Gaetan Rivet d70f8448d0 eal: introduce device class abstraction
This abstraction exists since the infancy of DPDK.
It needs to be fleshed out however, to allow a generic
description of devices properties and capabilities.

A device class is the northbound interface of the device, intended
for applications to know what it can be used for.

It is conceptually just above buses.

Signed-off-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-07-15 23:42:53 +02:00

579 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#ifndef _RTE_COMMON_H_
#define _RTE_COMMON_H_
/**
* @file
*
* Generic, commonly-used macro and inline function definitions
* for DPDK.
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdlib.h>
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <rte_config.h>
#ifndef typeof
#define typeof __typeof__
#endif
#ifndef asm
#define asm __asm__
#endif
/** C extension macro for environments lacking C11 features. */
#if !defined(__STDC_VERSION__) || __STDC_VERSION__ < 201112L
#define RTE_STD_C11 __extension__
#else
#define RTE_STD_C11
#endif
/** Define GCC_VERSION **/
#ifdef RTE_TOOLCHAIN_GCC
#define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + \
__GNUC_PATCHLEVEL__)
#endif
#ifdef RTE_ARCH_STRICT_ALIGN
typedef uint64_t unaligned_uint64_t __attribute__ ((aligned(1)));
typedef uint32_t unaligned_uint32_t __attribute__ ((aligned(1)));
typedef uint16_t unaligned_uint16_t __attribute__ ((aligned(1)));
#else
typedef uint64_t unaligned_uint64_t;
typedef uint32_t unaligned_uint32_t;
typedef uint16_t unaligned_uint16_t;
#endif
/**
* Force alignment
*/
#define __rte_aligned(a) __attribute__((__aligned__(a)))
/**
* Force a structure to be packed
*/
#define __rte_packed __attribute__((__packed__))
/******* Macro to mark functions and fields scheduled for removal *****/
#define __rte_deprecated __attribute__((__deprecated__))
/*********** Macros to eliminate unused variable warnings ********/
/**
* short definition to mark a function parameter unused
*/
#define __rte_unused __attribute__((__unused__))
/**
* definition to mark a variable or function parameter as used so
* as to avoid a compiler warning
*/
#define RTE_SET_USED(x) (void)(x)
#define RTE_PRIORITY_LOG 101
#define RTE_PRIORITY_BUS 110
#define RTE_PRIORITY_CLASS 120
#define RTE_PRIORITY_LAST 65535
#define RTE_PRIO(prio) \
RTE_PRIORITY_ ## prio
/**
* Run function before main() with high priority.
*
* @param func
* Constructor function.
* @param prio
* Priority number must be above 100.
* Lowest number is the first to run.
*/
#define RTE_INIT_PRIO(func, prio) \
static void __attribute__((constructor(RTE_PRIO(prio)), used)) func(void)
/**
* Run function before main() with low priority.
*
* The constructor will be run after prioritized constructors.
*
* @param func
* Constructor function.
*/
#define RTE_INIT(func) \
RTE_INIT_PRIO(func, LAST)
/**
* Run after main() with low priority.
*
* @param func
* Destructor function name.
* @param prio
* Priority number must be above 100.
* Lowest number is the last to run.
*/
#define RTE_FINI_PRIO(func, prio) \
static void __attribute__((destructor(RTE_PRIO(prio)), used)) func(void)
/**
* Run after main() with high priority.
*
* The destructor will be run *before* prioritized destructors.
*
* @param func
* Destructor function name.
*/
#define RTE_FINI(func) \
RTE_FINI_PRIO(func, LAST)
/**
* Force a function to be inlined
*/
#define __rte_always_inline inline __attribute__((always_inline))
/**
* Force a function to be noinlined
*/
#define __rte_noinline __attribute__((noinline))
/*********** Macros for pointer arithmetic ********/
/**
* add a byte-value offset to a pointer
*/
#define RTE_PTR_ADD(ptr, x) ((void*)((uintptr_t)(ptr) + (x)))
/**
* subtract a byte-value offset from a pointer
*/
#define RTE_PTR_SUB(ptr, x) ((void*)((uintptr_t)ptr - (x)))
/**
* get the difference between two pointer values, i.e. how far apart
* in bytes are the locations they point two. It is assumed that
* ptr1 is greater than ptr2.
*/
#define RTE_PTR_DIFF(ptr1, ptr2) ((uintptr_t)(ptr1) - (uintptr_t)(ptr2))
/*********** Macros/static functions for doing alignment ********/
/**
* Macro to align a pointer to a given power-of-two. The resultant
* pointer will be a pointer of the same type as the first parameter, and
* point to an address no higher than the first parameter. Second parameter
* must be a power-of-two value.
*/
#define RTE_PTR_ALIGN_FLOOR(ptr, align) \
((typeof(ptr))RTE_ALIGN_FLOOR((uintptr_t)ptr, align))
/**
* Macro to align a value to a given power-of-two. The resultant value
* will be of the same type as the first parameter, and will be no
* bigger than the first parameter. Second parameter must be a
* power-of-two value.
*/
#define RTE_ALIGN_FLOOR(val, align) \
(typeof(val))((val) & (~((typeof(val))((align) - 1))))
/**
* Macro to align a pointer to a given power-of-two. The resultant
* pointer will be a pointer of the same type as the first parameter, and
* point to an address no lower than the first parameter. Second parameter
* must be a power-of-two value.
*/
#define RTE_PTR_ALIGN_CEIL(ptr, align) \
RTE_PTR_ALIGN_FLOOR((typeof(ptr))RTE_PTR_ADD(ptr, (align) - 1), align)
/**
* Macro to align a value to a given power-of-two. The resultant value
* will be of the same type as the first parameter, and will be no lower
* than the first parameter. Second parameter must be a power-of-two
* value.
*/
#define RTE_ALIGN_CEIL(val, align) \
RTE_ALIGN_FLOOR(((val) + ((typeof(val)) (align) - 1)), align)
/**
* Macro to align a pointer to a given power-of-two. The resultant
* pointer will be a pointer of the same type as the first parameter, and
* point to an address no lower than the first parameter. Second parameter
* must be a power-of-two value.
* This function is the same as RTE_PTR_ALIGN_CEIL
*/
#define RTE_PTR_ALIGN(ptr, align) RTE_PTR_ALIGN_CEIL(ptr, align)
/**
* Macro to align a value to a given power-of-two. The resultant
* value will be of the same type as the first parameter, and
* will be no lower than the first parameter. Second parameter
* must be a power-of-two value.
* This function is the same as RTE_ALIGN_CEIL
*/
#define RTE_ALIGN(val, align) RTE_ALIGN_CEIL(val, align)
/**
* Macro to align a value to the multiple of given value. The resultant
* value will be of the same type as the first parameter and will be no lower
* than the first parameter.
*/
#define RTE_ALIGN_MUL_CEIL(v, mul) \
(((v + (typeof(v))(mul) - 1) / ((typeof(v))(mul))) * (typeof(v))(mul))
/**
* Macro to align a value to the multiple of given value. The resultant
* value will be of the same type as the first parameter and will be no higher
* than the first parameter.
*/
#define RTE_ALIGN_MUL_FLOOR(v, mul) \
((v / ((typeof(v))(mul))) * (typeof(v))(mul))
/**
* Checks if a pointer is aligned to a given power-of-two value
*
* @param ptr
* The pointer whose alignment is to be checked
* @param align
* The power-of-two value to which the ptr should be aligned
*
* @return
* True(1) where the pointer is correctly aligned, false(0) otherwise
*/
static inline int
rte_is_aligned(void *ptr, unsigned align)
{
return RTE_PTR_ALIGN(ptr, align) == ptr;
}
/*********** Macros for compile type checks ********/
/**
* Triggers an error at compilation time if the condition is true.
*/
#ifndef __OPTIMIZE__
#define RTE_BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)]))
#else
extern int RTE_BUILD_BUG_ON_detected_error;
#define RTE_BUILD_BUG_ON(condition) do { \
((void)sizeof(char[1 - 2*!!(condition)])); \
if (condition) \
RTE_BUILD_BUG_ON_detected_error = 1; \
} while(0)
#endif
/**
* Combines 32b inputs most significant set bits into the least
* significant bits to construct a value with the same MSBs as x
* but all 1's under it.
*
* @param x
* The integer whose MSBs need to be combined with its LSBs
* @return
* The combined value.
*/
static inline uint32_t
rte_combine32ms1b(register uint32_t x)
{
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return x;
}
/**
* Combines 64b inputs most significant set bits into the least
* significant bits to construct a value with the same MSBs as x
* but all 1's under it.
*
* @param v
* The integer whose MSBs need to be combined with its LSBs
* @return
* The combined value.
*/
static inline uint64_t
rte_combine64ms1b(register uint64_t v)
{
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v |= v >> 32;
return v;
}
/*********** Macros to work with powers of 2 ********/
/**
* Macro to return 1 if n is a power of 2, 0 otherwise
*/
#define RTE_IS_POWER_OF_2(n) ((n) && !(((n) - 1) & (n)))
/**
* Returns true if n is a power of 2
* @param n
* Number to check
* @return 1 if true, 0 otherwise
*/
static inline int
rte_is_power_of_2(uint32_t n)
{
return n && !(n & (n - 1));
}
/**
* Aligns input parameter to the next power of 2
*
* @param x
* The integer value to algin
*
* @return
* Input parameter aligned to the next power of 2
*/
static inline uint32_t
rte_align32pow2(uint32_t x)
{
x--;
x = rte_combine32ms1b(x);
return x + 1;
}
/**
* Aligns input parameter to the previous power of 2
*
* @param x
* The integer value to algin
*
* @return
* Input parameter aligned to the previous power of 2
*/
static inline uint32_t
rte_align32prevpow2(uint32_t x)
{
x = rte_combine32ms1b(x);
return x - (x >> 1);
}
/**
* Aligns 64b input parameter to the next power of 2
*
* @param v
* The 64b value to align
*
* @return
* Input parameter aligned to the next power of 2
*/
static inline uint64_t
rte_align64pow2(uint64_t v)
{
v--;
v = rte_combine64ms1b(v);
return v + 1;
}
/**
* Aligns 64b input parameter to the previous power of 2
*
* @param v
* The 64b value to align
*
* @return
* Input parameter aligned to the previous power of 2
*/
static inline uint64_t
rte_align64prevpow2(uint64_t v)
{
v = rte_combine64ms1b(v);
return v - (v >> 1);
}
/*********** Macros for calculating min and max **********/
/**
* Macro to return the minimum of two numbers
*/
#define RTE_MIN(a, b) \
__extension__ ({ \
typeof (a) _a = (a); \
typeof (b) _b = (b); \
_a < _b ? _a : _b; \
})
/**
* Macro to return the maximum of two numbers
*/
#define RTE_MAX(a, b) \
__extension__ ({ \
typeof (a) _a = (a); \
typeof (b) _b = (b); \
_a > _b ? _a : _b; \
})
/*********** Other general functions / macros ********/
/**
* Searches the input parameter for the least significant set bit
* (starting from zero).
* If a least significant 1 bit is found, its bit index is returned.
* If the content of the input parameter is zero, then the content of the return
* value is undefined.
* @param v
* input parameter, should not be zero.
* @return
* least significant set bit in the input parameter.
*/
static inline uint32_t
rte_bsf32(uint32_t v)
{
return (uint32_t)__builtin_ctz(v);
}
/**
* Return the rounded-up log2 of a integer.
*
* @param v
* The input parameter.
* @return
* The rounded-up log2 of the input, or 0 if the input is 0.
*/
static inline uint32_t
rte_log2_u32(uint32_t v)
{
if (v == 0)
return 0;
v = rte_align32pow2(v);
return rte_bsf32(v);
}
#ifndef offsetof
/** Return the offset of a field in a structure. */
#define offsetof(TYPE, MEMBER) __builtin_offsetof (TYPE, MEMBER)
#endif
/**
* Return pointer to the wrapping struct instance.
*
* Example:
*
* struct wrapper {
* ...
* struct child c;
* ...
* };
*
* struct child *x = obtain(...);
* struct wrapper *w = container_of(x, struct wrapper, c);
*/
#ifndef container_of
#define container_of(ptr, type, member) __extension__ ({ \
const typeof(((type *)0)->member) *_ptr = (ptr); \
__attribute__((unused)) type *_target_ptr = \
(type *)(ptr); \
(type *)(((uintptr_t)_ptr) - offsetof(type, member)); \
})
#endif
#define _RTE_STR(x) #x
/** Take a macro value and get a string version of it */
#define RTE_STR(x) _RTE_STR(x)
/**
* ISO C helpers to modify format strings using variadic macros.
* This is a replacement for the ", ## __VA_ARGS__" GNU extension.
* An empty %s argument is appended to avoid a dangling comma.
*/
#define RTE_FMT(fmt, ...) fmt "%.0s", __VA_ARGS__ ""
#define RTE_FMT_HEAD(fmt, ...) fmt
#define RTE_FMT_TAIL(fmt, ...) __VA_ARGS__
/** Mask value of type "tp" for the first "ln" bit set. */
#define RTE_LEN2MASK(ln, tp) \
((tp)((uint64_t)-1 >> (sizeof(uint64_t) * CHAR_BIT - (ln))))
/** Number of elements in the array. */
#define RTE_DIM(a) (sizeof (a) / sizeof ((a)[0]))
/**
* Converts a numeric string to the equivalent uint64_t value.
* As well as straight number conversion, also recognises the suffixes
* k, m and g for kilobytes, megabytes and gigabytes respectively.
*
* If a negative number is passed in i.e. a string with the first non-black
* character being "-", zero is returned. Zero is also returned in the case of
* an error with the strtoull call in the function.
*
* @param str
* String containing number to convert.
* @return
* Number.
*/
static inline uint64_t
rte_str_to_size(const char *str)
{
char *endptr;
unsigned long long size;
while (isspace((int)*str))
str++;
if (*str == '-')
return 0;
errno = 0;
size = strtoull(str, &endptr, 0);
if (errno)
return 0;
if (*endptr == ' ')
endptr++; /* allow 1 space gap */
switch (*endptr){
case 'G': case 'g': size *= 1024; /* fall-through */
case 'M': case 'm': size *= 1024; /* fall-through */
case 'K': case 'k': size *= 1024; /* fall-through */
default:
break;
}
return size;
}
/**
* Function to terminate the application immediately, printing an error
* message and returning the exit_code back to the shell.
*
* This function never returns
*
* @param exit_code
* The exit code to be returned by the application
* @param format
* The format string to be used for printing the message. This can include
* printf format characters which will be expanded using any further parameters
* to the function.
*/
void
rte_exit(int exit_code, const char *format, ...)
__attribute__((noreturn))
__attribute__((format(printf, 2, 3)));
#ifdef __cplusplus
}
#endif
#endif