addr, len32); \
} while (0)
#define BNX2X_DB_MIN_SHIFT 3 /* 8 bytes */
#define BNX2X_DB_SHIFT 7 /* 128 bytes */
#if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT)
#error "Minimum DB doorbell stride is 8"
#endif
#define DPM_TRIGGER_TYPE 0x40
/* Doorbell macro */
#define BNX2X_DB_WRITE(db_bar, val) rte_write32_relaxed((val), (db_bar))
#define BNX2X_DB_READ(db_bar) rte_read32_relaxed(db_bar)
#define DOORBELL_ADDR(sc, offset) \
(volatile uint32_t *)(((char *)(sc)->bar[BAR1].base_addr + (offset)))
#define DOORBELL(sc, cid, val) \
if (IS_PF(sc)) \
BNX2X_DB_WRITE((DOORBELL_ADDR(sc, sc->doorbell_size * (cid) + DPM_TRIGGER_TYPE)), (val)); \
else \
BNX2X_DB_WRITE((DOORBELL_ADDR(sc, sc->doorbell_size * (cid))), (val)) \
#define SHMEM_ADDR(sc, field) \
(sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
#define SHMEM_RD(sc, field) REG_RD(sc, SHMEM_ADDR(sc, field))
#define SHMEM_RD16(sc, field) REG_RD16(sc, SHMEM_ADDR(sc, field))
#define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
#define SHMEM2_ADDR(sc, field) \
(sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
#define SHMEM2_HAS(sc, field) \
(sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) > \
offsetof(struct shmem2_region, field)))
#define SHMEM2_RD(sc, field) REG_RD(sc, SHMEM2_ADDR(sc, field))
#define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
#define MFCFG_ADDR(sc, field) \
(sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
#define MFCFG_RD(sc, field) REG_RD(sc, MFCFG_ADDR(sc, field))
#define MFCFG_RD16(sc, field) REG_RD16(sc, MFCFG_ADDR(sc, field))
#define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
/* DMAE command defines */
#define DMAE_TIMEOUT -1
#define DMAE_PCI_ERROR -2 /* E2 and onward */
#define DMAE_NOT_RDY -3
#define DMAE_PCI_ERR_FLAG 0x80000000
#define DMAE_SRC_PCI 0
#define DMAE_SRC_GRC 1
#define DMAE_DST_NONE 0
#define DMAE_DST_PCI 1
#define DMAE_DST_GRC 2
#define DMAE_COMP_PCI 0
#define DMAE_COMP_GRC 1
#define DMAE_COMP_REGULAR 0
#define DMAE_COM_SET_ERR 1
#define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_COMMAND_SRC_SHIFT)
#define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_COMMAND_SRC_SHIFT)
#define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_COMMAND_DST_SHIFT)
#define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_COMMAND_DST_SHIFT)
#define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_COMMAND_C_DST_SHIFT)
#define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_COMMAND_C_DST_SHIFT)
#define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_COMMAND_ENDIANITY_SHIFT)
#define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_COMMAND_ENDIANITY_SHIFT)
#define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_COMMAND_ENDIANITY_SHIFT)
#define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT)
#define DMAE_CMD_PORT_0 0
#define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT
#define DMAE_SRC_PF 0
#define DMAE_SRC_VF 1
#define DMAE_DST_PF 0
#define DMAE_DST_VF 1
#define DMAE_C_SRC 0
#define DMAE_C_DST 1
#define DMAE_LEN32_RD_MAX 0x80
#define DMAE_LEN32_WR_MAX(sc) 0x2000
#define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
#define MAX_DMAE_C_PER_PORT 8
#define INIT_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
#define PMF_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
static const uint32_t dmae_reg_go_c[] = {
DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
};
#define ATTN_NIG_FOR_FUNC (1L << 8)
#define ATTN_SW_TIMER_4_FUNC (1L << 9)
#define GPIO_2_FUNC (1L << 10)
#define GPIO_3_FUNC (1L << 11)
#define GPIO_4_FUNC (1L << 12)
#define ATTN_GENERAL_ATTN_1 (1L << 13)
#define ATTN_GENERAL_ATTN_2 (1L << 14)
#define ATTN_GENERAL_ATTN_3 (1L << 15)
#define ATTN_GENERAL_ATTN_4 (1L << 13)
#define ATTN_GENERAL_ATTN_5 (1L << 14)
#define ATTN_GENERAL_ATTN_6 (1L << 15)
#define ATTN_HARD_WIRED_MASK 0xff00
#define ATTENTION_ID 4
#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
#define MAX_IGU_ATTN_ACK_TO 100
#define STORM_ASSERT_ARRAY_SIZE 50
#define BNX2X_PMF_LINK_ASSERT(sc) \
GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
#define BNX2X_MC_ASSERT_BITS \
(GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
#define BNX2X_MCP_ASSERT \
GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
#define BNX2X_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
#define BNX2X_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
#define MULTI_MASK 0x7f
#define PFS_PER_PORT(sc) \
((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
#define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
#define FIRST_ABS_FUNC_IN_PORT(sc) \
((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ? \
PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
#define FOREACH_ABS_FUNC_IN_PORT(sc, i) \
for ((i) = FIRST_ABS_FUNC_IN_PORT(sc); \
(i) < MAX_FUNC_NUM; \
(i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
#define BNX2X_SWCID_SHIFT 17
#define BNX2X_SWCID_MASK ((0x1 << BNX2X_SWCID_SHIFT) - 1)
#define SW_CID(x) (le32toh(x) & BNX2X_SWCID_MASK)
#define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
#define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
#define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
#define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
#define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
#define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
/* must be used on a CID before placing it on a HW ring */
#define HW_CID(sc, x) \
((SC_PORT(sc) << 23) | (SC_VN(sc) << BNX2X_SWCID_SHIFT) | (x))
#define SPEED_10 10
#define SPEED_100 100
#define SPEED_1000 1000
#define SPEED_2500 2500
#define SPEED_10000 10000
#define PCI_PM_D0 1
#define PCI_PM_D3hot 2
int bnx2x_test_bit(int nr, volatile unsigned long * addr);
void bnx2x_set_bit(unsigned int nr, volatile unsigned long * addr);
void bnx2x_clear_bit(int nr, volatile unsigned long * addr);
int bnx2x_test_and_clear_bit(int nr, volatile unsigned long * addr);
int bnx2x_cmpxchg(volatile int *addr, int old, int new);
int bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size,
struct bnx2x_dma *dma, const char *msg, uint32_t align);
uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode);
uint32_t bnx2x_dmae_opcode(struct bnx2x_softc *sc, uint8_t src_type,
uint8_t dst_type, uint8_t with_comp,
uint8_t comp_type);
void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx);
void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32);
void bnx2x_write_dmae(struct bnx2x_softc *sc, rte_iova_t dma_addr,
uint32_t dst_addr, uint32_t len32);
void bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt,
uint32_t cid);
void bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id,
uint8_t sb_index, uint8_t disable,
uint16_t usec);
int bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid,
uint32_t data_hi, uint32_t data_lo, int cmd_type);
void ecore_init_e1h_firmware(struct bnx2x_softc *sc);
void ecore_init_e2_firmware(struct bnx2x_softc *sc);
void ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr,
size_t size, uint32_t *data);
#define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
#define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
#define BNX2X_MAC_FMT "%pM"
#define BNX2X_MAC_PRN_LIST(mac) (mac)
/***********/
/* INLINES */
/***********/
static inline uint32_t
reg_poll(struct bnx2x_softc *sc, uint32_t reg, uint32_t expected, int ms, int wait)
{
uint32_t val;
do {
val = REG_RD(sc, reg);
if (val == expected) {
break;
}
ms -= wait;
DELAY(wait * 1000);
} while (ms > 0);
return val;
}
static inline void
bnx2x_update_fp_sb_idx(struct bnx2x_fastpath *fp)
{
mb(); /* status block is written to by the chip */
fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
}
static inline void
bnx2x_igu_ack_sb_gen(struct bnx2x_softc *sc, uint8_t segment,
uint16_t index, uint8_t op, uint8_t update, uint32_t igu_addr)
{
struct igu_regular cmd_data = {0};
cmd_data.sb_id_and_flags =
((index << IGU_REGULAR_SB_INDEX_SHIFT) |
(segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
(update << IGU_REGULAR_BUPDATE_SHIFT) |
(op << IGU_REGULAR_ENABLE_INT_SHIFT));
REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
/* Make sure that ACK is written */
mb();
}
static inline void
bnx2x_hc_ack_sb(struct bnx2x_softc *sc, uint8_t sb_id, uint8_t storm,
uint16_t index, uint8_t op, uint8_t update)
{
uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc) * 32 +
COMMAND_REG_INT_ACK);
union igu_ack_register igu_ack;
igu_ack.sb.status_block_index = index;
igu_ack.sb.sb_id_and_flags =
((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
(storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
(update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
(op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
REG_WR(sc, hc_addr, igu_ack.raw_data);
/* Make sure that ACK is written */
mb();
}
static inline uint32_t
bnx2x_hc_ack_int(struct bnx2x_softc *sc)
{
uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc) * 32 +
COMMAND_REG_SIMD_MASK);
uint32_t result = REG_RD(sc, hc_addr);
mb();
return result;
}
static inline uint32_t
bnx2x_igu_ack_int(struct bnx2x_softc *sc)
{
uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER * 8);
uint32_t result = REG_RD(sc, igu_addr);
/* PMD_PDEBUG_LOG(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x",
result, igu_addr); */
mb();
return result;
}
static inline uint32_t
bnx2x_ack_int(struct bnx2x_softc *sc)
{
mb();
if (sc->devinfo.int_block == INT_BLOCK_HC) {
return bnx2x_hc_ack_int(sc);
} else {
return bnx2x_igu_ack_int(sc);
}
}
static inline int
func_by_vn(struct bnx2x_softc *sc, int vn)
{
return 2 * vn + SC_PORT(sc);
}
/*
* send notification to other functions.
*/
static inline void
bnx2x_link_sync_notify(struct bnx2x_softc *sc)
{
int func, vn;
/* Set the attention towards other drivers on the same port */
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
if (vn == SC_VN(sc))
continue;
func = func_by_vn(sc, vn);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_0 +
(LINK_SYNC_ATTENTION_BIT_FUNC_0 + func) * 4, 1);
}
}
/*
* Statistics ID are global per chip/path, while Client IDs for E1x
* are per port.
*/
static inline uint8_t
bnx2x_stats_id(struct bnx2x_fastpath *fp)
{
struct bnx2x_softc *sc = fp->sc;
if (!CHIP_IS_E1x(sc)) {
return fp->cl_id;
}
return fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x;
}
int bnx2x_init(struct bnx2x_softc *sc);
void bnx2x_load_firmware(struct bnx2x_softc *sc);
int bnx2x_attach(struct bnx2x_softc *sc);
int bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link);
int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc);
int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc);
void bnx2x_free_ilt_mem(struct bnx2x_softc *sc);
void bnx2x_dump_tx_chain(struct bnx2x_fastpath * fp, int bd_prod, int count);
int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0);
uint8_t bnx2x_txeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp);
void bnx2x_print_adapter_info(struct bnx2x_softc *sc);
void bnx2x_print_device_info(struct bnx2x_softc *sc);
int bnx2x_intr_legacy(struct bnx2x_softc *sc, int scan_fp);
void bnx2x_link_status_update(struct bnx2x_softc *sc);
int bnx2x_complete_sp(struct bnx2x_softc *sc);
int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc);
void bnx2x_periodic_callout(struct bnx2x_softc *sc);
void bnx2x_periodic_stop(void *param);
int bnx2x_vf_get_resources(struct bnx2x_softc *sc, uint8_t tx_count, uint8_t rx_count);
void bnx2x_vf_close(struct bnx2x_softc *sc);
int bnx2x_vf_init(struct bnx2x_softc *sc);
void bnx2x_vf_unload(struct bnx2x_softc *sc);
int bnx2x_vf_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
int leading);
void bnx2x_free_hsi_mem(struct bnx2x_softc *sc);
int bnx2x_vf_set_rx_mode(struct bnx2x_softc *sc);
int bnx2x_check_bull(struct bnx2x_softc *sc);
//#define BNX2X_PULSE
#define BNX2X_PCI_CAP 1
#define BNX2X_PCI_ECAP 2
static inline struct bnx2x_pci_cap*
pci_find_cap(struct bnx2x_softc *sc, uint8_t id, uint8_t type)
{
struct bnx2x_pci_cap *cap = sc->pci_caps;
while (cap) {
if (cap->id == id && cap->type == type)
return cap;
cap = cap->next;
}
return NULL;
}
static inline void
bnx2x_set_rx_mode(struct bnx2x_softc *sc)
{
if (sc->state == BNX2X_STATE_OPEN) {
if (IS_PF(sc)) {
bnx2x_set_storm_rx_mode(sc);
} else {
sc->rx_mode = BNX2X_RX_MODE_PROMISC;
bnx2x_vf_set_rx_mode(sc);
}
} else {
PMD_DRV_LOG(INFO, sc, "Card is not ready to change mode");
}
}
static inline int pci_read(struct bnx2x_softc *sc, size_t addr,
void *val, uint8_t size)
{
if (rte_pci_read_config(sc->pci_dev, val, size, addr) <= 0) {
PMD_DRV_LOG(ERR, sc, "Can't read from PCI config space");
return ENXIO;
}
return 0;
}
static inline int pci_write_word(struct bnx2x_softc *sc, size_t addr, off_t val)
{
uint16_t val16 = val;
if (rte_pci_write_config(sc->pci_dev, &val16,
sizeof(val16), addr) <= 0) {
PMD_DRV_LOG(ERR, sc, "Can't write to PCI config space");
return ENXIO;
}
return 0;
}
static inline int pci_write_long(struct bnx2x_softc *sc, size_t addr, off_t val)
{
uint32_t val32 = val;
if (rte_pci_write_config(sc->pci_dev, &val32,
sizeof(val32), addr) <= 0) {
PMD_DRV_LOG(ERR, sc, "Can't write to PCI config space");
return ENXIO;
}
return 0;
}
#endif /* __BNX2X_H__ */