f8be1786b1
This patchset introduce new application which allows measuring performance parameters of PMDs available in crypto tree. The goal of this application is to replace existing performance tests in app/test. Parameters available are: throughput (--ptest throughput) and latency (--ptest latency). User can use multiply cores to run tests on but only one type of crypto PMD can be measured during single application execution. Cipher parameters, type of device, type of operation and chain mode have to be specified in the command line as application parameters. These parameters are checked using device capabilities structure. Couple of new library functions in librte_cryptodev are introduced for application use. To build the application a CONFIG_RTE_APP_CRYPTO_PERF flag has to be set (it is set by default). Example of usage: -c 0xc0 --vdev crypto_aesni_mb_pmd -w 0000:00:00.0 -- --ptest throughput --devtype crypto_aesni_mb --optype cipher-then-auth --cipher-algo aes-cbc --cipher-op encrypt --cipher-key-sz 16 --auth-algo sha1-hmac --auth-op generate --auth-key-sz 64 --auth-digest-sz 12 --total-ops 10000000 --burst-sz 32 --buffer-sz 64 Signed-off-by: Declan Doherty <declan.doherty@intel.com> Signed-off-by: Slawomir Mrozowicz <slawomirx.mrozowicz@intel.com> Signed-off-by: Piotr Azarewicz <piotrx.t.azarewicz@intel.com> Signed-off-by: Marcin Kerlin <marcinx.kerlin@intel.com> Signed-off-by: Michal Kobylinski <michalx.kobylinski@intel.com>
666 lines
17 KiB
C
666 lines
17 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <rte_malloc.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_crypto.h>
|
|
#include <rte_cryptodev.h>
|
|
|
|
#include "cperf_test_throughput.h"
|
|
#include "cperf_ops.h"
|
|
|
|
struct cperf_throughput_results {
|
|
uint64_t ops_enqueued;
|
|
uint64_t ops_dequeued;
|
|
|
|
uint64_t ops_enqueued_failed;
|
|
uint64_t ops_dequeued_failed;
|
|
|
|
uint64_t ops_failed;
|
|
|
|
double ops_per_second;
|
|
double throughput_gbps;
|
|
double cycles_per_byte;
|
|
};
|
|
|
|
struct cperf_throughput_ctx {
|
|
uint8_t dev_id;
|
|
uint16_t qp_id;
|
|
uint8_t lcore_id;
|
|
|
|
struct rte_mempool *pkt_mbuf_pool_in;
|
|
struct rte_mempool *pkt_mbuf_pool_out;
|
|
struct rte_mbuf **mbufs_in;
|
|
struct rte_mbuf **mbufs_out;
|
|
|
|
struct rte_mempool *crypto_op_pool;
|
|
|
|
struct rte_cryptodev_sym_session *sess;
|
|
|
|
cperf_populate_ops_t populate_ops;
|
|
cperf_verify_crypto_op_t verify_op_output;
|
|
|
|
const struct cperf_options *options;
|
|
const struct cperf_test_vector *test_vector;
|
|
struct cperf_throughput_results results;
|
|
|
|
};
|
|
|
|
struct cperf_op_result {
|
|
enum rte_crypto_op_status status;
|
|
};
|
|
|
|
static void
|
|
cperf_throughput_test_free(struct cperf_throughput_ctx *ctx, uint32_t mbuf_nb)
|
|
{
|
|
uint32_t i;
|
|
|
|
if (ctx) {
|
|
if (ctx->sess)
|
|
rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess);
|
|
|
|
if (ctx->mbufs_in) {
|
|
for (i = 0; i < mbuf_nb; i++)
|
|
rte_pktmbuf_free(ctx->mbufs_in[i]);
|
|
|
|
rte_free(ctx->mbufs_in);
|
|
}
|
|
|
|
if (ctx->mbufs_out) {
|
|
for (i = 0; i < mbuf_nb; i++) {
|
|
if (ctx->mbufs_out[i] != NULL)
|
|
rte_pktmbuf_free(ctx->mbufs_out[i]);
|
|
}
|
|
|
|
rte_free(ctx->mbufs_out);
|
|
}
|
|
|
|
if (ctx->pkt_mbuf_pool_in)
|
|
rte_mempool_free(ctx->pkt_mbuf_pool_in);
|
|
|
|
if (ctx->pkt_mbuf_pool_out)
|
|
rte_mempool_free(ctx->pkt_mbuf_pool_out);
|
|
|
|
if (ctx->crypto_op_pool)
|
|
rte_mempool_free(ctx->crypto_op_pool);
|
|
|
|
rte_free(ctx);
|
|
}
|
|
}
|
|
|
|
static struct rte_mbuf *
|
|
cperf_mbuf_create(struct rte_mempool *mempool,
|
|
uint32_t segments_nb,
|
|
const struct cperf_options *options,
|
|
const struct cperf_test_vector *test_vector)
|
|
{
|
|
struct rte_mbuf *mbuf;
|
|
uint32_t segment_sz = options->buffer_sz / segments_nb;
|
|
uint32_t last_sz = options->buffer_sz % segments_nb;
|
|
uint8_t *mbuf_data;
|
|
uint8_t *test_data =
|
|
(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
|
|
test_vector->plaintext.data :
|
|
test_vector->ciphertext.data;
|
|
|
|
mbuf = rte_pktmbuf_alloc(mempool);
|
|
if (mbuf == NULL)
|
|
goto error;
|
|
|
|
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
|
|
if (mbuf_data == NULL)
|
|
goto error;
|
|
|
|
memcpy(mbuf_data, test_data, segment_sz);
|
|
test_data += segment_sz;
|
|
segments_nb--;
|
|
|
|
while (segments_nb) {
|
|
struct rte_mbuf *m;
|
|
|
|
m = rte_pktmbuf_alloc(mempool);
|
|
if (m == NULL)
|
|
goto error;
|
|
|
|
rte_pktmbuf_chain(mbuf, m);
|
|
|
|
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
|
|
if (mbuf_data == NULL)
|
|
goto error;
|
|
|
|
memcpy(mbuf_data, test_data, segment_sz);
|
|
test_data += segment_sz;
|
|
segments_nb--;
|
|
}
|
|
|
|
if (last_sz) {
|
|
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz);
|
|
if (mbuf_data == NULL)
|
|
goto error;
|
|
|
|
memcpy(mbuf_data, test_data, last_sz);
|
|
}
|
|
|
|
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf,
|
|
options->auth_digest_sz);
|
|
if (mbuf_data == NULL)
|
|
goto error;
|
|
|
|
if (options->op_type == CPERF_AEAD) {
|
|
uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf,
|
|
RTE_ALIGN_CEIL(options->auth_aad_sz, 16));
|
|
|
|
if (aead == NULL)
|
|
goto error;
|
|
|
|
memcpy(aead, test_vector->aad.data, test_vector->aad.length);
|
|
}
|
|
|
|
return mbuf;
|
|
error:
|
|
if (mbuf != NULL)
|
|
rte_pktmbuf_free(mbuf);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void *
|
|
cperf_throughput_test_constructor(uint8_t dev_id, uint16_t qp_id,
|
|
const struct cperf_options *options,
|
|
const struct cperf_test_vector *test_vector,
|
|
const struct cperf_op_fns *op_fns)
|
|
{
|
|
struct cperf_throughput_ctx *ctx = NULL;
|
|
unsigned int mbuf_idx = 0;
|
|
char pool_name[32] = "";
|
|
|
|
ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
|
|
if (ctx == NULL)
|
|
goto err;
|
|
|
|
ctx->dev_id = dev_id;
|
|
ctx->qp_id = qp_id;
|
|
|
|
ctx->populate_ops = op_fns->populate_ops;
|
|
ctx->options = options;
|
|
ctx->test_vector = test_vector;
|
|
|
|
ctx->sess = op_fns->sess_create(dev_id, options, test_vector);
|
|
if (ctx->sess == NULL)
|
|
goto err;
|
|
|
|
snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d",
|
|
dev_id);
|
|
|
|
ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name,
|
|
options->pool_sz * options->segments_nb, 0, 0,
|
|
RTE_PKTMBUF_HEADROOM +
|
|
RTE_CACHE_LINE_ROUNDUP(
|
|
(options->buffer_sz / options->segments_nb) +
|
|
(options->buffer_sz % options->segments_nb) +
|
|
options->auth_digest_sz),
|
|
rte_socket_id());
|
|
|
|
if (ctx->pkt_mbuf_pool_in == NULL)
|
|
goto err;
|
|
|
|
/* Generate mbufs_in with plaintext populated for test */
|
|
if (ctx->options->pool_sz % ctx->options->burst_sz)
|
|
goto err;
|
|
|
|
ctx->mbufs_in = rte_malloc(NULL,
|
|
(sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0);
|
|
|
|
for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
|
|
ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create(
|
|
ctx->pkt_mbuf_pool_in, options->segments_nb,
|
|
options, test_vector);
|
|
if (ctx->mbufs_in[mbuf_idx] == NULL)
|
|
goto err;
|
|
}
|
|
|
|
if (options->out_of_place == 1) {
|
|
|
|
snprintf(pool_name, sizeof(pool_name), "cperf_pool_out_cdev_%d",
|
|
dev_id);
|
|
|
|
ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create(
|
|
pool_name, options->pool_sz, 0, 0,
|
|
RTE_PKTMBUF_HEADROOM +
|
|
RTE_CACHE_LINE_ROUNDUP(
|
|
options->buffer_sz +
|
|
options->auth_digest_sz),
|
|
rte_socket_id());
|
|
|
|
if (ctx->pkt_mbuf_pool_out == NULL)
|
|
goto err;
|
|
}
|
|
|
|
ctx->mbufs_out = rte_malloc(NULL,
|
|
(sizeof(struct rte_mbuf *) *
|
|
ctx->options->pool_sz), 0);
|
|
|
|
for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
|
|
if (options->out_of_place == 1) {
|
|
ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create(
|
|
ctx->pkt_mbuf_pool_out, 1,
|
|
options, test_vector);
|
|
if (ctx->mbufs_out[mbuf_idx] == NULL)
|
|
goto err;
|
|
} else {
|
|
ctx->mbufs_out[mbuf_idx] = NULL;
|
|
}
|
|
}
|
|
|
|
snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d",
|
|
dev_id);
|
|
|
|
ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name,
|
|
RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz, 0, 0,
|
|
rte_socket_id());
|
|
if (ctx->crypto_op_pool == NULL)
|
|
goto err;
|
|
|
|
return ctx;
|
|
err:
|
|
cperf_throughput_test_free(ctx, mbuf_idx);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
cperf_throughput_test_verifier(struct rte_mbuf *mbuf,
|
|
const struct cperf_options *options,
|
|
const struct cperf_test_vector *vector)
|
|
{
|
|
const struct rte_mbuf *m;
|
|
uint32_t len;
|
|
uint16_t nb_segs;
|
|
uint8_t *data;
|
|
uint32_t cipher_offset, auth_offset;
|
|
uint8_t cipher, auth;
|
|
int res = 0;
|
|
|
|
m = mbuf;
|
|
nb_segs = m->nb_segs;
|
|
len = 0;
|
|
while (m && nb_segs != 0) {
|
|
len += m->data_len;
|
|
m = m->next;
|
|
nb_segs--;
|
|
}
|
|
|
|
data = rte_malloc(NULL, len, 0);
|
|
if (data == NULL)
|
|
return 1;
|
|
|
|
m = mbuf;
|
|
nb_segs = m->nb_segs;
|
|
len = 0;
|
|
while (m && nb_segs != 0) {
|
|
memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
|
|
m->data_len);
|
|
len += m->data_len;
|
|
m = m->next;
|
|
nb_segs--;
|
|
}
|
|
|
|
switch (options->op_type) {
|
|
case CPERF_CIPHER_ONLY:
|
|
cipher = 1;
|
|
cipher_offset = 0;
|
|
auth = 0;
|
|
auth_offset = 0;
|
|
break;
|
|
case CPERF_CIPHER_THEN_AUTH:
|
|
cipher = 1;
|
|
cipher_offset = 0;
|
|
auth = 1;
|
|
auth_offset = vector->plaintext.length;
|
|
break;
|
|
case CPERF_AUTH_ONLY:
|
|
cipher = 0;
|
|
cipher_offset = 0;
|
|
auth = 1;
|
|
auth_offset = vector->plaintext.length;
|
|
break;
|
|
case CPERF_AUTH_THEN_CIPHER:
|
|
cipher = 1;
|
|
cipher_offset = 0;
|
|
auth = 1;
|
|
auth_offset = vector->plaintext.length;
|
|
break;
|
|
case CPERF_AEAD:
|
|
cipher = 1;
|
|
cipher_offset = vector->aad.length;
|
|
auth = 1;
|
|
auth_offset = vector->aad.length + vector->plaintext.length;
|
|
break;
|
|
}
|
|
|
|
if (cipher == 1) {
|
|
if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
|
|
res += memcmp(data + cipher_offset,
|
|
vector->ciphertext.data,
|
|
vector->ciphertext.length);
|
|
else
|
|
res += memcmp(data + cipher_offset,
|
|
vector->plaintext.data,
|
|
vector->plaintext.length);
|
|
}
|
|
|
|
if (auth == 1) {
|
|
if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
|
|
res += memcmp(data + auth_offset,
|
|
vector->digest.data,
|
|
vector->digest.length);
|
|
}
|
|
|
|
if (res != 0)
|
|
res = 1;
|
|
|
|
return res;
|
|
}
|
|
|
|
int
|
|
cperf_throughput_test_runner(void *test_ctx)
|
|
{
|
|
struct cperf_throughput_ctx *ctx = test_ctx;
|
|
struct cperf_op_result *res, *pres;
|
|
|
|
if (ctx->options->verify) {
|
|
res = rte_malloc(NULL, sizeof(struct cperf_op_result) *
|
|
ctx->options->total_ops, 0);
|
|
if (res == NULL)
|
|
return 0;
|
|
}
|
|
|
|
uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
|
|
uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
|
|
|
|
uint64_t i, m_idx = 0, tsc_start, tsc_end, tsc_duration;
|
|
|
|
uint16_t ops_unused = 0;
|
|
uint64_t idx = 0;
|
|
|
|
struct rte_crypto_op *ops[ctx->options->burst_sz];
|
|
struct rte_crypto_op *ops_processed[ctx->options->burst_sz];
|
|
|
|
uint32_t lcore = rte_lcore_id();
|
|
|
|
#ifdef CPERF_LINEARIZATION_ENABLE
|
|
struct rte_cryptodev_info dev_info;
|
|
int linearize = 0;
|
|
|
|
/* Check if source mbufs require coalescing */
|
|
if (ctx->options->segments_nb > 1) {
|
|
rte_cryptodev_info_get(ctx->dev_id, &dev_info);
|
|
if ((dev_info.feature_flags &
|
|
RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
|
|
linearize = 1;
|
|
}
|
|
#endif /* CPERF_LINEARIZATION_ENABLE */
|
|
|
|
ctx->lcore_id = lcore;
|
|
|
|
if (!ctx->options->csv)
|
|
printf("\n# Running throughput test on device: %u, lcore: %u\n",
|
|
ctx->dev_id, lcore);
|
|
|
|
/* Warm up the host CPU before starting the test */
|
|
for (i = 0; i < ctx->options->total_ops; i++)
|
|
rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
|
|
|
|
tsc_start = rte_rdtsc_precise();
|
|
|
|
while (ops_enqd_total < ctx->options->total_ops) {
|
|
|
|
uint16_t burst_size = ((ops_enqd_total + ctx->options->burst_sz)
|
|
<= ctx->options->total_ops) ?
|
|
ctx->options->burst_sz :
|
|
ctx->options->total_ops -
|
|
ops_enqd_total;
|
|
|
|
uint16_t ops_needed = burst_size - ops_unused;
|
|
|
|
/* Allocate crypto ops from pool */
|
|
if (ops_needed != rte_crypto_op_bulk_alloc(
|
|
ctx->crypto_op_pool,
|
|
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
|
|
ops, ops_needed))
|
|
return -1;
|
|
|
|
/* Setup crypto op, attach mbuf etc */
|
|
(ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx],
|
|
&ctx->mbufs_out[m_idx],
|
|
ops_needed, ctx->sess, ctx->options,
|
|
ctx->test_vector);
|
|
|
|
if (ctx->options->verify) {
|
|
for (i = 0; i < ops_needed; i++) {
|
|
ops[i]->opaque_data = (void *)&res[idx];
|
|
idx++;
|
|
}
|
|
}
|
|
|
|
#ifdef CPERF_LINEARIZATION_ENABLE
|
|
if (linearize) {
|
|
/* PMD doesn't support scatter-gather and source buffer
|
|
* is segmented.
|
|
* We need to linearize it before enqueuing.
|
|
*/
|
|
for (i = 0; i < burst_size; i++)
|
|
rte_pktmbuf_linearize(ops[i]->sym->m_src);
|
|
}
|
|
#endif /* CPERF_LINEARIZATION_ENABLE */
|
|
|
|
/* Enqueue burst of ops on crypto device */
|
|
ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops, burst_size);
|
|
if (ops_enqd < burst_size)
|
|
ops_enqd_failed++;
|
|
|
|
/**
|
|
* Calculate number of ops not enqueued (mainly for hw
|
|
* accelerators whose ingress queue can fill up).
|
|
*/
|
|
ops_unused = burst_size - ops_enqd;
|
|
ops_enqd_total += ops_enqd;
|
|
|
|
|
|
/* Dequeue processed burst of ops from crypto device */
|
|
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops_processed, ctx->options->burst_sz);
|
|
|
|
if (likely(ops_deqd)) {
|
|
|
|
if (ctx->options->verify) {
|
|
void *opq;
|
|
for (i = 0; i < ops_deqd; i++) {
|
|
opq = (ops_processed[i]->opaque_data);
|
|
pres = (struct cperf_op_result *)opq;
|
|
pres->status = ops_processed[i]->status;
|
|
}
|
|
}
|
|
|
|
/* free crypto ops so they can be reused. We don't free
|
|
* the mbufs here as we don't want to reuse them as
|
|
* the crypto operation will change the data and cause
|
|
* failures.
|
|
*/
|
|
for (i = 0; i < ops_deqd; i++)
|
|
rte_crypto_op_free(ops_processed[i]);
|
|
|
|
ops_deqd_total += ops_deqd;
|
|
} else {
|
|
/**
|
|
* Count dequeue polls which didn't return any
|
|
* processed operations. This statistic is mainly
|
|
* relevant to hw accelerators.
|
|
*/
|
|
ops_deqd_failed++;
|
|
}
|
|
|
|
m_idx += ops_needed;
|
|
m_idx = m_idx + ctx->options->burst_sz > ctx->options->pool_sz ?
|
|
0 : m_idx;
|
|
}
|
|
|
|
/* Dequeue any operations still in the crypto device */
|
|
|
|
while (ops_deqd_total < ctx->options->total_ops) {
|
|
/* Sending 0 length burst to flush sw crypto device */
|
|
rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
|
|
|
|
/* dequeue burst */
|
|
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops_processed, ctx->options->burst_sz);
|
|
if (ops_deqd == 0)
|
|
ops_deqd_failed++;
|
|
else {
|
|
if (ctx->options->verify) {
|
|
void *opq;
|
|
for (i = 0; i < ops_deqd; i++) {
|
|
opq = (ops_processed[i]->opaque_data);
|
|
pres = (struct cperf_op_result *)opq;
|
|
pres->status = ops_processed[i]->status;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < ops_deqd; i++)
|
|
rte_crypto_op_free(ops_processed[i]);
|
|
|
|
ops_deqd_total += ops_deqd;
|
|
}
|
|
}
|
|
|
|
tsc_end = rte_rdtsc_precise();
|
|
tsc_duration = (tsc_end - tsc_start);
|
|
|
|
if (ctx->options->verify) {
|
|
struct rte_mbuf **mbufs;
|
|
|
|
if (ctx->options->out_of_place == 1)
|
|
mbufs = ctx->mbufs_out;
|
|
else
|
|
mbufs = ctx->mbufs_in;
|
|
|
|
for (i = 0; i < ctx->options->total_ops; i++) {
|
|
|
|
if (res[i].status != RTE_CRYPTO_OP_STATUS_SUCCESS ||
|
|
cperf_throughput_test_verifier(
|
|
mbufs[i], ctx->options,
|
|
ctx->test_vector)) {
|
|
|
|
ctx->results.ops_failed++;
|
|
}
|
|
}
|
|
|
|
rte_free(res);
|
|
}
|
|
|
|
/* Calculate average operations processed per second */
|
|
ctx->results.ops_per_second = ((double)ctx->options->total_ops /
|
|
tsc_duration) * rte_get_tsc_hz();
|
|
|
|
/* Calculate average throughput (Gbps) in bits per second */
|
|
ctx->results.throughput_gbps = ((ctx->results.ops_per_second *
|
|
ctx->options->buffer_sz * 8) / 1000000000);
|
|
|
|
|
|
/* Calculate average cycles per byte */
|
|
ctx->results.cycles_per_byte = ((double)tsc_duration /
|
|
ctx->options->total_ops) / ctx->options->buffer_sz;
|
|
|
|
ctx->results.ops_enqueued = ops_enqd_total;
|
|
ctx->results.ops_dequeued = ops_deqd_total;
|
|
|
|
ctx->results.ops_enqueued_failed = ops_enqd_failed;
|
|
ctx->results.ops_dequeued_failed = ops_deqd_failed;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
void
|
|
cperf_throughput_test_destructor(void *arg)
|
|
{
|
|
struct cperf_throughput_ctx *ctx = arg;
|
|
struct cperf_throughput_results *results = &ctx->results;
|
|
static int only_once;
|
|
|
|
if (ctx == NULL)
|
|
return;
|
|
|
|
if (!ctx->options->csv) {
|
|
printf("\n# Device %d on lcore %u\n",
|
|
ctx->dev_id, ctx->lcore_id);
|
|
printf("# Buffer Size(B)\t Enqueued\t Dequeued\tFailed Enq"
|
|
"\tFailed Deq\tOps(Millions)\tThroughput(Gbps)"
|
|
"\tCycles Per Byte\n");
|
|
|
|
printf("\n%16u\t%10"PRIu64"\t%10"PRIu64"\t%10"PRIu64"\t"
|
|
"%10"PRIu64"\t%16.4f\t%16.4f\t%15.2f\n",
|
|
ctx->options->buffer_sz,
|
|
results->ops_enqueued,
|
|
results->ops_dequeued,
|
|
results->ops_enqueued_failed,
|
|
results->ops_dequeued_failed,
|
|
results->ops_per_second/1000000,
|
|
results->throughput_gbps,
|
|
results->cycles_per_byte);
|
|
} else {
|
|
if (!only_once)
|
|
printf("\n# CPU lcore id, Burst Size(B), "
|
|
"Buffer Size(B),Enqueued,Dequeued,Failed Enq,"
|
|
"Failed Deq,Ops(Millions),Throughput(Gbps),"
|
|
"Cycles Per Byte\n");
|
|
only_once = 1;
|
|
|
|
printf("%u;%u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
|
|
"%.f3;%.f3;%.f3\n",
|
|
ctx->lcore_id,
|
|
ctx->options->burst_sz,
|
|
ctx->options->buffer_sz,
|
|
results->ops_enqueued,
|
|
results->ops_dequeued,
|
|
results->ops_enqueued_failed,
|
|
results->ops_dequeued_failed,
|
|
results->ops_per_second/1000000,
|
|
results->throughput_gbps,
|
|
results->cycles_per_byte);
|
|
}
|
|
|
|
cperf_throughput_test_free(ctx, ctx->options->pool_sz);
|
|
}
|