numam-dpdk/lib/librte_bpf/bpf_load_elf.c
Konstantin Ananyev 5dba93ae5f bpf: add ability to load eBPF program from ELF object file
Introduce rte_bpf_elf_load() function to provide ability to
load eBPF program from ELF object file.
It also adds dependency on libelf.

Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Acked-by: Ferruh Yigit <ferruh.yigit@intel.com>
2018-05-12 00:35:20 +02:00

323 lines
6.7 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/queue.h>
#include <fcntl.h>
#include <libelf.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_byteorder.h>
#include <rte_errno.h>
#include "bpf_impl.h"
/* To overcome compatibility issue */
#ifndef EM_BPF
#define EM_BPF 247
#endif
static uint32_t
bpf_find_xsym(const char *sn, enum rte_bpf_xtype type,
const struct rte_bpf_xsym fp[], uint32_t fn)
{
uint32_t i;
if (sn == NULL || fp == NULL)
return UINT32_MAX;
for (i = 0; i != fn; i++) {
if (fp[i].type == type && strcmp(sn, fp[i].name) == 0)
break;
}
return (i != fn) ? i : UINT32_MAX;
}
/*
* update BPF code at offset *ofs* with a proper address(index) for external
* symbol *sn*
*/
static int
resolve_xsym(const char *sn, size_t ofs, struct ebpf_insn *ins, size_t ins_sz,
const struct rte_bpf_prm *prm)
{
uint32_t idx, fidx;
enum rte_bpf_xtype type;
if (ofs % sizeof(ins[0]) != 0 || ofs >= ins_sz)
return -EINVAL;
idx = ofs / sizeof(ins[0]);
if (ins[idx].code == (BPF_JMP | EBPF_CALL))
type = RTE_BPF_XTYPE_FUNC;
else if (ins[idx].code == (BPF_LD | BPF_IMM | EBPF_DW) &&
ofs < ins_sz - sizeof(ins[idx]))
type = RTE_BPF_XTYPE_VAR;
else
return -EINVAL;
fidx = bpf_find_xsym(sn, type, prm->xsym, prm->nb_xsym);
if (fidx == UINT32_MAX)
return -ENOENT;
/* for function we just need an index in our xsym table */
if (type == RTE_BPF_XTYPE_FUNC)
ins[idx].imm = fidx;
/* for variable we need to store its absolute address */
else {
ins[idx].imm = (uintptr_t)prm->xsym[fidx].var;
ins[idx + 1].imm =
(uint64_t)(uintptr_t)prm->xsym[fidx].var >> 32;
}
return 0;
}
static int
check_elf_header(const Elf64_Ehdr *eh)
{
const char *err;
err = NULL;
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
if (eh->e_ident[EI_DATA] != ELFDATA2LSB)
#else
if (eh->e_ident[EI_DATA] != ELFDATA2MSB)
#endif
err = "not native byte order";
else if (eh->e_ident[EI_OSABI] != ELFOSABI_NONE)
err = "unexpected OS ABI";
else if (eh->e_type != ET_REL)
err = "unexpected ELF type";
else if (eh->e_machine != EM_NONE && eh->e_machine != EM_BPF)
err = "unexpected machine type";
if (err != NULL) {
RTE_BPF_LOG(ERR, "%s(): %s\n", __func__, err);
return -EINVAL;
}
return 0;
}
/*
* helper function, find executable section by name.
*/
static int
find_elf_code(Elf *elf, const char *section, Elf_Data **psd, size_t *pidx)
{
Elf_Scn *sc;
const Elf64_Ehdr *eh;
const Elf64_Shdr *sh;
Elf_Data *sd;
const char *sn;
int32_t rc;
eh = elf64_getehdr(elf);
if (eh == NULL) {
rc = elf_errno();
RTE_BPF_LOG(ERR, "%s(%p, %s) error code: %d(%s)\n",
__func__, elf, section, rc, elf_errmsg(rc));
return -EINVAL;
}
if (check_elf_header(eh) != 0)
return -EINVAL;
/* find given section by name */
for (sc = elf_nextscn(elf, NULL); sc != NULL;
sc = elf_nextscn(elf, sc)) {
sh = elf64_getshdr(sc);
sn = elf_strptr(elf, eh->e_shstrndx, sh->sh_name);
if (sn != NULL && strcmp(section, sn) == 0 &&
sh->sh_type == SHT_PROGBITS &&
sh->sh_flags == (SHF_ALLOC | SHF_EXECINSTR))
break;
}
sd = elf_getdata(sc, NULL);
if (sd == NULL || sd->d_size == 0 ||
sd->d_size % sizeof(struct ebpf_insn) != 0) {
rc = elf_errno();
RTE_BPF_LOG(ERR, "%s(%p, %s) error code: %d(%s)\n",
__func__, elf, section, rc, elf_errmsg(rc));
return -EINVAL;
}
*psd = sd;
*pidx = elf_ndxscn(sc);
return 0;
}
/*
* helper function to process data from relocation table.
*/
static int
process_reloc(Elf *elf, size_t sym_idx, Elf64_Rel *re, size_t re_sz,
struct ebpf_insn *ins, size_t ins_sz, const struct rte_bpf_prm *prm)
{
int32_t rc;
uint32_t i, n;
size_t ofs, sym;
const char *sn;
const Elf64_Ehdr *eh;
Elf_Scn *sc;
const Elf_Data *sd;
Elf64_Sym *sm;
eh = elf64_getehdr(elf);
/* get symtable by section index */
sc = elf_getscn(elf, sym_idx);
sd = elf_getdata(sc, NULL);
if (sd == NULL)
return -EINVAL;
sm = sd->d_buf;
n = re_sz / sizeof(re[0]);
for (i = 0; i != n; i++) {
ofs = re[i].r_offset;
/* retrieve index in the symtable */
sym = ELF64_R_SYM(re[i].r_info);
if (sym * sizeof(sm[0]) >= sd->d_size)
return -EINVAL;
sn = elf_strptr(elf, eh->e_shstrndx, sm[sym].st_name);
rc = resolve_xsym(sn, ofs, ins, ins_sz, prm);
if (rc != 0) {
RTE_BPF_LOG(ERR,
"resolve_xsym(%s, %zu) error code: %d\n",
sn, ofs, rc);
return rc;
}
}
return 0;
}
/*
* helper function, find relocation information (if any)
* and update bpf code.
*/
static int
elf_reloc_code(Elf *elf, Elf_Data *ed, size_t sidx,
const struct rte_bpf_prm *prm)
{
Elf64_Rel *re;
Elf_Scn *sc;
const Elf64_Shdr *sh;
const Elf_Data *sd;
int32_t rc;
rc = 0;
/* walk through all sections */
for (sc = elf_nextscn(elf, NULL); sc != NULL && rc == 0;
sc = elf_nextscn(elf, sc)) {
sh = elf64_getshdr(sc);
/* relocation data for our code section */
if (sh->sh_type == SHT_REL && sh->sh_info == sidx) {
sd = elf_getdata(sc, NULL);
if (sd == NULL || sd->d_size == 0 ||
sd->d_size % sizeof(re[0]) != 0)
return -EINVAL;
rc = process_reloc(elf, sh->sh_link,
sd->d_buf, sd->d_size, ed->d_buf, ed->d_size,
prm);
}
}
return rc;
}
static struct rte_bpf *
bpf_load_elf(const struct rte_bpf_prm *prm, int32_t fd, const char *section)
{
Elf *elf;
Elf_Data *sd;
size_t sidx;
int32_t rc;
struct rte_bpf *bpf;
struct rte_bpf_prm np;
elf_version(EV_CURRENT);
elf = elf_begin(fd, ELF_C_READ, NULL);
rc = find_elf_code(elf, section, &sd, &sidx);
if (rc == 0)
rc = elf_reloc_code(elf, sd, sidx, prm);
if (rc == 0) {
np = prm[0];
np.ins = sd->d_buf;
np.nb_ins = sd->d_size / sizeof(struct ebpf_insn);
bpf = rte_bpf_load(&np);
} else {
bpf = NULL;
rte_errno = -rc;
}
elf_end(elf);
return bpf;
}
__rte_experimental struct rte_bpf *
rte_bpf_elf_load(const struct rte_bpf_prm *prm, const char *fname,
const char *sname)
{
int32_t fd, rc;
struct rte_bpf *bpf;
if (prm == NULL || fname == NULL || sname == NULL) {
rte_errno = EINVAL;
return NULL;
}
fd = open(fname, O_RDONLY);
if (fd < 0) {
rc = errno;
RTE_BPF_LOG(ERR, "%s(%s) error code: %d(%s)\n",
__func__, fname, rc, strerror(rc));
rte_errno = EINVAL;
return NULL;
}
bpf = bpf_load_elf(prm, fd, sname);
close(fd);
if (bpf == NULL) {
RTE_BPF_LOG(ERR,
"%s(fname=\"%s\", sname=\"%s\") failed, "
"error code: %d\n",
__func__, fname, sname, rte_errno);
return NULL;
}
RTE_BPF_LOG(INFO, "%s(fname=\"%s\", sname=\"%s\") "
"successfully creates %p(jit={.func=%p,.sz=%zu});\n",
__func__, fname, sname, bpf, bpf->jit.func, bpf->jit.sz);
return bpf;
}