numam-dpdk/examples/vhost/main.c
Jianfeng Tan e1c648055f examples/vhost: fix out of sequence packets
Issue description: when packets go through vhost example to virtio
device and come back to another virtio device or physical NIC, the
sequence of packets will be changed.

Reported-by: Thomas Long <thomas.long@intel.com>
Signed-off-by: Jianfeng Tan <jianfeng.tan@intel.com>
Acked-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
2016-02-28 22:35:59 +01:00

3182 lines
90 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <arpa/inet.h>
#include <getopt.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/virtio_net.h>
#include <linux/virtio_ring.h>
#include <signal.h>
#include <stdint.h>
#include <sys/eventfd.h>
#include <sys/param.h>
#include <unistd.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include <rte_log.h>
#include <rte_string_fns.h>
#include <rte_malloc.h>
#include <rte_virtio_net.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_sctp.h>
#include "main.h"
#ifndef MAX_QUEUES
#define MAX_QUEUES 128
#endif
/* the maximum number of external ports supported */
#define MAX_SUP_PORTS 1
/*
* Calculate the number of buffers needed per port
*/
#define NUM_MBUFS_PER_PORT ((MAX_QUEUES*RTE_TEST_RX_DESC_DEFAULT) + \
(num_switching_cores*MAX_PKT_BURST) + \
(num_switching_cores*RTE_TEST_TX_DESC_DEFAULT) +\
((num_switching_cores+1)*MBUF_CACHE_SIZE))
#define MBUF_CACHE_SIZE 128
#define MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE
/*
* No frame data buffer allocated from host are required for zero copy
* implementation, guest will allocate the frame data buffer, and vhost
* directly use it.
*/
#define VIRTIO_DESCRIPTOR_LEN_ZCP RTE_MBUF_DEFAULT_DATAROOM
#define MBUF_DATA_SIZE_ZCP RTE_MBUF_DEFAULT_BUF_SIZE
#define MBUF_CACHE_SIZE_ZCP 0
#define MAX_PKT_BURST 32 /* Max burst size for RX/TX */
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
#define BURST_RX_WAIT_US 15 /* Defines how long we wait between retries on RX */
#define BURST_RX_RETRIES 4 /* Number of retries on RX. */
#define JUMBO_FRAME_MAX_SIZE 0x2600
/* State of virtio device. */
#define DEVICE_MAC_LEARNING 0
#define DEVICE_RX 1
#define DEVICE_SAFE_REMOVE 2
/* Config_core_flag status definitions. */
#define REQUEST_DEV_REMOVAL 1
#define ACK_DEV_REMOVAL 0
/* Configurable number of RX/TX ring descriptors */
#define RTE_TEST_RX_DESC_DEFAULT 1024
#define RTE_TEST_TX_DESC_DEFAULT 512
/*
* Need refine these 2 macros for legacy and DPDK based front end:
* Max vring avail descriptor/entries from guest - MAX_PKT_BURST
* And then adjust power 2.
*/
/*
* For legacy front end, 128 descriptors,
* half for virtio header, another half for mbuf.
*/
#define RTE_TEST_RX_DESC_DEFAULT_ZCP 32 /* legacy: 32, DPDK virt FE: 128. */
#define RTE_TEST_TX_DESC_DEFAULT_ZCP 64 /* legacy: 64, DPDK virt FE: 64. */
/* Get first 4 bytes in mbuf headroom. */
#define MBUF_HEADROOM_UINT32(mbuf) (*(uint32_t *)((uint8_t *)(mbuf) \
+ sizeof(struct rte_mbuf)))
/* true if x is a power of 2 */
#define POWEROF2(x) ((((x)-1) & (x)) == 0)
#define INVALID_PORT_ID 0xFF
/* Max number of devices. Limited by vmdq. */
#define MAX_DEVICES 64
/* Size of buffers used for snprintfs. */
#define MAX_PRINT_BUFF 6072
/* Maximum character device basename size. */
#define MAX_BASENAME_SZ 10
/* Maximum long option length for option parsing. */
#define MAX_LONG_OPT_SZ 64
/* Used to compare MAC addresses. */
#define MAC_ADDR_CMP 0xFFFFFFFFFFFFULL
/* Number of descriptors per cacheline. */
#define DESC_PER_CACHELINE (RTE_CACHE_LINE_SIZE / sizeof(struct vring_desc))
#define MBUF_EXT_MEM(mb) (rte_mbuf_from_indirect(mb) != (mb))
/* mask of enabled ports */
static uint32_t enabled_port_mask = 0;
/* Promiscuous mode */
static uint32_t promiscuous;
/*Number of switching cores enabled*/
static uint32_t num_switching_cores = 0;
/* number of devices/queues to support*/
static uint32_t num_queues = 0;
static uint32_t num_devices;
/*
* Enable zero copy, pkts buffer will directly dma to hw descriptor,
* disabled on default.
*/
static uint32_t zero_copy;
static int mergeable;
/* Do vlan strip on host, enabled on default */
static uint32_t vlan_strip = 1;
/* number of descriptors to apply*/
static uint32_t num_rx_descriptor = RTE_TEST_RX_DESC_DEFAULT_ZCP;
static uint32_t num_tx_descriptor = RTE_TEST_TX_DESC_DEFAULT_ZCP;
/* max ring descriptor, ixgbe, i40e, e1000 all are 4096. */
#define MAX_RING_DESC 4096
struct vpool {
struct rte_mempool *pool;
struct rte_ring *ring;
uint32_t buf_size;
} vpool_array[MAX_QUEUES+MAX_QUEUES];
/* Enable VM2VM communications. If this is disabled then the MAC address compare is skipped. */
typedef enum {
VM2VM_DISABLED = 0,
VM2VM_SOFTWARE = 1,
VM2VM_HARDWARE = 2,
VM2VM_LAST
} vm2vm_type;
static vm2vm_type vm2vm_mode = VM2VM_SOFTWARE;
/* The type of host physical address translated from guest physical address. */
typedef enum {
PHYS_ADDR_CONTINUOUS = 0,
PHYS_ADDR_CROSS_SUBREG = 1,
PHYS_ADDR_INVALID = 2,
PHYS_ADDR_LAST
} hpa_type;
/* Enable stats. */
static uint32_t enable_stats = 0;
/* Enable retries on RX. */
static uint32_t enable_retry = 1;
/* Disable TX checksum offload */
static uint32_t enable_tx_csum;
/* Disable TSO offload */
static uint32_t enable_tso;
/* Specify timeout (in useconds) between retries on RX. */
static uint32_t burst_rx_delay_time = BURST_RX_WAIT_US;
/* Specify the number of retries on RX. */
static uint32_t burst_rx_retry_num = BURST_RX_RETRIES;
/* Character device basename. Can be set by user. */
static char dev_basename[MAX_BASENAME_SZ] = "vhost-net";
/* empty vmdq configuration structure. Filled in programatically */
static struct rte_eth_conf vmdq_conf_default = {
.rxmode = {
.mq_mode = ETH_MQ_RX_VMDQ_ONLY,
.split_hdr_size = 0,
.header_split = 0, /**< Header Split disabled */
.hw_ip_checksum = 0, /**< IP checksum offload disabled */
.hw_vlan_filter = 0, /**< VLAN filtering disabled */
/*
* It is necessary for 1G NIC such as I350,
* this fixes bug of ipv4 forwarding in guest can't
* forward pakets from one virtio dev to another virtio dev.
*/
.hw_vlan_strip = 1, /**< VLAN strip enabled. */
.jumbo_frame = 0, /**< Jumbo Frame Support disabled */
.hw_strip_crc = 0, /**< CRC stripped by hardware */
},
.txmode = {
.mq_mode = ETH_MQ_TX_NONE,
},
.rx_adv_conf = {
/*
* should be overridden separately in code with
* appropriate values
*/
.vmdq_rx_conf = {
.nb_queue_pools = ETH_8_POOLS,
.enable_default_pool = 0,
.default_pool = 0,
.nb_pool_maps = 0,
.pool_map = {{0, 0},},
},
},
};
static unsigned lcore_ids[RTE_MAX_LCORE];
static uint8_t ports[RTE_MAX_ETHPORTS];
static unsigned num_ports = 0; /**< The number of ports specified in command line */
static uint16_t num_pf_queues, num_vmdq_queues;
static uint16_t vmdq_pool_base, vmdq_queue_base;
static uint16_t queues_per_pool;
static const uint16_t external_pkt_default_vlan_tag = 2000;
const uint16_t vlan_tags[] = {
1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007,
1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015,
1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023,
1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031,
1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039,
1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047,
1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055,
1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063,
};
/* ethernet addresses of ports */
static struct ether_addr vmdq_ports_eth_addr[RTE_MAX_ETHPORTS];
/* heads for the main used and free linked lists for the data path. */
static struct virtio_net_data_ll *ll_root_used = NULL;
static struct virtio_net_data_ll *ll_root_free = NULL;
/* Array of data core structures containing information on individual core linked lists. */
static struct lcore_info lcore_info[RTE_MAX_LCORE];
/* Used for queueing bursts of TX packets. */
struct mbuf_table {
unsigned len;
unsigned txq_id;
struct rte_mbuf *m_table[MAX_PKT_BURST];
};
/* TX queue for each data core. */
struct mbuf_table lcore_tx_queue[RTE_MAX_LCORE];
/* TX queue fori each virtio device for zero copy. */
struct mbuf_table tx_queue_zcp[MAX_QUEUES];
/* Vlan header struct used to insert vlan tags on TX. */
struct vlan_ethhdr {
unsigned char h_dest[ETH_ALEN];
unsigned char h_source[ETH_ALEN];
__be16 h_vlan_proto;
__be16 h_vlan_TCI;
__be16 h_vlan_encapsulated_proto;
};
/* Header lengths. */
#define VLAN_HLEN 4
#define VLAN_ETH_HLEN 18
/* Per-device statistics struct */
struct device_statistics {
uint64_t tx_total;
rte_atomic64_t rx_total_atomic;
uint64_t rx_total;
uint64_t tx;
rte_atomic64_t rx_atomic;
uint64_t rx;
} __rte_cache_aligned;
struct device_statistics dev_statistics[MAX_DEVICES];
/*
* Builds up the correct configuration for VMDQ VLAN pool map
* according to the pool & queue limits.
*/
static inline int
get_eth_conf(struct rte_eth_conf *eth_conf, uint32_t num_devices)
{
struct rte_eth_vmdq_rx_conf conf;
struct rte_eth_vmdq_rx_conf *def_conf =
&vmdq_conf_default.rx_adv_conf.vmdq_rx_conf;
unsigned i;
memset(&conf, 0, sizeof(conf));
conf.nb_queue_pools = (enum rte_eth_nb_pools)num_devices;
conf.nb_pool_maps = num_devices;
conf.enable_loop_back = def_conf->enable_loop_back;
conf.rx_mode = def_conf->rx_mode;
for (i = 0; i < conf.nb_pool_maps; i++) {
conf.pool_map[i].vlan_id = vlan_tags[ i ];
conf.pool_map[i].pools = (1UL << i);
}
(void)(rte_memcpy(eth_conf, &vmdq_conf_default, sizeof(*eth_conf)));
(void)(rte_memcpy(&eth_conf->rx_adv_conf.vmdq_rx_conf, &conf,
sizeof(eth_conf->rx_adv_conf.vmdq_rx_conf)));
return 0;
}
/*
* Validate the device number according to the max pool number gotten form
* dev_info. If the device number is invalid, give the error message and
* return -1. Each device must have its own pool.
*/
static inline int
validate_num_devices(uint32_t max_nb_devices)
{
if (num_devices > max_nb_devices) {
RTE_LOG(ERR, VHOST_PORT, "invalid number of devices\n");
return -1;
}
return 0;
}
/*
* Initialises a given port using global settings and with the rx buffers
* coming from the mbuf_pool passed as parameter
*/
static inline int
port_init(uint8_t port)
{
struct rte_eth_dev_info dev_info;
struct rte_eth_conf port_conf;
struct rte_eth_rxconf *rxconf;
struct rte_eth_txconf *txconf;
int16_t rx_rings, tx_rings;
uint16_t rx_ring_size, tx_ring_size;
int retval;
uint16_t q;
/* The max pool number from dev_info will be used to validate the pool number specified in cmd line */
rte_eth_dev_info_get (port, &dev_info);
if (dev_info.max_rx_queues > MAX_QUEUES) {
rte_exit(EXIT_FAILURE,
"please define MAX_QUEUES no less than %u in %s\n",
dev_info.max_rx_queues, __FILE__);
}
rxconf = &dev_info.default_rxconf;
txconf = &dev_info.default_txconf;
rxconf->rx_drop_en = 1;
/* Enable vlan offload */
txconf->txq_flags &= ~ETH_TXQ_FLAGS_NOVLANOFFL;
/*
* Zero copy defers queue RX/TX start to the time when guest
* finishes its startup and packet buffers from that guest are
* available.
*/
if (zero_copy) {
rxconf->rx_deferred_start = 1;
rxconf->rx_drop_en = 0;
txconf->tx_deferred_start = 1;
}
/*configure the number of supported virtio devices based on VMDQ limits */
num_devices = dev_info.max_vmdq_pools;
if (zero_copy) {
rx_ring_size = num_rx_descriptor;
tx_ring_size = num_tx_descriptor;
tx_rings = dev_info.max_tx_queues;
} else {
rx_ring_size = RTE_TEST_RX_DESC_DEFAULT;
tx_ring_size = RTE_TEST_TX_DESC_DEFAULT;
tx_rings = (uint16_t)rte_lcore_count();
}
retval = validate_num_devices(MAX_DEVICES);
if (retval < 0)
return retval;
/* Get port configuration. */
retval = get_eth_conf(&port_conf, num_devices);
if (retval < 0)
return retval;
/* NIC queues are divided into pf queues and vmdq queues. */
num_pf_queues = dev_info.max_rx_queues - dev_info.vmdq_queue_num;
queues_per_pool = dev_info.vmdq_queue_num / dev_info.max_vmdq_pools;
num_vmdq_queues = num_devices * queues_per_pool;
num_queues = num_pf_queues + num_vmdq_queues;
vmdq_queue_base = dev_info.vmdq_queue_base;
vmdq_pool_base = dev_info.vmdq_pool_base;
printf("pf queue num: %u, configured vmdq pool num: %u, each vmdq pool has %u queues\n",
num_pf_queues, num_devices, queues_per_pool);
if (port >= rte_eth_dev_count()) return -1;
if (enable_tx_csum == 0)
rte_vhost_feature_disable(1ULL << VIRTIO_NET_F_CSUM);
if (enable_tso == 0) {
rte_vhost_feature_disable(1ULL << VIRTIO_NET_F_HOST_TSO4);
rte_vhost_feature_disable(1ULL << VIRTIO_NET_F_HOST_TSO6);
}
rx_rings = (uint16_t)dev_info.max_rx_queues;
/* Configure ethernet device. */
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0)
return retval;
/* Setup the queues. */
for (q = 0; q < rx_rings; q ++) {
retval = rte_eth_rx_queue_setup(port, q, rx_ring_size,
rte_eth_dev_socket_id(port),
rxconf,
vpool_array[q].pool);
if (retval < 0)
return retval;
}
for (q = 0; q < tx_rings; q ++) {
retval = rte_eth_tx_queue_setup(port, q, tx_ring_size,
rte_eth_dev_socket_id(port),
txconf);
if (retval < 0)
return retval;
}
/* Start the device. */
retval = rte_eth_dev_start(port);
if (retval < 0) {
RTE_LOG(ERR, VHOST_DATA, "Failed to start the device.\n");
return retval;
}
if (promiscuous)
rte_eth_promiscuous_enable(port);
rte_eth_macaddr_get(port, &vmdq_ports_eth_addr[port]);
RTE_LOG(INFO, VHOST_PORT, "Max virtio devices supported: %u\n", num_devices);
RTE_LOG(INFO, VHOST_PORT, "Port %u MAC: %02"PRIx8" %02"PRIx8" %02"PRIx8
" %02"PRIx8" %02"PRIx8" %02"PRIx8"\n",
(unsigned)port,
vmdq_ports_eth_addr[port].addr_bytes[0],
vmdq_ports_eth_addr[port].addr_bytes[1],
vmdq_ports_eth_addr[port].addr_bytes[2],
vmdq_ports_eth_addr[port].addr_bytes[3],
vmdq_ports_eth_addr[port].addr_bytes[4],
vmdq_ports_eth_addr[port].addr_bytes[5]);
return 0;
}
/*
* Set character device basename.
*/
static int
us_vhost_parse_basename(const char *q_arg)
{
/* parse number string */
if (strnlen(q_arg, MAX_BASENAME_SZ) > MAX_BASENAME_SZ)
return -1;
else
snprintf((char*)&dev_basename, MAX_BASENAME_SZ, "%s", q_arg);
return 0;
}
/*
* Parse the portmask provided at run time.
*/
static int
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
errno = 0;
/* parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0))
return -1;
if (pm == 0)
return -1;
return pm;
}
/*
* Parse num options at run time.
*/
static int
parse_num_opt(const char *q_arg, uint32_t max_valid_value)
{
char *end = NULL;
unsigned long num;
errno = 0;
/* parse unsigned int string */
num = strtoul(q_arg, &end, 10);
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0))
return -1;
if (num > max_valid_value)
return -1;
return num;
}
/*
* Display usage
*/
static void
us_vhost_usage(const char *prgname)
{
RTE_LOG(INFO, VHOST_CONFIG, "%s [EAL options] -- -p PORTMASK\n"
" --vm2vm [0|1|2]\n"
" --rx_retry [0|1] --mergeable [0|1] --stats [0-N]\n"
" --dev-basename <name>\n"
" --nb-devices ND\n"
" -p PORTMASK: Set mask for ports to be used by application\n"
" --vm2vm [0|1|2]: disable/software(default)/hardware vm2vm comms\n"
" --rx-retry [0|1]: disable/enable(default) retries on rx. Enable retry if destintation queue is full\n"
" --rx-retry-delay [0-N]: timeout(in usecond) between retries on RX. This makes effect only if retries on rx enabled\n"
" --rx-retry-num [0-N]: the number of retries on rx. This makes effect only if retries on rx enabled\n"
" --mergeable [0|1]: disable(default)/enable RX mergeable buffers\n"
" --vlan-strip [0|1]: disable/enable(default) RX VLAN strip on host\n"
" --stats [0-N]: 0: Disable stats, N: Time in seconds to print stats\n"
" --dev-basename: The basename to be used for the character device.\n"
" --zero-copy [0|1]: disable(default)/enable rx/tx "
"zero copy\n"
" --rx-desc-num [0-N]: the number of descriptors on rx, "
"used only when zero copy is enabled.\n"
" --tx-desc-num [0-N]: the number of descriptors on tx, "
"used only when zero copy is enabled.\n"
" --tx-csum [0|1] disable/enable TX checksum offload.\n"
" --tso [0|1] disable/enable TCP segment offload.\n",
prgname);
}
/*
* Parse the arguments given in the command line of the application.
*/
static int
us_vhost_parse_args(int argc, char **argv)
{
int opt, ret;
int option_index;
unsigned i;
const char *prgname = argv[0];
static struct option long_option[] = {
{"vm2vm", required_argument, NULL, 0},
{"rx-retry", required_argument, NULL, 0},
{"rx-retry-delay", required_argument, NULL, 0},
{"rx-retry-num", required_argument, NULL, 0},
{"mergeable", required_argument, NULL, 0},
{"vlan-strip", required_argument, NULL, 0},
{"stats", required_argument, NULL, 0},
{"dev-basename", required_argument, NULL, 0},
{"zero-copy", required_argument, NULL, 0},
{"rx-desc-num", required_argument, NULL, 0},
{"tx-desc-num", required_argument, NULL, 0},
{"tx-csum", required_argument, NULL, 0},
{"tso", required_argument, NULL, 0},
{NULL, 0, 0, 0},
};
/* Parse command line */
while ((opt = getopt_long(argc, argv, "p:P",
long_option, &option_index)) != EOF) {
switch (opt) {
/* Portmask */
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid portmask\n");
us_vhost_usage(prgname);
return -1;
}
break;
case 'P':
promiscuous = 1;
vmdq_conf_default.rx_adv_conf.vmdq_rx_conf.rx_mode =
ETH_VMDQ_ACCEPT_BROADCAST |
ETH_VMDQ_ACCEPT_MULTICAST;
rte_vhost_feature_enable(1ULL << VIRTIO_NET_F_CTRL_RX);
break;
case 0:
/* Enable/disable vm2vm comms. */
if (!strncmp(long_option[option_index].name, "vm2vm",
MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, (VM2VM_LAST - 1));
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for "
"vm2vm [0|1|2]\n");
us_vhost_usage(prgname);
return -1;
} else {
vm2vm_mode = (vm2vm_type)ret;
}
}
/* Enable/disable retries on RX. */
if (!strncmp(long_option[option_index].name, "rx-retry", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry [0|1]\n");
us_vhost_usage(prgname);
return -1;
} else {
enable_retry = ret;
}
}
/* Enable/disable TX checksum offload. */
if (!strncmp(long_option[option_index].name, "tx-csum", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for tx-csum [0|1]\n");
us_vhost_usage(prgname);
return -1;
} else
enable_tx_csum = ret;
}
/* Enable/disable TSO offload. */
if (!strncmp(long_option[option_index].name, "tso", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for tso [0|1]\n");
us_vhost_usage(prgname);
return -1;
} else
enable_tso = ret;
}
/* Specify the retries delay time (in useconds) on RX. */
if (!strncmp(long_option[option_index].name, "rx-retry-delay", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, INT32_MAX);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry-delay [0-N]\n");
us_vhost_usage(prgname);
return -1;
} else {
burst_rx_delay_time = ret;
}
}
/* Specify the retries number on RX. */
if (!strncmp(long_option[option_index].name, "rx-retry-num", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, INT32_MAX);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry-num [0-N]\n");
us_vhost_usage(prgname);
return -1;
} else {
burst_rx_retry_num = ret;
}
}
/* Enable/disable RX mergeable buffers. */
if (!strncmp(long_option[option_index].name, "mergeable", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for mergeable [0|1]\n");
us_vhost_usage(prgname);
return -1;
} else {
mergeable = !!ret;
if (ret) {
vmdq_conf_default.rxmode.jumbo_frame = 1;
vmdq_conf_default.rxmode.max_rx_pkt_len
= JUMBO_FRAME_MAX_SIZE;
}
}
}
/* Enable/disable RX VLAN strip on host. */
if (!strncmp(long_option[option_index].name,
"vlan-strip", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for VLAN strip [0|1]\n");
us_vhost_usage(prgname);
return -1;
} else {
vlan_strip = !!ret;
vmdq_conf_default.rxmode.hw_vlan_strip =
vlan_strip;
}
}
/* Enable/disable stats. */
if (!strncmp(long_option[option_index].name, "stats", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, INT32_MAX);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for stats [0..N]\n");
us_vhost_usage(prgname);
return -1;
} else {
enable_stats = ret;
}
}
/* Set character device basename. */
if (!strncmp(long_option[option_index].name, "dev-basename", MAX_LONG_OPT_SZ)) {
if (us_vhost_parse_basename(optarg) == -1) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for character device basename (Max %d characters)\n", MAX_BASENAME_SZ);
us_vhost_usage(prgname);
return -1;
}
}
/* Enable/disable rx/tx zero copy. */
if (!strncmp(long_option[option_index].name,
"zero-copy", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument"
" for zero-copy [0|1]\n");
us_vhost_usage(prgname);
return -1;
} else
zero_copy = ret;
}
/* Specify the descriptor number on RX. */
if (!strncmp(long_option[option_index].name,
"rx-desc-num", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, MAX_RING_DESC);
if ((ret == -1) || (!POWEROF2(ret))) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for rx-desc-num[0-N],"
"power of 2 required.\n");
us_vhost_usage(prgname);
return -1;
} else {
num_rx_descriptor = ret;
}
}
/* Specify the descriptor number on TX. */
if (!strncmp(long_option[option_index].name,
"tx-desc-num", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, MAX_RING_DESC);
if ((ret == -1) || (!POWEROF2(ret))) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for tx-desc-num [0-N],"
"power of 2 required.\n");
us_vhost_usage(prgname);
return -1;
} else {
num_tx_descriptor = ret;
}
}
break;
/* Invalid option - print options. */
default:
us_vhost_usage(prgname);
return -1;
}
}
for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
if (enabled_port_mask & (1 << i))
ports[num_ports++] = (uint8_t)i;
}
if ((num_ports == 0) || (num_ports > MAX_SUP_PORTS)) {
RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u,"
"but only %u port can be enabled\n",num_ports, MAX_SUP_PORTS);
return -1;
}
if ((zero_copy == 1) && (vm2vm_mode == VM2VM_SOFTWARE)) {
RTE_LOG(INFO, VHOST_PORT,
"Vhost zero copy doesn't support software vm2vm,"
"please specify 'vm2vm 2' to use hardware vm2vm.\n");
return -1;
}
if ((zero_copy == 1) && (vmdq_conf_default.rxmode.jumbo_frame == 1)) {
RTE_LOG(INFO, VHOST_PORT,
"Vhost zero copy doesn't support jumbo frame,"
"please specify '--mergeable 0' to disable the "
"mergeable feature.\n");
return -1;
}
return 0;
}
/*
* Update the global var NUM_PORTS and array PORTS according to system ports number
* and return valid ports number
*/
static unsigned check_ports_num(unsigned nb_ports)
{
unsigned valid_num_ports = num_ports;
unsigned portid;
if (num_ports > nb_ports) {
RTE_LOG(INFO, VHOST_PORT, "\nSpecified port number(%u) exceeds total system port number(%u)\n",
num_ports, nb_ports);
num_ports = nb_ports;
}
for (portid = 0; portid < num_ports; portid ++) {
if (ports[portid] >= nb_ports) {
RTE_LOG(INFO, VHOST_PORT, "\nSpecified port ID(%u) exceeds max system port ID(%u)\n",
ports[portid], (nb_ports - 1));
ports[portid] = INVALID_PORT_ID;
valid_num_ports--;
}
}
return valid_num_ports;
}
/*
* Macro to print out packet contents. Wrapped in debug define so that the
* data path is not effected when debug is disabled.
*/
#ifdef DEBUG
#define PRINT_PACKET(device, addr, size, header) do { \
char *pkt_addr = (char*)(addr); \
unsigned int index; \
char packet[MAX_PRINT_BUFF]; \
\
if ((header)) \
snprintf(packet, MAX_PRINT_BUFF, "(%"PRIu64") Header size %d: ", (device->device_fh), (size)); \
else \
snprintf(packet, MAX_PRINT_BUFF, "(%"PRIu64") Packet size %d: ", (device->device_fh), (size)); \
for (index = 0; index < (size); index++) { \
snprintf(packet + strnlen(packet, MAX_PRINT_BUFF), MAX_PRINT_BUFF - strnlen(packet, MAX_PRINT_BUFF), \
"%02hhx ", pkt_addr[index]); \
} \
snprintf(packet + strnlen(packet, MAX_PRINT_BUFF), MAX_PRINT_BUFF - strnlen(packet, MAX_PRINT_BUFF), "\n"); \
\
LOG_DEBUG(VHOST_DATA, "%s", packet); \
} while(0)
#else
#define PRINT_PACKET(device, addr, size, header) do{} while(0)
#endif
/*
* Function to convert guest physical addresses to vhost physical addresses.
* This is used to convert virtio buffer addresses.
*/
static inline uint64_t __attribute__((always_inline))
gpa_to_hpa(struct vhost_dev *vdev, uint64_t guest_pa,
uint32_t buf_len, hpa_type *addr_type)
{
struct virtio_memory_regions_hpa *region;
uint32_t regionidx;
uint64_t vhost_pa = 0;
*addr_type = PHYS_ADDR_INVALID;
for (regionidx = 0; regionidx < vdev->nregions_hpa; regionidx++) {
region = &vdev->regions_hpa[regionidx];
if ((guest_pa >= region->guest_phys_address) &&
(guest_pa <= region->guest_phys_address_end)) {
vhost_pa = region->host_phys_addr_offset + guest_pa;
if (likely((guest_pa + buf_len - 1)
<= region->guest_phys_address_end))
*addr_type = PHYS_ADDR_CONTINUOUS;
else
*addr_type = PHYS_ADDR_CROSS_SUBREG;
break;
}
}
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") GPA %p| HPA %p\n",
vdev->dev->device_fh, (void *)(uintptr_t)guest_pa,
(void *)(uintptr_t)vhost_pa);
return vhost_pa;
}
/*
* Compares a packet destination MAC address to a device MAC address.
*/
static inline int __attribute__((always_inline))
ether_addr_cmp(struct ether_addr *ea, struct ether_addr *eb)
{
return ((*(uint64_t *)ea ^ *(uint64_t *)eb) & MAC_ADDR_CMP) == 0;
}
/*
* This function learns the MAC address of the device and registers this along with a
* vlan tag to a VMDQ.
*/
static int
link_vmdq(struct vhost_dev *vdev, struct rte_mbuf *m)
{
struct ether_hdr *pkt_hdr;
struct virtio_net_data_ll *dev_ll;
struct virtio_net *dev = vdev->dev;
int i, ret;
/* Learn MAC address of guest device from packet */
pkt_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
dev_ll = ll_root_used;
while (dev_ll != NULL) {
if (ether_addr_cmp(&(pkt_hdr->s_addr), &dev_ll->vdev->mac_address)) {
RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") WARNING: This device is using an existing MAC address and has not been registered.\n", dev->device_fh);
return -1;
}
dev_ll = dev_ll->next;
}
for (i = 0; i < ETHER_ADDR_LEN; i++)
vdev->mac_address.addr_bytes[i] = pkt_hdr->s_addr.addr_bytes[i];
/* vlan_tag currently uses the device_id. */
vdev->vlan_tag = vlan_tags[dev->device_fh];
/* Print out VMDQ registration info. */
RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") MAC_ADDRESS %02x:%02x:%02x:%02x:%02x:%02x and VLAN_TAG %d registered\n",
dev->device_fh,
vdev->mac_address.addr_bytes[0], vdev->mac_address.addr_bytes[1],
vdev->mac_address.addr_bytes[2], vdev->mac_address.addr_bytes[3],
vdev->mac_address.addr_bytes[4], vdev->mac_address.addr_bytes[5],
vdev->vlan_tag);
/* Register the MAC address. */
ret = rte_eth_dev_mac_addr_add(ports[0], &vdev->mac_address,
(uint32_t)dev->device_fh + vmdq_pool_base);
if (ret)
RTE_LOG(ERR, VHOST_DATA, "(%"PRIu64") Failed to add device MAC address to VMDQ\n",
dev->device_fh);
/* Enable stripping of the vlan tag as we handle routing. */
if (vlan_strip)
rte_eth_dev_set_vlan_strip_on_queue(ports[0],
(uint16_t)vdev->vmdq_rx_q, 1);
/* Set device as ready for RX. */
vdev->ready = DEVICE_RX;
return 0;
}
/*
* Removes MAC address and vlan tag from VMDQ. Ensures that nothing is adding buffers to the RX
* queue before disabling RX on the device.
*/
static inline void
unlink_vmdq(struct vhost_dev *vdev)
{
unsigned i = 0;
unsigned rx_count;
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
if (vdev->ready == DEVICE_RX) {
/*clear MAC and VLAN settings*/
rte_eth_dev_mac_addr_remove(ports[0], &vdev->mac_address);
for (i = 0; i < 6; i++)
vdev->mac_address.addr_bytes[i] = 0;
vdev->vlan_tag = 0;
/*Clear out the receive buffers*/
rx_count = rte_eth_rx_burst(ports[0],
(uint16_t)vdev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST);
while (rx_count) {
for (i = 0; i < rx_count; i++)
rte_pktmbuf_free(pkts_burst[i]);
rx_count = rte_eth_rx_burst(ports[0],
(uint16_t)vdev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST);
}
vdev->ready = DEVICE_MAC_LEARNING;
}
}
/*
* Check if the packet destination MAC address is for a local device. If so then put
* the packet on that devices RX queue. If not then return.
*/
static inline int __attribute__((always_inline))
virtio_tx_local(struct vhost_dev *vdev, struct rte_mbuf *m)
{
struct virtio_net_data_ll *dev_ll;
struct ether_hdr *pkt_hdr;
uint64_t ret = 0;
struct virtio_net *dev = vdev->dev;
struct virtio_net *tdev; /* destination virito device */
pkt_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
/*get the used devices list*/
dev_ll = ll_root_used;
while (dev_ll != NULL) {
if ((dev_ll->vdev->ready == DEVICE_RX) && ether_addr_cmp(&(pkt_hdr->d_addr),
&dev_ll->vdev->mac_address)) {
/* Drop the packet if the TX packet is destined for the TX device. */
if (dev_ll->vdev->dev->device_fh == dev->device_fh) {
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") TX: Source and destination MAC addresses are the same. Dropping packet.\n",
dev->device_fh);
return 0;
}
tdev = dev_ll->vdev->dev;
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") TX: MAC address is local\n", tdev->device_fh);
if (unlikely(dev_ll->vdev->remove)) {
/*drop the packet if the device is marked for removal*/
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") Device is marked for removal\n", tdev->device_fh);
} else {
/*send the packet to the local virtio device*/
ret = rte_vhost_enqueue_burst(tdev, VIRTIO_RXQ, &m, 1);
if (enable_stats) {
rte_atomic64_add(
&dev_statistics[tdev->device_fh].rx_total_atomic,
1);
rte_atomic64_add(
&dev_statistics[tdev->device_fh].rx_atomic,
ret);
dev_statistics[dev->device_fh].tx_total++;
dev_statistics[dev->device_fh].tx += ret;
}
}
return 0;
}
dev_ll = dev_ll->next;
}
return -1;
}
/*
* Check if the destination MAC of a packet is one local VM,
* and get its vlan tag, and offset if it is.
*/
static inline int __attribute__((always_inline))
find_local_dest(struct virtio_net *dev, struct rte_mbuf *m,
uint32_t *offset, uint16_t *vlan_tag)
{
struct virtio_net_data_ll *dev_ll = ll_root_used;
struct ether_hdr *pkt_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
while (dev_ll != NULL) {
if ((dev_ll->vdev->ready == DEVICE_RX)
&& ether_addr_cmp(&(pkt_hdr->d_addr),
&dev_ll->vdev->mac_address)) {
/*
* Drop the packet if the TX packet is
* destined for the TX device.
*/
if (dev_ll->vdev->dev->device_fh == dev->device_fh) {
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") TX: Source and destination"
" MAC addresses are the same. Dropping "
"packet.\n",
dev_ll->vdev->dev->device_fh);
return -1;
}
/*
* HW vlan strip will reduce the packet length
* by minus length of vlan tag, so need restore
* the packet length by plus it.
*/
*offset = VLAN_HLEN;
*vlan_tag =
(uint16_t)
vlan_tags[(uint16_t)dev_ll->vdev->dev->device_fh];
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") TX: pkt to local VM device id:"
"(%"PRIu64") vlan tag: %d.\n",
dev->device_fh, dev_ll->vdev->dev->device_fh,
(int)*vlan_tag);
break;
}
dev_ll = dev_ll->next;
}
return 0;
}
static uint16_t
get_psd_sum(void *l3_hdr, uint64_t ol_flags)
{
if (ol_flags & PKT_TX_IPV4)
return rte_ipv4_phdr_cksum(l3_hdr, ol_flags);
else /* assume ethertype == ETHER_TYPE_IPv6 */
return rte_ipv6_phdr_cksum(l3_hdr, ol_flags);
}
static void virtio_tx_offload(struct rte_mbuf *m)
{
void *l3_hdr;
struct ipv4_hdr *ipv4_hdr = NULL;
struct tcp_hdr *tcp_hdr = NULL;
struct udp_hdr *udp_hdr = NULL;
struct sctp_hdr *sctp_hdr = NULL;
struct ether_hdr *eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
l3_hdr = (char *)eth_hdr + m->l2_len;
if (m->tso_segsz != 0) {
ipv4_hdr = (struct ipv4_hdr *)l3_hdr;
tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + m->l3_len);
m->ol_flags |= PKT_TX_IP_CKSUM;
ipv4_hdr->hdr_checksum = 0;
tcp_hdr->cksum = get_psd_sum(l3_hdr, m->ol_flags);
return;
}
if (m->ol_flags & PKT_TX_L4_MASK) {
switch (m->ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_TCP_CKSUM:
tcp_hdr = (struct tcp_hdr *)
((char *)l3_hdr + m->l3_len);
tcp_hdr->cksum = get_psd_sum(l3_hdr, m->ol_flags);
break;
case PKT_TX_UDP_CKSUM:
udp_hdr = (struct udp_hdr *)
((char *)l3_hdr + m->l3_len);
udp_hdr->dgram_cksum = get_psd_sum(l3_hdr, m->ol_flags);
break;
case PKT_TX_SCTP_CKSUM:
sctp_hdr = (struct sctp_hdr *)
((char *)l3_hdr + m->l3_len);
sctp_hdr->cksum = 0;
break;
default:
break;
}
}
}
/*
* This function routes the TX packet to the correct interface. This may be a local device
* or the physical port.
*/
static inline void __attribute__((always_inline))
virtio_tx_route(struct vhost_dev *vdev, struct rte_mbuf *m, uint16_t vlan_tag)
{
struct mbuf_table *tx_q;
struct rte_mbuf **m_table;
unsigned len, ret, offset = 0;
const uint16_t lcore_id = rte_lcore_id();
struct virtio_net *dev = vdev->dev;
struct ether_hdr *nh;
/*check if destination is local VM*/
if ((vm2vm_mode == VM2VM_SOFTWARE) && (virtio_tx_local(vdev, m) == 0)) {
rte_pktmbuf_free(m);
return;
}
if (unlikely(vm2vm_mode == VM2VM_HARDWARE)) {
if (unlikely(find_local_dest(dev, m, &offset, &vlan_tag) != 0)) {
rte_pktmbuf_free(m);
return;
}
}
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") TX: MAC address is external\n", dev->device_fh);
/*Add packet to the port tx queue*/
tx_q = &lcore_tx_queue[lcore_id];
len = tx_q->len;
nh = rte_pktmbuf_mtod(m, struct ether_hdr *);
if (unlikely(nh->ether_type == rte_cpu_to_be_16(ETHER_TYPE_VLAN))) {
/* Guest has inserted the vlan tag. */
struct vlan_hdr *vh = (struct vlan_hdr *) (nh + 1);
uint16_t vlan_tag_be = rte_cpu_to_be_16(vlan_tag);
if ((vm2vm_mode == VM2VM_HARDWARE) &&
(vh->vlan_tci != vlan_tag_be))
vh->vlan_tci = vlan_tag_be;
} else {
m->ol_flags |= PKT_TX_VLAN_PKT;
/*
* Find the right seg to adjust the data len when offset is
* bigger than tail room size.
*/
if (unlikely(vm2vm_mode == VM2VM_HARDWARE)) {
if (likely(offset <= rte_pktmbuf_tailroom(m)))
m->data_len += offset;
else {
struct rte_mbuf *seg = m;
while ((seg->next != NULL) &&
(offset > rte_pktmbuf_tailroom(seg)))
seg = seg->next;
seg->data_len += offset;
}
m->pkt_len += offset;
}
m->vlan_tci = vlan_tag;
}
if ((m->ol_flags & PKT_TX_L4_MASK) || (m->ol_flags & PKT_TX_TCP_SEG))
virtio_tx_offload(m);
tx_q->m_table[len] = m;
len++;
if (enable_stats) {
dev_statistics[dev->device_fh].tx_total++;
dev_statistics[dev->device_fh].tx++;
}
if (unlikely(len == MAX_PKT_BURST)) {
m_table = (struct rte_mbuf **)tx_q->m_table;
ret = rte_eth_tx_burst(ports[0], (uint16_t)tx_q->txq_id, m_table, (uint16_t) len);
/* Free any buffers not handled by TX and update the port stats. */
if (unlikely(ret < len)) {
do {
rte_pktmbuf_free(m_table[ret]);
} while (++ret < len);
}
len = 0;
}
tx_q->len = len;
return;
}
/*
* This function is called by each data core. It handles all RX/TX registered with the
* core. For TX the specific lcore linked list is used. For RX, MAC addresses are compared
* with all devices in the main linked list.
*/
static int
switch_worker(__attribute__((unused)) void *arg)
{
struct rte_mempool *mbuf_pool = arg;
struct virtio_net *dev = NULL;
struct vhost_dev *vdev = NULL;
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct virtio_net_data_ll *dev_ll;
struct mbuf_table *tx_q;
volatile struct lcore_ll_info *lcore_ll;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
uint64_t prev_tsc, diff_tsc, cur_tsc, ret_count = 0;
unsigned ret, i;
const uint16_t lcore_id = rte_lcore_id();
const uint16_t num_cores = (uint16_t)rte_lcore_count();
uint16_t rx_count = 0;
uint16_t tx_count;
uint32_t retry = 0;
RTE_LOG(INFO, VHOST_DATA, "Procesing on Core %u started\n", lcore_id);
lcore_ll = lcore_info[lcore_id].lcore_ll;
prev_tsc = 0;
tx_q = &lcore_tx_queue[lcore_id];
for (i = 0; i < num_cores; i ++) {
if (lcore_ids[i] == lcore_id) {
tx_q->txq_id = i;
break;
}
}
while(1) {
cur_tsc = rte_rdtsc();
/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
if (tx_q->len) {
LOG_DEBUG(VHOST_DATA, "TX queue drained after timeout with burst size %u \n", tx_q->len);
/*Tx any packets in the queue*/
ret = rte_eth_tx_burst(ports[0], (uint16_t)tx_q->txq_id,
(struct rte_mbuf **)tx_q->m_table,
(uint16_t)tx_q->len);
if (unlikely(ret < tx_q->len)) {
do {
rte_pktmbuf_free(tx_q->m_table[ret]);
} while (++ret < tx_q->len);
}
tx_q->len = 0;
}
prev_tsc = cur_tsc;
}
rte_prefetch0(lcore_ll->ll_root_used);
/*
* Inform the configuration core that we have exited the linked list and that no devices are
* in use if requested.
*/
if (lcore_ll->dev_removal_flag == REQUEST_DEV_REMOVAL)
lcore_ll->dev_removal_flag = ACK_DEV_REMOVAL;
/*
* Process devices
*/
dev_ll = lcore_ll->ll_root_used;
while (dev_ll != NULL) {
/*get virtio device ID*/
vdev = dev_ll->vdev;
dev = vdev->dev;
if (unlikely(vdev->remove)) {
dev_ll = dev_ll->next;
unlink_vmdq(vdev);
vdev->ready = DEVICE_SAFE_REMOVE;
continue;
}
if (likely(vdev->ready == DEVICE_RX)) {
/*Handle guest RX*/
rx_count = rte_eth_rx_burst(ports[0],
vdev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST);
if (rx_count) {
/*
* Retry is enabled and the queue is full then we wait and retry to avoid packet loss
* Here MAX_PKT_BURST must be less than virtio queue size
*/
if (enable_retry && unlikely(rx_count > rte_vring_available_entries(dev, VIRTIO_RXQ))) {
for (retry = 0; retry < burst_rx_retry_num; retry++) {
rte_delay_us(burst_rx_delay_time);
if (rx_count <= rte_vring_available_entries(dev, VIRTIO_RXQ))
break;
}
}
ret_count = rte_vhost_enqueue_burst(dev, VIRTIO_RXQ, pkts_burst, rx_count);
if (enable_stats) {
rte_atomic64_add(
&dev_statistics[dev_ll->vdev->dev->device_fh].rx_total_atomic,
rx_count);
rte_atomic64_add(
&dev_statistics[dev_ll->vdev->dev->device_fh].rx_atomic, ret_count);
}
while (likely(rx_count)) {
rx_count--;
rte_pktmbuf_free(pkts_burst[rx_count]);
}
}
}
if (likely(!vdev->remove)) {
/* Handle guest TX*/
tx_count = rte_vhost_dequeue_burst(dev, VIRTIO_TXQ, mbuf_pool, pkts_burst, MAX_PKT_BURST);
/* If this is the first received packet we need to learn the MAC and setup VMDQ */
if (unlikely(vdev->ready == DEVICE_MAC_LEARNING) && tx_count) {
if (vdev->remove || (link_vmdq(vdev, pkts_burst[0]) == -1)) {
while (tx_count)
rte_pktmbuf_free(pkts_burst[--tx_count]);
}
}
for (i = 0; i < tx_count; ++i)
virtio_tx_route(vdev, pkts_burst[i], (uint16_t)dev->device_fh);
}
/*move to the next device in the list*/
dev_ll = dev_ll->next;
}
}
return 0;
}
/*
* This function gets available ring number for zero copy rx.
* Only one thread will call this funciton for a paticular virtio device,
* so, it is designed as non-thread-safe function.
*/
static inline uint32_t __attribute__((always_inline))
get_available_ring_num_zcp(struct virtio_net *dev)
{
struct vhost_virtqueue *vq = dev->virtqueue[VIRTIO_RXQ];
uint16_t avail_idx;
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
return (uint32_t)(avail_idx - vq->last_used_idx_res);
}
/*
* This function gets available ring index for zero copy rx,
* it will retry 'burst_rx_retry_num' times till it get enough ring index.
* Only one thread will call this funciton for a paticular virtio device,
* so, it is designed as non-thread-safe function.
*/
static inline uint32_t __attribute__((always_inline))
get_available_ring_index_zcp(struct virtio_net *dev,
uint16_t *res_base_idx, uint32_t count)
{
struct vhost_virtqueue *vq = dev->virtqueue[VIRTIO_RXQ];
uint16_t avail_idx;
uint32_t retry = 0;
uint16_t free_entries;
*res_base_idx = vq->last_used_idx_res;
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
free_entries = (avail_idx - *res_base_idx);
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") in get_available_ring_index_zcp: "
"avail idx: %d, "
"res base idx:%d, free entries:%d\n",
dev->device_fh, avail_idx, *res_base_idx,
free_entries);
/*
* If retry is enabled and the queue is full then we wait
* and retry to avoid packet loss.
*/
if (enable_retry && unlikely(count > free_entries)) {
for (retry = 0; retry < burst_rx_retry_num; retry++) {
rte_delay_us(burst_rx_delay_time);
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
free_entries = (avail_idx - *res_base_idx);
if (count <= free_entries)
break;
}
}
/*check that we have enough buffers*/
if (unlikely(count > free_entries))
count = free_entries;
if (unlikely(count == 0)) {
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") Fail in get_available_ring_index_zcp: "
"avail idx: %d, res base idx:%d, free entries:%d\n",
dev->device_fh, avail_idx,
*res_base_idx, free_entries);
return 0;
}
vq->last_used_idx_res = *res_base_idx + count;
return count;
}
/*
* This function put descriptor back to used list.
*/
static inline void __attribute__((always_inline))
put_desc_to_used_list_zcp(struct vhost_virtqueue *vq, uint16_t desc_idx)
{
uint16_t res_cur_idx = vq->last_used_idx;
vq->used->ring[res_cur_idx & (vq->size - 1)].id = (uint32_t)desc_idx;
vq->used->ring[res_cur_idx & (vq->size - 1)].len = 0;
rte_compiler_barrier();
*(volatile uint16_t *)&vq->used->idx += 1;
vq->last_used_idx += 1;
/* Kick the guest if necessary. */
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT))
eventfd_write(vq->callfd, (eventfd_t)1);
}
/*
* This function get available descriptor from vitio vring and un-attached mbuf
* from vpool->ring, and then attach them together. It needs adjust the offset
* for buff_addr and phys_addr accroding to PMD implementation, otherwise the
* frame data may be put to wrong location in mbuf.
*/
static inline void __attribute__((always_inline))
attach_rxmbuf_zcp(struct virtio_net *dev)
{
uint16_t res_base_idx, desc_idx;
uint64_t buff_addr, phys_addr;
struct vhost_virtqueue *vq;
struct vring_desc *desc;
void *obj = NULL;
struct rte_mbuf *mbuf;
struct vpool *vpool;
hpa_type addr_type;
struct vhost_dev *vdev = (struct vhost_dev *)dev->priv;
vpool = &vpool_array[vdev->vmdq_rx_q];
vq = dev->virtqueue[VIRTIO_RXQ];
do {
if (unlikely(get_available_ring_index_zcp(vdev->dev, &res_base_idx,
1) != 1))
return;
desc_idx = vq->avail->ring[(res_base_idx) & (vq->size - 1)];
desc = &vq->desc[desc_idx];
if (desc->flags & VRING_DESC_F_NEXT) {
desc = &vq->desc[desc->next];
buff_addr = gpa_to_vva(dev, desc->addr);
phys_addr = gpa_to_hpa(vdev, desc->addr, desc->len,
&addr_type);
} else {
buff_addr = gpa_to_vva(dev,
desc->addr + vq->vhost_hlen);
phys_addr = gpa_to_hpa(vdev,
desc->addr + vq->vhost_hlen,
desc->len, &addr_type);
}
if (unlikely(addr_type == PHYS_ADDR_INVALID)) {
RTE_LOG(ERR, VHOST_DATA, "(%"PRIu64") Invalid frame buffer"
" address found when attaching RX frame buffer"
" address!\n", dev->device_fh);
put_desc_to_used_list_zcp(vq, desc_idx);
continue;
}
/*
* Check if the frame buffer address from guest crosses
* sub-region or not.
*/
if (unlikely(addr_type == PHYS_ADDR_CROSS_SUBREG)) {
RTE_LOG(ERR, VHOST_DATA,
"(%"PRIu64") Frame buffer address cross "
"sub-regioin found when attaching RX frame "
"buffer address!\n",
dev->device_fh);
put_desc_to_used_list_zcp(vq, desc_idx);
continue;
}
} while (unlikely(phys_addr == 0));
rte_ring_sc_dequeue(vpool->ring, &obj);
mbuf = obj;
if (unlikely(mbuf == NULL)) {
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") in attach_rxmbuf_zcp: "
"ring_sc_dequeue fail.\n",
dev->device_fh);
put_desc_to_used_list_zcp(vq, desc_idx);
return;
}
if (unlikely(vpool->buf_size > desc->len)) {
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") in attach_rxmbuf_zcp: frame buffer "
"length(%d) of descriptor idx: %d less than room "
"size required: %d\n",
dev->device_fh, desc->len, desc_idx, vpool->buf_size);
put_desc_to_used_list_zcp(vq, desc_idx);
rte_ring_sp_enqueue(vpool->ring, obj);
return;
}
mbuf->buf_addr = (void *)(uintptr_t)(buff_addr - RTE_PKTMBUF_HEADROOM);
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->buf_physaddr = phys_addr - RTE_PKTMBUF_HEADROOM;
mbuf->data_len = desc->len;
MBUF_HEADROOM_UINT32(mbuf) = (uint32_t)desc_idx;
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") in attach_rxmbuf_zcp: res base idx:%d, "
"descriptor idx:%d\n",
dev->device_fh, res_base_idx, desc_idx);
__rte_mbuf_raw_free(mbuf);
return;
}
/*
* Detach an attched packet mbuf -
* - restore original mbuf address and length values.
* - reset pktmbuf data and data_len to their default values.
* All other fields of the given packet mbuf will be left intact.
*
* @param m
* The attached packet mbuf.
*/
static inline void pktmbuf_detach_zcp(struct rte_mbuf *m)
{
const struct rte_mempool *mp = m->pool;
void *buf = rte_mbuf_to_baddr(m);
uint32_t buf_ofs;
uint32_t buf_len = mp->elt_size - sizeof(*m);
m->buf_physaddr = rte_mempool_virt2phy(mp, m) + sizeof(*m);
m->buf_addr = buf;
m->buf_len = (uint16_t)buf_len;
buf_ofs = (RTE_PKTMBUF_HEADROOM <= m->buf_len) ?
RTE_PKTMBUF_HEADROOM : m->buf_len;
m->data_off = buf_ofs;
m->data_len = 0;
}
/*
* This function is called after packets have been transimited. It fetchs mbuf
* from vpool->pool, detached it and put into vpool->ring. It also update the
* used index and kick the guest if necessary.
*/
static inline uint32_t __attribute__((always_inline))
txmbuf_clean_zcp(struct virtio_net *dev, struct vpool *vpool)
{
struct rte_mbuf *mbuf;
struct vhost_virtqueue *vq = dev->virtqueue[VIRTIO_TXQ];
uint32_t used_idx = vq->last_used_idx & (vq->size - 1);
uint32_t index = 0;
uint32_t mbuf_count = rte_mempool_count(vpool->pool);
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") in txmbuf_clean_zcp: mbuf count in mempool before "
"clean is: %d\n",
dev->device_fh, mbuf_count);
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") in txmbuf_clean_zcp: mbuf count in ring before "
"clean is : %d\n",
dev->device_fh, rte_ring_count(vpool->ring));
for (index = 0; index < mbuf_count; index++) {
mbuf = __rte_mbuf_raw_alloc(vpool->pool);
if (likely(MBUF_EXT_MEM(mbuf)))
pktmbuf_detach_zcp(mbuf);
rte_ring_sp_enqueue(vpool->ring, mbuf);
/* Update used index buffer information. */
vq->used->ring[used_idx].id = MBUF_HEADROOM_UINT32(mbuf);
vq->used->ring[used_idx].len = 0;
used_idx = (used_idx + 1) & (vq->size - 1);
}
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") in txmbuf_clean_zcp: mbuf count in mempool after "
"clean is: %d\n",
dev->device_fh, rte_mempool_count(vpool->pool));
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") in txmbuf_clean_zcp: mbuf count in ring after "
"clean is : %d\n",
dev->device_fh, rte_ring_count(vpool->ring));
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") in txmbuf_clean_zcp: before updated "
"vq->last_used_idx:%d\n",
dev->device_fh, vq->last_used_idx);
vq->last_used_idx += mbuf_count;
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") in txmbuf_clean_zcp: after updated "
"vq->last_used_idx:%d\n",
dev->device_fh, vq->last_used_idx);
rte_compiler_barrier();
*(volatile uint16_t *)&vq->used->idx += mbuf_count;
/* Kick guest if required. */
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT))
eventfd_write(vq->callfd, (eventfd_t)1);
return 0;
}
/*
* This function is called when a virtio device is destroy.
* It fetchs mbuf from vpool->pool, and detached it, and put into vpool->ring.
*/
static void mbuf_destroy_zcp(struct vpool *vpool)
{
struct rte_mbuf *mbuf = NULL;
uint32_t index, mbuf_count = rte_mempool_count(vpool->pool);
LOG_DEBUG(VHOST_CONFIG,
"in mbuf_destroy_zcp: mbuf count in mempool before "
"mbuf_destroy_zcp is: %d\n",
mbuf_count);
LOG_DEBUG(VHOST_CONFIG,
"in mbuf_destroy_zcp: mbuf count in ring before "
"mbuf_destroy_zcp is : %d\n",
rte_ring_count(vpool->ring));
for (index = 0; index < mbuf_count; index++) {
mbuf = __rte_mbuf_raw_alloc(vpool->pool);
if (likely(mbuf != NULL)) {
if (likely(MBUF_EXT_MEM(mbuf)))
pktmbuf_detach_zcp(mbuf);
rte_ring_sp_enqueue(vpool->ring, (void *)mbuf);
}
}
LOG_DEBUG(VHOST_CONFIG,
"in mbuf_destroy_zcp: mbuf count in mempool after "
"mbuf_destroy_zcp is: %d\n",
rte_mempool_count(vpool->pool));
LOG_DEBUG(VHOST_CONFIG,
"in mbuf_destroy_zcp: mbuf count in ring after "
"mbuf_destroy_zcp is : %d\n",
rte_ring_count(vpool->ring));
}
/*
* This function update the use flag and counter.
*/
static inline uint32_t __attribute__((always_inline))
virtio_dev_rx_zcp(struct virtio_net *dev, struct rte_mbuf **pkts,
uint32_t count)
{
struct vhost_virtqueue *vq;
struct vring_desc *desc;
struct rte_mbuf *buff;
/* The virtio_hdr is initialised to 0. */
struct virtio_net_hdr_mrg_rxbuf virtio_hdr
= {{0, 0, 0, 0, 0, 0}, 0};
uint64_t buff_hdr_addr = 0;
uint32_t head[MAX_PKT_BURST], packet_len = 0;
uint32_t head_idx, packet_success = 0;
uint16_t res_cur_idx;
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") virtio_dev_rx()\n", dev->device_fh);
if (count == 0)
return 0;
vq = dev->virtqueue[VIRTIO_RXQ];
count = (count > MAX_PKT_BURST) ? MAX_PKT_BURST : count;
res_cur_idx = vq->last_used_idx;
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") Current Index %d| End Index %d\n",
dev->device_fh, res_cur_idx, res_cur_idx + count);
/* Retrieve all of the head indexes first to avoid caching issues. */
for (head_idx = 0; head_idx < count; head_idx++)
head[head_idx] = MBUF_HEADROOM_UINT32(pkts[head_idx]);
/*Prefetch descriptor index. */
rte_prefetch0(&vq->desc[head[packet_success]]);
while (packet_success != count) {
/* Get descriptor from available ring */
desc = &vq->desc[head[packet_success]];
buff = pkts[packet_success];
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") in dev_rx_zcp: update the used idx for "
"pkt[%d] descriptor idx: %d\n",
dev->device_fh, packet_success,
MBUF_HEADROOM_UINT32(buff));
PRINT_PACKET(dev,
(uintptr_t)(((uint64_t)(uintptr_t)buff->buf_addr)
+ RTE_PKTMBUF_HEADROOM),
rte_pktmbuf_data_len(buff), 0);
/* Buffer address translation for virtio header. */
buff_hdr_addr = gpa_to_vva(dev, desc->addr);
packet_len = rte_pktmbuf_data_len(buff) + vq->vhost_hlen;
/*
* If the descriptors are chained the header and data are
* placed in separate buffers.
*/
if (desc->flags & VRING_DESC_F_NEXT) {
desc->len = vq->vhost_hlen;
desc = &vq->desc[desc->next];
desc->len = rte_pktmbuf_data_len(buff);
} else {
desc->len = packet_len;
}
/* Update used ring with desc information */
vq->used->ring[res_cur_idx & (vq->size - 1)].id
= head[packet_success];
vq->used->ring[res_cur_idx & (vq->size - 1)].len
= packet_len;
res_cur_idx++;
packet_success++;
/* A header is required per buffer. */
rte_memcpy((void *)(uintptr_t)buff_hdr_addr,
(const void *)&virtio_hdr, vq->vhost_hlen);
PRINT_PACKET(dev, (uintptr_t)buff_hdr_addr, vq->vhost_hlen, 1);
if (likely(packet_success < count)) {
/* Prefetch descriptor index. */
rte_prefetch0(&vq->desc[head[packet_success]]);
}
}
rte_compiler_barrier();
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") in dev_rx_zcp: before update used idx: "
"vq.last_used_idx: %d, vq->used->idx: %d\n",
dev->device_fh, vq->last_used_idx, vq->used->idx);
*(volatile uint16_t *)&vq->used->idx += count;
vq->last_used_idx += count;
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") in dev_rx_zcp: after update used idx: "
"vq.last_used_idx: %d, vq->used->idx: %d\n",
dev->device_fh, vq->last_used_idx, vq->used->idx);
/* Kick the guest if necessary. */
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT))
eventfd_write(vq->callfd, (eventfd_t)1);
return count;
}
/*
* This function routes the TX packet to the correct interface.
* This may be a local device or the physical port.
*/
static inline void __attribute__((always_inline))
virtio_tx_route_zcp(struct virtio_net *dev, struct rte_mbuf *m,
uint32_t desc_idx, uint8_t need_copy)
{
struct mbuf_table *tx_q;
struct rte_mbuf **m_table;
void *obj = NULL;
struct rte_mbuf *mbuf;
unsigned len, ret, offset = 0;
struct vpool *vpool;
uint16_t vlan_tag = (uint16_t)vlan_tags[(uint16_t)dev->device_fh];
uint16_t vmdq_rx_q = ((struct vhost_dev *)dev->priv)->vmdq_rx_q;
/*Add packet to the port tx queue*/
tx_q = &tx_queue_zcp[vmdq_rx_q];
len = tx_q->len;
/* Allocate an mbuf and populate the structure. */
vpool = &vpool_array[MAX_QUEUES + vmdq_rx_q];
rte_ring_sc_dequeue(vpool->ring, &obj);
mbuf = obj;
if (unlikely(mbuf == NULL)) {
struct vhost_virtqueue *vq = dev->virtqueue[VIRTIO_TXQ];
RTE_LOG(ERR, VHOST_DATA,
"(%"PRIu64") Failed to allocate memory for mbuf.\n",
dev->device_fh);
put_desc_to_used_list_zcp(vq, desc_idx);
return;
}
if (vm2vm_mode == VM2VM_HARDWARE) {
/* Avoid using a vlan tag from any vm for external pkt, such as
* vlan_tags[dev->device_fh], oterwise, it conflicts when pool
* selection, MAC address determines it as an external pkt
* which should go to network, while vlan tag determine it as
* a vm2vm pkt should forward to another vm. Hardware confuse
* such a ambiguous situation, so pkt will lost.
*/
vlan_tag = external_pkt_default_vlan_tag;
if (find_local_dest(dev, m, &offset, &vlan_tag) != 0) {
MBUF_HEADROOM_UINT32(mbuf) = (uint32_t)desc_idx;
__rte_mbuf_raw_free(mbuf);
return;
}
}
mbuf->nb_segs = m->nb_segs;
mbuf->next = m->next;
mbuf->data_len = m->data_len + offset;
mbuf->pkt_len = mbuf->data_len;
if (unlikely(need_copy)) {
/* Copy the packet contents to the mbuf. */
rte_memcpy(rte_pktmbuf_mtod(mbuf, void *),
rte_pktmbuf_mtod(m, void *),
m->data_len);
} else {
mbuf->data_off = m->data_off;
mbuf->buf_physaddr = m->buf_physaddr;
mbuf->buf_addr = m->buf_addr;
}
mbuf->ol_flags |= PKT_TX_VLAN_PKT;
mbuf->vlan_tci = vlan_tag;
mbuf->l2_len = sizeof(struct ether_hdr);
mbuf->l3_len = sizeof(struct ipv4_hdr);
MBUF_HEADROOM_UINT32(mbuf) = (uint32_t)desc_idx;
tx_q->m_table[len] = mbuf;
len++;
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") in tx_route_zcp: pkt: nb_seg: %d, next:%s\n",
dev->device_fh,
mbuf->nb_segs,
(mbuf->next == NULL) ? "null" : "non-null");
if (enable_stats) {
dev_statistics[dev->device_fh].tx_total++;
dev_statistics[dev->device_fh].tx++;
}
if (unlikely(len == MAX_PKT_BURST)) {
m_table = (struct rte_mbuf **)tx_q->m_table;
ret = rte_eth_tx_burst(ports[0],
(uint16_t)tx_q->txq_id, m_table, (uint16_t) len);
/*
* Free any buffers not handled by TX and update
* the port stats.
*/
if (unlikely(ret < len)) {
do {
rte_pktmbuf_free(m_table[ret]);
} while (++ret < len);
}
len = 0;
txmbuf_clean_zcp(dev, vpool);
}
tx_q->len = len;
return;
}
/*
* This function TX all available packets in virtio TX queue for one
* virtio-net device. If it is first packet, it learns MAC address and
* setup VMDQ.
*/
static inline void __attribute__((always_inline))
virtio_dev_tx_zcp(struct virtio_net *dev)
{
struct rte_mbuf m;
struct vhost_virtqueue *vq;
struct vring_desc *desc;
uint64_t buff_addr = 0, phys_addr;
uint32_t head[MAX_PKT_BURST];
uint32_t i;
uint16_t free_entries, packet_success = 0;
uint16_t avail_idx;
uint8_t need_copy = 0;
hpa_type addr_type;
struct vhost_dev *vdev = (struct vhost_dev *)dev->priv;
vq = dev->virtqueue[VIRTIO_TXQ];
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
/* If there are no available buffers then return. */
if (vq->last_used_idx_res == avail_idx)
return;
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") virtio_dev_tx()\n", dev->device_fh);
/* Prefetch available ring to retrieve head indexes. */
rte_prefetch0(&vq->avail->ring[vq->last_used_idx_res & (vq->size - 1)]);
/* Get the number of free entries in the ring */
free_entries = (avail_idx - vq->last_used_idx_res);
/* Limit to MAX_PKT_BURST. */
free_entries
= (free_entries > MAX_PKT_BURST) ? MAX_PKT_BURST : free_entries;
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") Buffers available %d\n",
dev->device_fh, free_entries);
/* Retrieve all of the head indexes first to avoid caching issues. */
for (i = 0; i < free_entries; i++)
head[i]
= vq->avail->ring[(vq->last_used_idx_res + i)
& (vq->size - 1)];
vq->last_used_idx_res += free_entries;
/* Prefetch descriptor index. */
rte_prefetch0(&vq->desc[head[packet_success]]);
rte_prefetch0(&vq->used->ring[vq->last_used_idx & (vq->size - 1)]);
while (packet_success < free_entries) {
desc = &vq->desc[head[packet_success]];
/* Discard first buffer as it is the virtio header */
desc = &vq->desc[desc->next];
/* Buffer address translation. */
buff_addr = gpa_to_vva(dev, desc->addr);
/* Need check extra VLAN_HLEN size for inserting VLAN tag */
phys_addr = gpa_to_hpa(vdev, desc->addr, desc->len + VLAN_HLEN,
&addr_type);
if (likely(packet_success < (free_entries - 1)))
/* Prefetch descriptor index. */
rte_prefetch0(&vq->desc[head[packet_success + 1]]);
if (unlikely(addr_type == PHYS_ADDR_INVALID)) {
RTE_LOG(ERR, VHOST_DATA,
"(%"PRIu64") Invalid frame buffer address found"
"when TX packets!\n",
dev->device_fh);
packet_success++;
continue;
}
/* Prefetch buffer address. */
rte_prefetch0((void *)(uintptr_t)buff_addr);
/*
* Setup dummy mbuf. This is copied to a real mbuf if
* transmitted out the physical port.
*/
m.data_len = desc->len;
m.nb_segs = 1;
m.next = NULL;
m.data_off = 0;
m.buf_addr = (void *)(uintptr_t)buff_addr;
m.buf_physaddr = phys_addr;
/*
* Check if the frame buffer address from guest crosses
* sub-region or not.
*/
if (unlikely(addr_type == PHYS_ADDR_CROSS_SUBREG)) {
RTE_LOG(ERR, VHOST_DATA,
"(%"PRIu64") Frame buffer address cross "
"sub-regioin found when attaching TX frame "
"buffer address!\n",
dev->device_fh);
need_copy = 1;
} else
need_copy = 0;
PRINT_PACKET(dev, (uintptr_t)buff_addr, desc->len, 0);
/*
* If this is the first received packet we need to learn
* the MAC and setup VMDQ
*/
if (unlikely(vdev->ready == DEVICE_MAC_LEARNING)) {
if (vdev->remove || (link_vmdq(vdev, &m) == -1)) {
/*
* Discard frame if device is scheduled for
* removal or a duplicate MAC address is found.
*/
packet_success += free_entries;
vq->last_used_idx += packet_success;
break;
}
}
virtio_tx_route_zcp(dev, &m, head[packet_success], need_copy);
packet_success++;
}
}
/*
* This function is called by each data core. It handles all RX/TX registered
* with the core. For TX the specific lcore linked list is used. For RX, MAC
* addresses are compared with all devices in the main linked list.
*/
static int
switch_worker_zcp(__attribute__((unused)) void *arg)
{
struct virtio_net *dev = NULL;
struct vhost_dev *vdev = NULL;
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct virtio_net_data_ll *dev_ll;
struct mbuf_table *tx_q;
volatile struct lcore_ll_info *lcore_ll;
const uint64_t drain_tsc
= (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S
* BURST_TX_DRAIN_US;
uint64_t prev_tsc, diff_tsc, cur_tsc, ret_count = 0;
unsigned ret;
const uint16_t lcore_id = rte_lcore_id();
uint16_t count_in_ring, rx_count = 0;
RTE_LOG(INFO, VHOST_DATA, "Procesing on Core %u started\n", lcore_id);
lcore_ll = lcore_info[lcore_id].lcore_ll;
prev_tsc = 0;
while (1) {
cur_tsc = rte_rdtsc();
/* TX burst queue drain */
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
/*
* Get mbuf from vpool.pool and detach mbuf and
* put back into vpool.ring.
*/
dev_ll = lcore_ll->ll_root_used;
while ((dev_ll != NULL) && (dev_ll->vdev != NULL)) {
/* Get virtio device ID */
vdev = dev_ll->vdev;
dev = vdev->dev;
if (likely(!vdev->remove)) {
tx_q = &tx_queue_zcp[(uint16_t)vdev->vmdq_rx_q];
if (tx_q->len) {
LOG_DEBUG(VHOST_DATA,
"TX queue drained after timeout"
" with burst size %u\n",
tx_q->len);
/*
* Tx any packets in the queue
*/
ret = rte_eth_tx_burst(
ports[0],
(uint16_t)tx_q->txq_id,
(struct rte_mbuf **)
tx_q->m_table,
(uint16_t)tx_q->len);
if (unlikely(ret < tx_q->len)) {
do {
rte_pktmbuf_free(
tx_q->m_table[ret]);
} while (++ret < tx_q->len);
}
tx_q->len = 0;
txmbuf_clean_zcp(dev,
&vpool_array[MAX_QUEUES+vdev->vmdq_rx_q]);
}
}
dev_ll = dev_ll->next;
}
prev_tsc = cur_tsc;
}
rte_prefetch0(lcore_ll->ll_root_used);
/*
* Inform the configuration core that we have exited the linked
* list and that no devices are in use if requested.
*/
if (lcore_ll->dev_removal_flag == REQUEST_DEV_REMOVAL)
lcore_ll->dev_removal_flag = ACK_DEV_REMOVAL;
/* Process devices */
dev_ll = lcore_ll->ll_root_used;
while ((dev_ll != NULL) && (dev_ll->vdev != NULL)) {
vdev = dev_ll->vdev;
dev = vdev->dev;
if (unlikely(vdev->remove)) {
dev_ll = dev_ll->next;
unlink_vmdq(vdev);
vdev->ready = DEVICE_SAFE_REMOVE;
continue;
}
if (likely(vdev->ready == DEVICE_RX)) {
uint32_t index = vdev->vmdq_rx_q;
uint16_t i;
count_in_ring
= rte_ring_count(vpool_array[index].ring);
uint16_t free_entries
= (uint16_t)get_available_ring_num_zcp(dev);
/*
* Attach all mbufs in vpool.ring and put back
* into vpool.pool.
*/
for (i = 0;
i < RTE_MIN(free_entries,
RTE_MIN(count_in_ring, MAX_PKT_BURST));
i++)
attach_rxmbuf_zcp(dev);
/* Handle guest RX */
rx_count = rte_eth_rx_burst(ports[0],
vdev->vmdq_rx_q, pkts_burst,
MAX_PKT_BURST);
if (rx_count) {
ret_count = virtio_dev_rx_zcp(dev,
pkts_burst, rx_count);
if (enable_stats) {
dev_statistics[dev->device_fh].rx_total
+= rx_count;
dev_statistics[dev->device_fh].rx
+= ret_count;
}
while (likely(rx_count)) {
rx_count--;
pktmbuf_detach_zcp(
pkts_burst[rx_count]);
rte_ring_sp_enqueue(
vpool_array[index].ring,
(void *)pkts_burst[rx_count]);
}
}
}
if (likely(!vdev->remove))
/* Handle guest TX */
virtio_dev_tx_zcp(dev);
/* Move to the next device in the list */
dev_ll = dev_ll->next;
}
}
return 0;
}
/*
* Add an entry to a used linked list. A free entry must first be found
* in the free linked list using get_data_ll_free_entry();
*/
static void
add_data_ll_entry(struct virtio_net_data_ll **ll_root_addr,
struct virtio_net_data_ll *ll_dev)
{
struct virtio_net_data_ll *ll = *ll_root_addr;
/* Set next as NULL and use a compiler barrier to avoid reordering. */
ll_dev->next = NULL;
rte_compiler_barrier();
/* If ll == NULL then this is the first device. */
if (ll) {
/* Increment to the tail of the linked list. */
while ((ll->next != NULL) )
ll = ll->next;
ll->next = ll_dev;
} else {
*ll_root_addr = ll_dev;
}
}
/*
* Remove an entry from a used linked list. The entry must then be added to
* the free linked list using put_data_ll_free_entry().
*/
static void
rm_data_ll_entry(struct virtio_net_data_ll **ll_root_addr,
struct virtio_net_data_ll *ll_dev,
struct virtio_net_data_ll *ll_dev_last)
{
struct virtio_net_data_ll *ll = *ll_root_addr;
if (unlikely((ll == NULL) || (ll_dev == NULL)))
return;
if (ll_dev == ll)
*ll_root_addr = ll_dev->next;
else
if (likely(ll_dev_last != NULL))
ll_dev_last->next = ll_dev->next;
else
RTE_LOG(ERR, VHOST_CONFIG, "Remove entry form ll failed.\n");
}
/*
* Find and return an entry from the free linked list.
*/
static struct virtio_net_data_ll *
get_data_ll_free_entry(struct virtio_net_data_ll **ll_root_addr)
{
struct virtio_net_data_ll *ll_free = *ll_root_addr;
struct virtio_net_data_ll *ll_dev;
if (ll_free == NULL)
return NULL;
ll_dev = ll_free;
*ll_root_addr = ll_free->next;
return ll_dev;
}
/*
* Place an entry back on to the free linked list.
*/
static void
put_data_ll_free_entry(struct virtio_net_data_ll **ll_root_addr,
struct virtio_net_data_ll *ll_dev)
{
struct virtio_net_data_ll *ll_free = *ll_root_addr;
if (ll_dev == NULL)
return;
ll_dev->next = ll_free;
*ll_root_addr = ll_dev;
}
/*
* Creates a linked list of a given size.
*/
static struct virtio_net_data_ll *
alloc_data_ll(uint32_t size)
{
struct virtio_net_data_ll *ll_new;
uint32_t i;
/* Malloc and then chain the linked list. */
ll_new = malloc(size * sizeof(struct virtio_net_data_ll));
if (ll_new == NULL) {
RTE_LOG(ERR, VHOST_CONFIG, "Failed to allocate memory for ll_new.\n");
return NULL;
}
for (i = 0; i < size - 1; i++) {
ll_new[i].vdev = NULL;
ll_new[i].next = &ll_new[i+1];
}
ll_new[i].next = NULL;
return ll_new;
}
/*
* Create the main linked list along with each individual cores linked list. A used and a free list
* are created to manage entries.
*/
static int
init_data_ll (void)
{
int lcore;
RTE_LCORE_FOREACH_SLAVE(lcore) {
lcore_info[lcore].lcore_ll = malloc(sizeof(struct lcore_ll_info));
if (lcore_info[lcore].lcore_ll == NULL) {
RTE_LOG(ERR, VHOST_CONFIG, "Failed to allocate memory for lcore_ll.\n");
return -1;
}
lcore_info[lcore].lcore_ll->device_num = 0;
lcore_info[lcore].lcore_ll->dev_removal_flag = ACK_DEV_REMOVAL;
lcore_info[lcore].lcore_ll->ll_root_used = NULL;
if (num_devices % num_switching_cores)
lcore_info[lcore].lcore_ll->ll_root_free = alloc_data_ll((num_devices / num_switching_cores) + 1);
else
lcore_info[lcore].lcore_ll->ll_root_free = alloc_data_ll(num_devices / num_switching_cores);
}
/* Allocate devices up to a maximum of MAX_DEVICES. */
ll_root_free = alloc_data_ll(MIN((num_devices), MAX_DEVICES));
return 0;
}
/*
* Remove a device from the specific data core linked list and from the main linked list. Synchonization
* occurs through the use of the lcore dev_removal_flag. Device is made volatile here to avoid re-ordering
* of dev->remove=1 which can cause an infinite loop in the rte_pause loop.
*/
static void
destroy_device (volatile struct virtio_net *dev)
{
struct virtio_net_data_ll *ll_lcore_dev_cur;
struct virtio_net_data_ll *ll_main_dev_cur;
struct virtio_net_data_ll *ll_lcore_dev_last = NULL;
struct virtio_net_data_ll *ll_main_dev_last = NULL;
struct vhost_dev *vdev;
int lcore;
dev->flags &= ~VIRTIO_DEV_RUNNING;
vdev = (struct vhost_dev *)dev->priv;
/*set the remove flag. */
vdev->remove = 1;
while(vdev->ready != DEVICE_SAFE_REMOVE) {
rte_pause();
}
/* Search for entry to be removed from lcore ll */
ll_lcore_dev_cur = lcore_info[vdev->coreid].lcore_ll->ll_root_used;
while (ll_lcore_dev_cur != NULL) {
if (ll_lcore_dev_cur->vdev == vdev) {
break;
} else {
ll_lcore_dev_last = ll_lcore_dev_cur;
ll_lcore_dev_cur = ll_lcore_dev_cur->next;
}
}
if (ll_lcore_dev_cur == NULL) {
RTE_LOG(ERR, VHOST_CONFIG,
"(%"PRIu64") Failed to find the dev to be destroy.\n",
dev->device_fh);
return;
}
/* Search for entry to be removed from main ll */
ll_main_dev_cur = ll_root_used;
ll_main_dev_last = NULL;
while (ll_main_dev_cur != NULL) {
if (ll_main_dev_cur->vdev == vdev) {
break;
} else {
ll_main_dev_last = ll_main_dev_cur;
ll_main_dev_cur = ll_main_dev_cur->next;
}
}
/* Remove entries from the lcore and main ll. */
rm_data_ll_entry(&lcore_info[vdev->coreid].lcore_ll->ll_root_used, ll_lcore_dev_cur, ll_lcore_dev_last);
rm_data_ll_entry(&ll_root_used, ll_main_dev_cur, ll_main_dev_last);
/* Set the dev_removal_flag on each lcore. */
RTE_LCORE_FOREACH_SLAVE(lcore) {
lcore_info[lcore].lcore_ll->dev_removal_flag = REQUEST_DEV_REMOVAL;
}
/*
* Once each core has set the dev_removal_flag to ACK_DEV_REMOVAL we can be sure that
* they can no longer access the device removed from the linked lists and that the devices
* are no longer in use.
*/
RTE_LCORE_FOREACH_SLAVE(lcore) {
while (lcore_info[lcore].lcore_ll->dev_removal_flag != ACK_DEV_REMOVAL) {
rte_pause();
}
}
/* Add the entries back to the lcore and main free ll.*/
put_data_ll_free_entry(&lcore_info[vdev->coreid].lcore_ll->ll_root_free, ll_lcore_dev_cur);
put_data_ll_free_entry(&ll_root_free, ll_main_dev_cur);
/* Decrement number of device on the lcore. */
lcore_info[vdev->coreid].lcore_ll->device_num--;
RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") Device has been removed from data core\n", dev->device_fh);
if (zero_copy) {
struct vpool *vpool = &vpool_array[vdev->vmdq_rx_q];
/* Stop the RX queue. */
if (rte_eth_dev_rx_queue_stop(ports[0], vdev->vmdq_rx_q) != 0) {
LOG_DEBUG(VHOST_CONFIG,
"(%"PRIu64") In destroy_device: Failed to stop "
"rx queue:%d\n",
dev->device_fh,
vdev->vmdq_rx_q);
}
LOG_DEBUG(VHOST_CONFIG,
"(%"PRIu64") in destroy_device: Start put mbuf in "
"mempool back to ring for RX queue: %d\n",
dev->device_fh, vdev->vmdq_rx_q);
mbuf_destroy_zcp(vpool);
/* Stop the TX queue. */
if (rte_eth_dev_tx_queue_stop(ports[0], vdev->vmdq_rx_q) != 0) {
LOG_DEBUG(VHOST_CONFIG,
"(%"PRIu64") In destroy_device: Failed to "
"stop tx queue:%d\n",
dev->device_fh, vdev->vmdq_rx_q);
}
vpool = &vpool_array[vdev->vmdq_rx_q + MAX_QUEUES];
LOG_DEBUG(VHOST_CONFIG,
"(%"PRIu64") destroy_device: Start put mbuf in mempool "
"back to ring for TX queue: %d, dev:(%"PRIu64")\n",
dev->device_fh, (vdev->vmdq_rx_q + MAX_QUEUES),
dev->device_fh);
mbuf_destroy_zcp(vpool);
rte_free(vdev->regions_hpa);
}
rte_free(vdev);
}
/*
* Calculate the region count of physical continous regions for one particular
* region of whose vhost virtual address is continous. The particular region
* start from vva_start, with size of 'size' in argument.
*/
static uint32_t
check_hpa_regions(uint64_t vva_start, uint64_t size)
{
uint32_t i, nregions = 0, page_size = getpagesize();
uint64_t cur_phys_addr = 0, next_phys_addr = 0;
if (vva_start % page_size) {
LOG_DEBUG(VHOST_CONFIG,
"in check_countinous: vva start(%p) mod page_size(%d) "
"has remainder\n",
(void *)(uintptr_t)vva_start, page_size);
return 0;
}
if (size % page_size) {
LOG_DEBUG(VHOST_CONFIG,
"in check_countinous: "
"size((%"PRIu64")) mod page_size(%d) has remainder\n",
size, page_size);
return 0;
}
for (i = 0; i < size - page_size; i = i + page_size) {
cur_phys_addr
= rte_mem_virt2phy((void *)(uintptr_t)(vva_start + i));
next_phys_addr = rte_mem_virt2phy(
(void *)(uintptr_t)(vva_start + i + page_size));
if ((cur_phys_addr + page_size) != next_phys_addr) {
++nregions;
LOG_DEBUG(VHOST_CONFIG,
"in check_continuous: hva addr:(%p) is not "
"continuous with hva addr:(%p), diff:%d\n",
(void *)(uintptr_t)(vva_start + (uint64_t)i),
(void *)(uintptr_t)(vva_start + (uint64_t)i
+ page_size), page_size);
LOG_DEBUG(VHOST_CONFIG,
"in check_continuous: hpa addr:(%p) is not "
"continuous with hpa addr:(%p), "
"diff:(%"PRIu64")\n",
(void *)(uintptr_t)cur_phys_addr,
(void *)(uintptr_t)next_phys_addr,
(next_phys_addr-cur_phys_addr));
}
}
return nregions;
}
/*
* Divide each region whose vhost virtual address is continous into a few
* sub-regions, make sure the physical address within each sub-region are
* continous. And fill offset(to GPA) and size etc. information of each
* sub-region into regions_hpa.
*/
static uint32_t
fill_hpa_memory_regions(struct virtio_memory_regions_hpa *mem_region_hpa, struct virtio_memory *virtio_memory)
{
uint32_t regionidx, regionidx_hpa = 0, i, k, page_size = getpagesize();
uint64_t cur_phys_addr = 0, next_phys_addr = 0, vva_start;
if (mem_region_hpa == NULL)
return 0;
for (regionidx = 0; regionidx < virtio_memory->nregions; regionidx++) {
vva_start = virtio_memory->regions[regionidx].guest_phys_address +
virtio_memory->regions[regionidx].address_offset;
mem_region_hpa[regionidx_hpa].guest_phys_address
= virtio_memory->regions[regionidx].guest_phys_address;
mem_region_hpa[regionidx_hpa].host_phys_addr_offset =
rte_mem_virt2phy((void *)(uintptr_t)(vva_start)) -
mem_region_hpa[regionidx_hpa].guest_phys_address;
LOG_DEBUG(VHOST_CONFIG,
"in fill_hpa_regions: guest phys addr start[%d]:(%p)\n",
regionidx_hpa,
(void *)(uintptr_t)
(mem_region_hpa[regionidx_hpa].guest_phys_address));
LOG_DEBUG(VHOST_CONFIG,
"in fill_hpa_regions: host phys addr start[%d]:(%p)\n",
regionidx_hpa,
(void *)(uintptr_t)
(mem_region_hpa[regionidx_hpa].host_phys_addr_offset));
for (i = 0, k = 0;
i < virtio_memory->regions[regionidx].memory_size -
page_size;
i += page_size) {
cur_phys_addr = rte_mem_virt2phy(
(void *)(uintptr_t)(vva_start + i));
next_phys_addr = rte_mem_virt2phy(
(void *)(uintptr_t)(vva_start +
i + page_size));
if ((cur_phys_addr + page_size) != next_phys_addr) {
mem_region_hpa[regionidx_hpa].guest_phys_address_end =
mem_region_hpa[regionidx_hpa].guest_phys_address +
k + page_size;
mem_region_hpa[regionidx_hpa].memory_size
= k + page_size;
LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: guest "
"phys addr end [%d]:(%p)\n",
regionidx_hpa,
(void *)(uintptr_t)
(mem_region_hpa[regionidx_hpa].guest_phys_address_end));
LOG_DEBUG(VHOST_CONFIG,
"in fill_hpa_regions: guest phys addr "
"size [%d]:(%p)\n",
regionidx_hpa,
(void *)(uintptr_t)
(mem_region_hpa[regionidx_hpa].memory_size));
mem_region_hpa[regionidx_hpa + 1].guest_phys_address
= mem_region_hpa[regionidx_hpa].guest_phys_address_end;
++regionidx_hpa;
mem_region_hpa[regionidx_hpa].host_phys_addr_offset =
next_phys_addr -
mem_region_hpa[regionidx_hpa].guest_phys_address;
LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: guest"
" phys addr start[%d]:(%p)\n",
regionidx_hpa,
(void *)(uintptr_t)
(mem_region_hpa[regionidx_hpa].guest_phys_address));
LOG_DEBUG(VHOST_CONFIG,
"in fill_hpa_regions: host phys addr "
"start[%d]:(%p)\n",
regionidx_hpa,
(void *)(uintptr_t)
(mem_region_hpa[regionidx_hpa].host_phys_addr_offset));
k = 0;
} else {
k += page_size;
}
}
mem_region_hpa[regionidx_hpa].guest_phys_address_end
= mem_region_hpa[regionidx_hpa].guest_phys_address
+ k + page_size;
mem_region_hpa[regionidx_hpa].memory_size = k + page_size;
LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: guest phys addr end "
"[%d]:(%p)\n", regionidx_hpa,
(void *)(uintptr_t)
(mem_region_hpa[regionidx_hpa].guest_phys_address_end));
LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: guest phys addr size "
"[%d]:(%p)\n", regionidx_hpa,
(void *)(uintptr_t)
(mem_region_hpa[regionidx_hpa].memory_size));
++regionidx_hpa;
}
return regionidx_hpa;
}
/*
* A new device is added to a data core. First the device is added to the main linked list
* and the allocated to a specific data core.
*/
static int
new_device (struct virtio_net *dev)
{
struct virtio_net_data_ll *ll_dev;
int lcore, core_add = 0;
uint32_t device_num_min = num_devices;
struct vhost_dev *vdev;
uint32_t regionidx;
vdev = rte_zmalloc("vhost device", sizeof(*vdev), RTE_CACHE_LINE_SIZE);
if (vdev == NULL) {
RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") Couldn't allocate memory for vhost dev\n",
dev->device_fh);
return -1;
}
vdev->dev = dev;
dev->priv = vdev;
if (zero_copy) {
vdev->nregions_hpa = dev->mem->nregions;
for (regionidx = 0; regionidx < dev->mem->nregions; regionidx++) {
vdev->nregions_hpa
+= check_hpa_regions(
dev->mem->regions[regionidx].guest_phys_address
+ dev->mem->regions[regionidx].address_offset,
dev->mem->regions[regionidx].memory_size);
}
vdev->regions_hpa = rte_calloc("vhost hpa region",
vdev->nregions_hpa,
sizeof(struct virtio_memory_regions_hpa),
RTE_CACHE_LINE_SIZE);
if (vdev->regions_hpa == NULL) {
RTE_LOG(ERR, VHOST_CONFIG, "Cannot allocate memory for hpa region\n");
rte_free(vdev);
return -1;
}
if (fill_hpa_memory_regions(
vdev->regions_hpa, dev->mem
) != vdev->nregions_hpa) {
RTE_LOG(ERR, VHOST_CONFIG,
"hpa memory regions number mismatch: "
"[%d]\n", vdev->nregions_hpa);
rte_free(vdev->regions_hpa);
rte_free(vdev);
return -1;
}
}
/* Add device to main ll */
ll_dev = get_data_ll_free_entry(&ll_root_free);
if (ll_dev == NULL) {
RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") No free entry found in linked list. Device limit "
"of %d devices per core has been reached\n",
dev->device_fh, num_devices);
if (vdev->regions_hpa)
rte_free(vdev->regions_hpa);
rte_free(vdev);
return -1;
}
ll_dev->vdev = vdev;
add_data_ll_entry(&ll_root_used, ll_dev);
vdev->vmdq_rx_q
= dev->device_fh * queues_per_pool + vmdq_queue_base;
if (zero_copy) {
uint32_t index = vdev->vmdq_rx_q;
uint32_t count_in_ring, i;
struct mbuf_table *tx_q;
count_in_ring = rte_ring_count(vpool_array[index].ring);
LOG_DEBUG(VHOST_CONFIG,
"(%"PRIu64") in new_device: mbuf count in mempool "
"before attach is: %d\n",
dev->device_fh,
rte_mempool_count(vpool_array[index].pool));
LOG_DEBUG(VHOST_CONFIG,
"(%"PRIu64") in new_device: mbuf count in ring "
"before attach is : %d\n",
dev->device_fh, count_in_ring);
/*
* Attach all mbufs in vpool.ring and put back intovpool.pool.
*/
for (i = 0; i < count_in_ring; i++)
attach_rxmbuf_zcp(dev);
LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") in new_device: mbuf count in "
"mempool after attach is: %d\n",
dev->device_fh,
rte_mempool_count(vpool_array[index].pool));
LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") in new_device: mbuf count in "
"ring after attach is : %d\n",
dev->device_fh,
rte_ring_count(vpool_array[index].ring));
tx_q = &tx_queue_zcp[(uint16_t)vdev->vmdq_rx_q];
tx_q->txq_id = vdev->vmdq_rx_q;
if (rte_eth_dev_tx_queue_start(ports[0], vdev->vmdq_rx_q) != 0) {
struct vpool *vpool = &vpool_array[vdev->vmdq_rx_q];
LOG_DEBUG(VHOST_CONFIG,
"(%"PRIu64") In new_device: Failed to start "
"tx queue:%d\n",
dev->device_fh, vdev->vmdq_rx_q);
mbuf_destroy_zcp(vpool);
rte_free(vdev->regions_hpa);
rte_free(vdev);
return -1;
}
if (rte_eth_dev_rx_queue_start(ports[0], vdev->vmdq_rx_q) != 0) {
struct vpool *vpool = &vpool_array[vdev->vmdq_rx_q];
LOG_DEBUG(VHOST_CONFIG,
"(%"PRIu64") In new_device: Failed to start "
"rx queue:%d\n",
dev->device_fh, vdev->vmdq_rx_q);
/* Stop the TX queue. */
if (rte_eth_dev_tx_queue_stop(ports[0],
vdev->vmdq_rx_q) != 0) {
LOG_DEBUG(VHOST_CONFIG,
"(%"PRIu64") In new_device: Failed to "
"stop tx queue:%d\n",
dev->device_fh, vdev->vmdq_rx_q);
}
mbuf_destroy_zcp(vpool);
rte_free(vdev->regions_hpa);
rte_free(vdev);
return -1;
}
}
/*reset ready flag*/
vdev->ready = DEVICE_MAC_LEARNING;
vdev->remove = 0;
/* Find a suitable lcore to add the device. */
RTE_LCORE_FOREACH_SLAVE(lcore) {
if (lcore_info[lcore].lcore_ll->device_num < device_num_min) {
device_num_min = lcore_info[lcore].lcore_ll->device_num;
core_add = lcore;
}
}
/* Add device to lcore ll */
ll_dev = get_data_ll_free_entry(&lcore_info[core_add].lcore_ll->ll_root_free);
if (ll_dev == NULL) {
RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") Failed to add device to data core\n", dev->device_fh);
vdev->ready = DEVICE_SAFE_REMOVE;
destroy_device(dev);
rte_free(vdev->regions_hpa);
rte_free(vdev);
return -1;
}
ll_dev->vdev = vdev;
vdev->coreid = core_add;
add_data_ll_entry(&lcore_info[vdev->coreid].lcore_ll->ll_root_used, ll_dev);
/* Initialize device stats */
memset(&dev_statistics[dev->device_fh], 0, sizeof(struct device_statistics));
/* Disable notifications. */
rte_vhost_enable_guest_notification(dev, VIRTIO_RXQ, 0);
rte_vhost_enable_guest_notification(dev, VIRTIO_TXQ, 0);
lcore_info[vdev->coreid].lcore_ll->device_num++;
dev->flags |= VIRTIO_DEV_RUNNING;
RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") Device has been added to data core %d\n", dev->device_fh, vdev->coreid);
return 0;
}
/*
* These callback allow devices to be added to the data core when configuration
* has been fully complete.
*/
static const struct virtio_net_device_ops virtio_net_device_ops =
{
.new_device = new_device,
.destroy_device = destroy_device,
};
/*
* This is a thread will wake up after a period to print stats if the user has
* enabled them.
*/
static void
print_stats(void)
{
struct virtio_net_data_ll *dev_ll;
uint64_t tx_dropped, rx_dropped;
uint64_t tx, tx_total, rx, rx_total;
uint32_t device_fh;
const char clr[] = { 27, '[', '2', 'J', '\0' };
const char top_left[] = { 27, '[', '1', ';', '1', 'H','\0' };
while(1) {
sleep(enable_stats);
/* Clear screen and move to top left */
printf("%s%s", clr, top_left);
printf("\nDevice statistics ====================================");
dev_ll = ll_root_used;
while (dev_ll != NULL) {
device_fh = (uint32_t)dev_ll->vdev->dev->device_fh;
tx_total = dev_statistics[device_fh].tx_total;
tx = dev_statistics[device_fh].tx;
tx_dropped = tx_total - tx;
if (zero_copy == 0) {
rx_total = rte_atomic64_read(
&dev_statistics[device_fh].rx_total_atomic);
rx = rte_atomic64_read(
&dev_statistics[device_fh].rx_atomic);
} else {
rx_total = dev_statistics[device_fh].rx_total;
rx = dev_statistics[device_fh].rx;
}
rx_dropped = rx_total - rx;
printf("\nStatistics for device %"PRIu32" ------------------------------"
"\nTX total: %"PRIu64""
"\nTX dropped: %"PRIu64""
"\nTX successful: %"PRIu64""
"\nRX total: %"PRIu64""
"\nRX dropped: %"PRIu64""
"\nRX successful: %"PRIu64"",
device_fh,
tx_total,
tx_dropped,
tx,
rx_total,
rx_dropped,
rx);
dev_ll = dev_ll->next;
}
printf("\n======================================================\n");
}
}
static void
setup_mempool_tbl(int socket, uint32_t index, char *pool_name,
char *ring_name, uint32_t nb_mbuf)
{
vpool_array[index].pool = rte_pktmbuf_pool_create(pool_name, nb_mbuf,
MBUF_CACHE_SIZE_ZCP, 0, MBUF_DATA_SIZE_ZCP, socket);
if (vpool_array[index].pool != NULL) {
vpool_array[index].ring
= rte_ring_create(ring_name,
rte_align32pow2(nb_mbuf + 1),
socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
if (likely(vpool_array[index].ring != NULL)) {
LOG_DEBUG(VHOST_CONFIG,
"in setup_mempool_tbl: mbuf count in "
"mempool is: %d\n",
rte_mempool_count(vpool_array[index].pool));
LOG_DEBUG(VHOST_CONFIG,
"in setup_mempool_tbl: mbuf count in "
"ring is: %d\n",
rte_ring_count(vpool_array[index].ring));
} else {
rte_exit(EXIT_FAILURE, "ring_create(%s) failed",
ring_name);
}
/* Need consider head room. */
vpool_array[index].buf_size = VIRTIO_DESCRIPTOR_LEN_ZCP;
} else {
rte_exit(EXIT_FAILURE, "mempool_create(%s) failed", pool_name);
}
}
/* When we receive a INT signal, unregister vhost driver */
static void
sigint_handler(__rte_unused int signum)
{
/* Unregister vhost driver. */
int ret = rte_vhost_driver_unregister((char *)&dev_basename);
if (ret != 0)
rte_exit(EXIT_FAILURE, "vhost driver unregister failure.\n");
exit(0);
}
/*
* Main function, does initialisation and calls the per-lcore functions. The CUSE
* device is also registered here to handle the IOCTLs.
*/
int
main(int argc, char *argv[])
{
struct rte_mempool *mbuf_pool = NULL;
unsigned lcore_id, core_id = 0;
unsigned nb_ports, valid_num_ports;
int ret;
uint8_t portid;
uint16_t queue_id;
static pthread_t tid;
char thread_name[RTE_MAX_THREAD_NAME_LEN];
signal(SIGINT, sigint_handler);
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
argc -= ret;
argv += ret;
/* parse app arguments */
ret = us_vhost_parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid argument\n");
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id ++)
if (rte_lcore_is_enabled(lcore_id))
lcore_ids[core_id ++] = lcore_id;
if (rte_lcore_count() > RTE_MAX_LCORE)
rte_exit(EXIT_FAILURE,"Not enough cores\n");
/*set the number of swithcing cores available*/
num_switching_cores = rte_lcore_count()-1;
/* Get the number of physical ports. */
nb_ports = rte_eth_dev_count();
if (nb_ports > RTE_MAX_ETHPORTS)
nb_ports = RTE_MAX_ETHPORTS;
/*
* Update the global var NUM_PORTS and global array PORTS
* and get value of var VALID_NUM_PORTS according to system ports number
*/
valid_num_ports = check_ports_num(nb_ports);
if ((valid_num_ports == 0) || (valid_num_ports > MAX_SUP_PORTS)) {
RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u,"
"but only %u port can be enabled\n",num_ports, MAX_SUP_PORTS);
return -1;
}
if (zero_copy == 0) {
/* Create the mbuf pool. */
mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL",
NUM_MBUFS_PER_PORT * valid_num_ports, MBUF_CACHE_SIZE,
0, MBUF_DATA_SIZE, rte_socket_id());
if (mbuf_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
for (queue_id = 0; queue_id < MAX_QUEUES + 1; queue_id++)
vpool_array[queue_id].pool = mbuf_pool;
if (vm2vm_mode == VM2VM_HARDWARE) {
/* Enable VT loop back to let L2 switch to do it. */
vmdq_conf_default.rx_adv_conf.vmdq_rx_conf.enable_loop_back = 1;
LOG_DEBUG(VHOST_CONFIG,
"Enable loop back for L2 switch in vmdq.\n");
}
} else {
uint32_t nb_mbuf;
char pool_name[RTE_MEMPOOL_NAMESIZE];
char ring_name[RTE_MEMPOOL_NAMESIZE];
nb_mbuf = num_rx_descriptor
+ num_switching_cores * MBUF_CACHE_SIZE_ZCP
+ num_switching_cores * MAX_PKT_BURST;
for (queue_id = 0; queue_id < MAX_QUEUES; queue_id++) {
snprintf(pool_name, sizeof(pool_name),
"rxmbuf_pool_%u", queue_id);
snprintf(ring_name, sizeof(ring_name),
"rxmbuf_ring_%u", queue_id);
setup_mempool_tbl(rte_socket_id(), queue_id,
pool_name, ring_name, nb_mbuf);
}
nb_mbuf = num_tx_descriptor
+ num_switching_cores * MBUF_CACHE_SIZE_ZCP
+ num_switching_cores * MAX_PKT_BURST;
for (queue_id = 0; queue_id < MAX_QUEUES; queue_id++) {
snprintf(pool_name, sizeof(pool_name),
"txmbuf_pool_%u", queue_id);
snprintf(ring_name, sizeof(ring_name),
"txmbuf_ring_%u", queue_id);
setup_mempool_tbl(rte_socket_id(),
(queue_id + MAX_QUEUES),
pool_name, ring_name, nb_mbuf);
}
if (vm2vm_mode == VM2VM_HARDWARE) {
/* Enable VT loop back to let L2 switch to do it. */
vmdq_conf_default.rx_adv_conf.vmdq_rx_conf.enable_loop_back = 1;
LOG_DEBUG(VHOST_CONFIG,
"Enable loop back for L2 switch in vmdq.\n");
}
}
/* Set log level. */
rte_set_log_level(LOG_LEVEL);
/* initialize all ports */
for (portid = 0; portid < nb_ports; portid++) {
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << portid)) == 0) {
RTE_LOG(INFO, VHOST_PORT,
"Skipping disabled port %d\n", portid);
continue;
}
if (port_init(portid) != 0)
rte_exit(EXIT_FAILURE,
"Cannot initialize network ports\n");
}
/* Initialise all linked lists. */
if (init_data_ll() == -1)
rte_exit(EXIT_FAILURE, "Failed to initialize linked list\n");
/* Initialize device stats */
memset(&dev_statistics, 0, sizeof(dev_statistics));
/* Enable stats if the user option is set. */
if (enable_stats) {
ret = pthread_create(&tid, NULL, (void *)print_stats, NULL);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Cannot create print-stats thread\n");
/* Set thread_name for aid in debugging. */
snprintf(thread_name, RTE_MAX_THREAD_NAME_LEN, "print-stats");
ret = rte_thread_setname(tid, thread_name);
if (ret != 0)
RTE_LOG(ERR, VHOST_CONFIG,
"Cannot set print-stats name\n");
}
/* Launch all data cores. */
if (zero_copy == 0) {
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
rte_eal_remote_launch(switch_worker,
mbuf_pool, lcore_id);
}
} else {
uint32_t count_in_mempool, index, i;
for (index = 0; index < 2*MAX_QUEUES; index++) {
/* For all RX and TX queues. */
count_in_mempool
= rte_mempool_count(vpool_array[index].pool);
/*
* Transfer all un-attached mbufs from vpool.pool
* to vpoo.ring.
*/
for (i = 0; i < count_in_mempool; i++) {
struct rte_mbuf *mbuf
= __rte_mbuf_raw_alloc(
vpool_array[index].pool);
rte_ring_sp_enqueue(vpool_array[index].ring,
(void *)mbuf);
}
LOG_DEBUG(VHOST_CONFIG,
"in main: mbuf count in mempool at initial "
"is: %d\n", count_in_mempool);
LOG_DEBUG(VHOST_CONFIG,
"in main: mbuf count in ring at initial is :"
" %d\n",
rte_ring_count(vpool_array[index].ring));
}
RTE_LCORE_FOREACH_SLAVE(lcore_id)
rte_eal_remote_launch(switch_worker_zcp, NULL,
lcore_id);
}
if (mergeable == 0)
rte_vhost_feature_disable(1ULL << VIRTIO_NET_F_MRG_RXBUF);
/* Register vhost(cuse or user) driver to handle vhost messages. */
ret = rte_vhost_driver_register((char *)&dev_basename);
if (ret != 0)
rte_exit(EXIT_FAILURE, "vhost driver register failure.\n");
rte_vhost_driver_callback_register(&virtio_net_device_ops);
/* Start CUSE session. */
rte_vhost_driver_session_start();
return 0;
}