numam-dpdk/drivers/net/netvsc/hn_vf.c
Stephen Hemminger 7d146e1769 net/netvsc: support multicast/promiscuous settings on VF
Provide API's to enable allmulticast and promiscuous in Netvsc PMD
with VF. This keeps the VF and PV path in sync.

Signed-off-by: Stephen Hemminger <sthemmin@microsoft.com>
2018-10-11 18:53:48 +02:00

550 lines
13 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) 2018 Microsoft Corp.
* All rights reserved.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdbool.h>
#include <errno.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/types.h>
#include <sys/fcntl.h>
#include <sys/uio.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ethdev_driver.h>
#include <rte_lcore.h>
#include <rte_memory.h>
#include <rte_bus_vmbus.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_log.h>
#include <rte_string_fns.h>
#include "hn_logs.h"
#include "hn_var.h"
#include "hn_nvs.h"
/* Search for VF with matching MAC address, return port id */
static int hn_vf_match(const struct rte_eth_dev *dev)
{
const struct ether_addr *mac = dev->data->mac_addrs;
char buf[32];
int i;
ether_format_addr(buf, sizeof(buf), mac);
RTE_ETH_FOREACH_DEV(i) {
const struct rte_eth_dev *vf_dev = &rte_eth_devices[i];
const struct ether_addr *vf_mac = vf_dev->data->mac_addrs;
if (vf_dev == dev)
continue;
ether_format_addr(buf, sizeof(buf), vf_mac);
if (is_same_ether_addr(mac, vf_mac))
return i;
}
return -ENOENT;
}
/*
* Attach new PCI VF device and return the port_id
*/
static int hn_vf_attach(struct hn_data *hv, uint16_t port_id,
struct rte_eth_dev **vf_dev)
{
struct rte_eth_dev_owner owner = { .id = RTE_ETH_DEV_NO_OWNER };
int ret;
ret = rte_eth_dev_owner_get(port_id, &owner);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Can not find owner for port %d", port_id);
return ret;
}
if (owner.id != RTE_ETH_DEV_NO_OWNER) {
PMD_DRV_LOG(ERR, "Port %u already owned by other device %s",
port_id, owner.name);
return -EBUSY;
}
ret = rte_eth_dev_owner_set(port_id, &hv->owner);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Can set owner for port %d", port_id);
return ret;
}
PMD_DRV_LOG(DEBUG, "Attach VF device %u", port_id);
rte_smp_wmb();
*vf_dev = &rte_eth_devices[port_id];
return 0;
}
/* Add new VF device to synthetic device */
int hn_vf_add(struct rte_eth_dev *dev, struct hn_data *hv)
{
int port, err;
port = hn_vf_match(dev);
if (port < 0) {
PMD_DRV_LOG(NOTICE, "No matching MAC found");
return port;
}
rte_spinlock_lock(&hv->vf_lock);
if (hv->vf_dev) {
PMD_DRV_LOG(ERR, "VF already attached");
err = -EBUSY;
} else {
err = hn_vf_attach(hv, port, &hv->vf_dev);
}
if (err == 0) {
dev->data->dev_flags |= RTE_ETH_DEV_INTR_LSC;
hv->vf_intr = (struct rte_intr_handle) {
.fd = -1,
.type = RTE_INTR_HANDLE_EXT,
};
dev->intr_handle = &hv->vf_intr;
hn_nvs_set_datapath(hv, NVS_DATAPATH_VF);
}
rte_spinlock_unlock(&hv->vf_lock);
return err;
}
/* Remove new VF device */
static void hn_vf_remove(struct hn_data *hv)
{
struct rte_eth_dev *vf_dev;
rte_spinlock_lock(&hv->vf_lock);
vf_dev = hv->vf_dev;
if (!vf_dev) {
PMD_DRV_LOG(ERR, "VF path not active");
rte_spinlock_unlock(&hv->vf_lock);
return;
}
/* Stop incoming packets from arriving on VF */
hn_nvs_set_datapath(hv, NVS_DATAPATH_SYNTHETIC);
hv->vf_dev = NULL;
/* Give back ownership */
rte_eth_dev_owner_unset(vf_dev->data->port_id, hv->owner.id);
rte_spinlock_unlock(&hv->vf_lock);
}
/* Handle VF association message from host */
void
hn_nvs_handle_vfassoc(struct rte_eth_dev *dev,
const struct vmbus_chanpkt_hdr *hdr,
const void *data)
{
struct hn_data *hv = dev->data->dev_private;
const struct hn_nvs_vf_association *vf_assoc = data;
if (unlikely(vmbus_chanpkt_datalen(hdr) < sizeof(*vf_assoc))) {
PMD_DRV_LOG(ERR, "invalid vf association NVS");
return;
}
PMD_DRV_LOG(DEBUG, "VF serial %u %s port %u",
vf_assoc->serial,
vf_assoc->allocated ? "add to" : "remove from",
dev->data->port_id);
hv->vf_present = vf_assoc->allocated;
if (dev->state != RTE_ETH_DEV_ATTACHED)
return;
if (vf_assoc->allocated)
hn_vf_add(dev, hv);
else
hn_vf_remove(hv);
}
/*
* Merge the info from the VF and synthetic path.
* use the default config of the VF
* and the minimum number of queues and buffer sizes.
*/
static void hn_vf_info_merge(struct rte_eth_dev *vf_dev,
struct rte_eth_dev_info *info)
{
struct rte_eth_dev_info vf_info;
rte_eth_dev_info_get(vf_dev->data->port_id, &vf_info);
info->speed_capa = vf_info.speed_capa;
info->default_rxportconf = vf_info.default_rxportconf;
info->default_txportconf = vf_info.default_txportconf;
info->max_rx_queues = RTE_MIN(vf_info.max_rx_queues,
info->max_rx_queues);
info->rx_offload_capa &= vf_info.rx_offload_capa;
info->rx_queue_offload_capa &= vf_info.rx_queue_offload_capa;
info->flow_type_rss_offloads &= vf_info.flow_type_rss_offloads;
info->max_tx_queues = RTE_MIN(vf_info.max_tx_queues,
info->max_tx_queues);
info->tx_offload_capa &= vf_info.tx_offload_capa;
info->tx_queue_offload_capa &= vf_info.tx_queue_offload_capa;
info->min_rx_bufsize = RTE_MAX(vf_info.min_rx_bufsize,
info->min_rx_bufsize);
info->max_rx_pktlen = RTE_MAX(vf_info.max_rx_pktlen,
info->max_rx_pktlen);
}
void hn_vf_info_get(struct hn_data *hv, struct rte_eth_dev_info *info)
{
struct rte_eth_dev *vf_dev;
rte_spinlock_lock(&hv->vf_lock);
vf_dev = hv->vf_dev;
if (vf_dev)
hn_vf_info_merge(vf_dev, info);
rte_spinlock_unlock(&hv->vf_lock);
}
int hn_vf_link_update(struct rte_eth_dev *dev,
int wait_to_complete)
{
struct hn_data *hv = dev->data->dev_private;
struct rte_eth_dev *vf_dev;
int ret = 0;
rte_spinlock_lock(&hv->vf_lock);
vf_dev = hv->vf_dev;
if (vf_dev && vf_dev->dev_ops->link_update)
ret = (*vf_dev->dev_ops->link_update)(dev, wait_to_complete);
rte_spinlock_unlock(&hv->vf_lock);
return ret;
}
/* called when VF has link state interrupts enabled */
static int hn_vf_lsc_event(uint16_t port_id __rte_unused,
enum rte_eth_event_type event,
void *cb_arg, void *out __rte_unused)
{
struct rte_eth_dev *dev = cb_arg;
if (event != RTE_ETH_EVENT_INTR_LSC)
return 0;
/* if link state has changed pass on */
if (hn_dev_link_update(dev, 0) == 0)
return 0; /* no change */
return _rte_eth_dev_callback_process(dev,
RTE_ETH_EVENT_INTR_LSC,
NULL);
}
static int _hn_vf_configure(struct rte_eth_dev *dev,
struct rte_eth_dev *vf_dev,
const struct rte_eth_conf *dev_conf)
{
struct rte_eth_conf vf_conf = *dev_conf;
uint16_t vf_port = vf_dev->data->port_id;
int ret;
if (dev_conf->intr_conf.lsc &&
(vf_dev->data->dev_flags & RTE_ETH_DEV_INTR_LSC)) {
PMD_DRV_LOG(DEBUG, "enabling LSC for VF %u",
vf_port);
vf_conf.intr_conf.lsc = 1;
} else {
PMD_DRV_LOG(DEBUG, "disabling LSC for VF %u",
vf_port);
vf_conf.intr_conf.lsc = 0;
}
ret = rte_eth_dev_configure(vf_port,
dev->data->nb_rx_queues,
dev->data->nb_tx_queues,
&vf_conf);
if (ret) {
PMD_DRV_LOG(ERR,
"VF configuration failed: %d", ret);
} else if (vf_conf.intr_conf.lsc) {
ret = rte_eth_dev_callback_register(vf_port,
RTE_ETH_DEV_INTR_LSC,
hn_vf_lsc_event, dev);
if (ret)
PMD_DRV_LOG(ERR,
"Failed to register LSC callback for VF %u",
vf_port);
}
return ret;
}
/*
* Configure VF if present.
* Force VF to have same number of queues as synthetic device
*/
int hn_vf_configure(struct rte_eth_dev *dev,
const struct rte_eth_conf *dev_conf)
{
struct hn_data *hv = dev->data->dev_private;
struct rte_eth_dev *vf_dev;
int ret = 0;
rte_spinlock_lock(&hv->vf_lock);
vf_dev = hv->vf_dev;
if (vf_dev)
ret = _hn_vf_configure(dev, vf_dev, dev_conf);
rte_spinlock_unlock(&hv->vf_lock);
return ret;
}
const uint32_t *hn_vf_supported_ptypes(struct rte_eth_dev *dev)
{
struct hn_data *hv = dev->data->dev_private;
struct rte_eth_dev *vf_dev;
const uint32_t *ptypes = NULL;
rte_spinlock_lock(&hv->vf_lock);
vf_dev = hv->vf_dev;
if (vf_dev && vf_dev->dev_ops->dev_supported_ptypes_get)
ptypes = (*vf_dev->dev_ops->dev_supported_ptypes_get)(vf_dev);
rte_spinlock_unlock(&hv->vf_lock);
return ptypes;
}
int hn_vf_start(struct rte_eth_dev *dev)
{
struct hn_data *hv = dev->data->dev_private;
struct rte_eth_dev *vf_dev;
int ret = 0;
rte_spinlock_lock(&hv->vf_lock);
vf_dev = hv->vf_dev;
if (vf_dev)
ret = rte_eth_dev_start(vf_dev->data->port_id);
rte_spinlock_unlock(&hv->vf_lock);
return ret;
}
void hn_vf_stop(struct rte_eth_dev *dev)
{
struct hn_data *hv = dev->data->dev_private;
struct rte_eth_dev *vf_dev;
rte_spinlock_lock(&hv->vf_lock);
vf_dev = hv->vf_dev;
if (vf_dev)
rte_eth_dev_stop(vf_dev->data->port_id);
rte_spinlock_unlock(&hv->vf_lock);
}
/* If VF is present, then cascade configuration down */
#define VF_ETHDEV_FUNC(dev, func) \
{ \
struct hn_data *hv = (dev)->data->dev_private; \
struct rte_eth_dev *vf_dev; \
rte_spinlock_lock(&hv->vf_lock); \
vf_dev = hv->vf_dev; \
if (vf_dev) \
func(vf_dev->data->port_id); \
rte_spinlock_unlock(&hv->vf_lock); \
}
void hn_vf_reset(struct rte_eth_dev *dev)
{
VF_ETHDEV_FUNC(dev, rte_eth_dev_reset);
}
void hn_vf_close(struct rte_eth_dev *dev)
{
VF_ETHDEV_FUNC(dev, rte_eth_dev_close);
}
void hn_vf_stats_reset(struct rte_eth_dev *dev)
{
VF_ETHDEV_FUNC(dev, rte_eth_stats_reset);
}
void hn_vf_allmulticast_enable(struct rte_eth_dev *dev)
{
VF_ETHDEV_FUNC(dev, rte_eth_allmulticast_enable);
}
void hn_vf_allmulticast_disable(struct rte_eth_dev *dev)
{
VF_ETHDEV_FUNC(dev, rte_eth_allmulticast_disable);
}
void hn_vf_promiscuous_enable(struct rte_eth_dev *dev)
{
VF_ETHDEV_FUNC(dev, rte_eth_promiscuous_enable);
}
void hn_vf_promiscuous_disable(struct rte_eth_dev *dev)
{
VF_ETHDEV_FUNC(dev, rte_eth_promiscuous_disable);
}
int hn_vf_mc_addr_list(struct rte_eth_dev *dev,
struct ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
struct hn_data *hv = dev->data->dev_private;
struct rte_eth_dev *vf_dev;
int ret = 0;
rte_spinlock_lock(&hv->vf_lock);
vf_dev = hv->vf_dev;
if (vf_dev)
ret = rte_eth_dev_set_mc_addr_list(vf_dev->data->port_id,
mc_addr_set, nb_mc_addr);
rte_spinlock_unlock(&hv->vf_lock);
return ret;
}
int hn_vf_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx, uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct hn_data *hv = dev->data->dev_private;
struct rte_eth_dev *vf_dev;
int ret = 0;
rte_spinlock_lock(&hv->vf_lock);
vf_dev = hv->vf_dev;
if (vf_dev)
ret = rte_eth_tx_queue_setup(vf_dev->data->port_id,
queue_idx, nb_desc,
socket_id, tx_conf);
rte_spinlock_unlock(&hv->vf_lock);
return ret;
}
void hn_vf_tx_queue_release(struct hn_data *hv, uint16_t queue_id)
{
struct rte_eth_dev *vf_dev;
rte_spinlock_lock(&hv->vf_lock);
vf_dev = hv->vf_dev;
if (vf_dev && vf_dev->dev_ops->tx_queue_release) {
void *subq = vf_dev->data->tx_queues[queue_id];
(*vf_dev->dev_ops->tx_queue_release)(subq);
}
rte_spinlock_unlock(&hv->vf_lock);
}
int hn_vf_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx, uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct hn_data *hv = dev->data->dev_private;
struct rte_eth_dev *vf_dev;
int ret = 0;
rte_spinlock_lock(&hv->vf_lock);
vf_dev = hv->vf_dev;
if (vf_dev)
ret = rte_eth_rx_queue_setup(vf_dev->data->port_id,
queue_idx, nb_desc,
socket_id, rx_conf, mp);
rte_spinlock_unlock(&hv->vf_lock);
return ret;
}
void hn_vf_rx_queue_release(struct hn_data *hv, uint16_t queue_id)
{
struct rte_eth_dev *vf_dev;
rte_spinlock_lock(&hv->vf_lock);
vf_dev = hv->vf_dev;
if (vf_dev && vf_dev->dev_ops->rx_queue_release) {
void *subq = vf_dev->data->rx_queues[queue_id];
(*vf_dev->dev_ops->rx_queue_release)(subq);
}
rte_spinlock_unlock(&hv->vf_lock);
}
int hn_vf_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats)
{
struct hn_data *hv = dev->data->dev_private;
struct rte_eth_dev *vf_dev;
int ret = 0;
rte_spinlock_lock(&hv->vf_lock);
vf_dev = hv->vf_dev;
if (vf_dev)
ret = rte_eth_stats_get(vf_dev->data->port_id, stats);
rte_spinlock_unlock(&hv->vf_lock);
return ret;
}
int hn_vf_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *names,
unsigned int n)
{
struct hn_data *hv = dev->data->dev_private;
struct rte_eth_dev *vf_dev;
int i, count = 0;
char tmp[RTE_ETH_XSTATS_NAME_SIZE];
rte_spinlock_lock(&hv->vf_lock);
vf_dev = hv->vf_dev;
if (vf_dev && vf_dev->dev_ops->xstats_get_names)
count = vf_dev->dev_ops->xstats_get_names(vf_dev, names, n);
rte_spinlock_unlock(&hv->vf_lock);
/* add vf_ prefix to xstat names */
if (names) {
for (i = 0; i < count; i++) {
snprintf(tmp, sizeof(tmp), "vf_%s", names[i].name);
strlcpy(names[i].name, tmp, sizeof(names[i].name));
}
}
return count;
}
int hn_vf_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats,
unsigned int n)
{
struct hn_data *hv = dev->data->dev_private;
struct rte_eth_dev *vf_dev;
int count = 0;
rte_spinlock_lock(&hv->vf_lock);
vf_dev = hv->vf_dev;
if (vf_dev && vf_dev->dev_ops->xstats_get)
count = vf_dev->dev_ops->xstats_get(vf_dev, xstats, n);
rte_spinlock_unlock(&hv->vf_lock);
return count;
}
void hn_vf_xstats_reset(struct rte_eth_dev *dev)
{
struct hn_data *hv = dev->data->dev_private;
struct rte_eth_dev *vf_dev;
rte_spinlock_lock(&hv->vf_lock);
vf_dev = hv->vf_dev;
if (vf_dev && vf_dev->dev_ops->xstats_reset)
vf_dev->dev_ops->xstats_reset(vf_dev);
rte_spinlock_unlock(&hv->vf_lock);
}