numam-dpdk/lib/mempool/rte_mempool.h
Morten Brørup 203dcc9cfe mempool: use cache for frequently updated stats
When built with stats enabled (RTE_LIBRTE_MEMPOOL_STATS defined),
the performance of mempools with caches is improved as follows.

When accessing objects in the mempool, either the put_bulk and put_objs or
the get_success_bulk and get_success_objs statistics counters are likely
to be incremented.

By adding an alternative set of these counters to the mempool cache
structure, accessing the dedicated statistics structure is avoided
in the likely cases where these counters are incremented.

The trick here is that the cache line holding the mempool cache structure
is accessed anyway, in order to access the 'len' or 'flushthresh' fields.
Updating some statistics counters in the same cache line has lower
performance cost than accessing the statistics counters in the dedicated
statistics structure, which resides in another cache line.

mempool_perf_autotest with this patch shows the following improvements in
rate_persec.

The cost of enabling mempool stats (without debug) after this patch:
-6.8 % and -6.7 %, respectively without and with cache.

Signed-off-by: Morten Brørup <mb@smartsharesystems.com>
Reviewed-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Reviewed-by: Mattias Rönnblom <mattias.ronnblom@ericsson.com>
Acked-by: Konstantin Ananyev <konstantin.ananyev@huawei.com>
2022-11-10 17:32:54 +01:00

1950 lines
62 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation.
* Copyright(c) 2016 6WIND S.A.
* Copyright(c) 2022 SmartShare Systems
*/
#ifndef _RTE_MEMPOOL_H_
#define _RTE_MEMPOOL_H_
/**
* @file
* RTE Mempool.
*
* A memory pool is an allocator of fixed-size object. It is
* identified by its name, and uses a ring to store free objects. It
* provides some other optional services, like a per-core object
* cache, and an alignment helper to ensure that objects are padded
* to spread them equally on all RAM channels, ranks, and so on.
*
* Objects owned by a mempool should never be added in another
* mempool. When an object is freed using rte_mempool_put() or
* equivalent, the object data is not modified; the user can save some
* meta-data in the object data and retrieve them when allocating a
* new object.
*
* Note: the mempool implementation is not preemptible. An lcore must not be
* interrupted by another task that uses the same mempool (because it uses a
* ring which is not preemptible). Also, usual mempool functions like
* rte_mempool_get() or rte_mempool_put() are designed to be called from an EAL
* thread due to the internal per-lcore cache. Due to the lack of caching,
* rte_mempool_get() or rte_mempool_put() performance will suffer when called
* by unregistered non-EAL threads. Instead, unregistered non-EAL threads
* should call rte_mempool_generic_get() or rte_mempool_generic_put() with a
* user cache created with rte_mempool_cache_create().
*/
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <rte_config.h>
#include <rte_spinlock.h>
#include <rte_debug.h>
#include <rte_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_memcpy.h>
#include <rte_common.h>
#include "rte_mempool_trace_fp.h"
#ifdef __cplusplus
extern "C" {
#endif
#define RTE_MEMPOOL_HEADER_COOKIE1 0xbadbadbadadd2e55ULL /**< Header cookie. */
#define RTE_MEMPOOL_HEADER_COOKIE2 0xf2eef2eedadd2e55ULL /**< Header cookie. */
#define RTE_MEMPOOL_TRAILER_COOKIE 0xadd2e55badbadbadULL /**< Trailer cookie.*/
#ifdef RTE_LIBRTE_MEMPOOL_STATS
/**
* A structure that stores the mempool statistics (per-lcore).
* Note: Cache stats (put_cache_bulk/objs, get_cache_bulk/objs) are not
* captured since they can be calculated from other stats.
* For example: put_cache_objs = put_objs - put_common_pool_objs.
*/
struct rte_mempool_debug_stats {
uint64_t put_bulk; /**< Number of puts. */
uint64_t put_objs; /**< Number of objects successfully put. */
uint64_t put_common_pool_bulk; /**< Number of bulks enqueued in common pool. */
uint64_t put_common_pool_objs; /**< Number of objects enqueued in common pool. */
uint64_t get_common_pool_bulk; /**< Number of bulks dequeued from common pool. */
uint64_t get_common_pool_objs; /**< Number of objects dequeued from common pool. */
uint64_t get_success_bulk; /**< Successful allocation number. */
uint64_t get_success_objs; /**< Objects successfully allocated. */
uint64_t get_fail_bulk; /**< Failed allocation number. */
uint64_t get_fail_objs; /**< Objects that failed to be allocated. */
uint64_t get_success_blks; /**< Successful allocation number of contiguous blocks. */
uint64_t get_fail_blks; /**< Failed allocation number of contiguous blocks. */
} __rte_cache_aligned;
#endif
/**
* A structure that stores a per-core object cache.
*/
struct rte_mempool_cache {
uint32_t size; /**< Size of the cache */
uint32_t flushthresh; /**< Threshold before we flush excess elements */
uint32_t len; /**< Current cache count */
#ifdef RTE_LIBRTE_MEMPOOL_STATS
uint32_t unused;
/*
* Alternative location for the most frequently updated mempool statistics (per-lcore),
* providing faster update access when using a mempool cache.
*/
struct {
uint64_t put_bulk; /**< Number of puts. */
uint64_t put_objs; /**< Number of objects successfully put. */
uint64_t get_success_bulk; /**< Successful allocation number. */
uint64_t get_success_objs; /**< Objects successfully allocated. */
} stats; /**< Statistics */
#endif
/**
* Cache objects
*
* Cache is allocated to this size to allow it to overflow in certain
* cases to avoid needless emptying of cache.
*/
void *objs[RTE_MEMPOOL_CACHE_MAX_SIZE * 2] __rte_cache_aligned;
} __rte_cache_aligned;
/**
* A structure that stores the size of mempool elements.
*/
struct rte_mempool_objsz {
uint32_t elt_size; /**< Size of an element. */
uint32_t header_size; /**< Size of header (before elt). */
uint32_t trailer_size; /**< Size of trailer (after elt). */
uint32_t total_size;
/**< Total size of an object (header + elt + trailer). */
};
/**< Maximum length of a memory pool's name. */
#define RTE_MEMPOOL_NAMESIZE (RTE_RING_NAMESIZE - \
sizeof(RTE_MEMPOOL_MZ_PREFIX) + 1)
#define RTE_MEMPOOL_MZ_PREFIX "MP_"
/* "MP_<name>" */
#define RTE_MEMPOOL_MZ_FORMAT RTE_MEMPOOL_MZ_PREFIX "%s"
#ifndef RTE_MEMPOOL_ALIGN
/**
* Alignment of elements inside mempool.
*/
#define RTE_MEMPOOL_ALIGN RTE_CACHE_LINE_SIZE
#endif
#define RTE_MEMPOOL_ALIGN_MASK (RTE_MEMPOOL_ALIGN - 1)
/**
* Mempool object header structure
*
* Each object stored in mempools are prefixed by this header structure,
* it allows to retrieve the mempool pointer from the object and to
* iterate on all objects attached to a mempool. When debug is enabled,
* a cookie is also added in this structure preventing corruptions and
* double-frees.
*/
struct rte_mempool_objhdr {
RTE_STAILQ_ENTRY(rte_mempool_objhdr) next; /**< Next in list. */
struct rte_mempool *mp; /**< The mempool owning the object. */
rte_iova_t iova; /**< IO address of the object. */
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
uint64_t cookie; /**< Debug cookie. */
#endif
};
/**
* A list of object headers type
*/
RTE_STAILQ_HEAD(rte_mempool_objhdr_list, rte_mempool_objhdr);
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
/**
* Mempool object trailer structure
*
* In debug mode, each object stored in mempools are suffixed by this
* trailer structure containing a cookie preventing memory corruptions.
*/
struct rte_mempool_objtlr {
uint64_t cookie; /**< Debug cookie. */
};
#endif
/**
* A list of memory where objects are stored
*/
RTE_STAILQ_HEAD(rte_mempool_memhdr_list, rte_mempool_memhdr);
/**
* Callback used to free a memory chunk
*/
typedef void (rte_mempool_memchunk_free_cb_t)(struct rte_mempool_memhdr *memhdr,
void *opaque);
/**
* Mempool objects memory header structure
*
* The memory chunks where objects are stored. Each chunk is virtually
* and physically contiguous.
*/
struct rte_mempool_memhdr {
RTE_STAILQ_ENTRY(rte_mempool_memhdr) next; /**< Next in list. */
struct rte_mempool *mp; /**< The mempool owning the chunk */
void *addr; /**< Virtual address of the chunk */
rte_iova_t iova; /**< IO address of the chunk */
size_t len; /**< length of the chunk */
rte_mempool_memchunk_free_cb_t *free_cb; /**< Free callback */
void *opaque; /**< Argument passed to the free callback */
};
/**
* Additional information about the mempool
*
* The structure is cache-line aligned to avoid ABI breakages in
* a number of cases when something small is added.
*/
struct rte_mempool_info {
/** Number of objects in the contiguous block */
unsigned int contig_block_size;
} __rte_cache_aligned;
/**
* The RTE mempool structure.
*/
struct rte_mempool {
char name[RTE_MEMPOOL_NAMESIZE]; /**< Name of mempool. */
RTE_STD_C11
union {
void *pool_data; /**< Ring or pool to store objects. */
uint64_t pool_id; /**< External mempool identifier. */
};
void *pool_config; /**< optional args for ops alloc. */
const struct rte_memzone *mz; /**< Memzone where pool is alloc'd. */
unsigned int flags; /**< Flags of the mempool. */
int socket_id; /**< Socket id passed at create. */
uint32_t size; /**< Max size of the mempool. */
uint32_t cache_size;
/**< Size of per-lcore default local cache. */
uint32_t elt_size; /**< Size of an element. */
uint32_t header_size; /**< Size of header (before elt). */
uint32_t trailer_size; /**< Size of trailer (after elt). */
unsigned private_data_size; /**< Size of private data. */
/**
* Index into rte_mempool_ops_table array of mempool ops
* structs, which contain callback function pointers.
* We're using an index here rather than pointers to the callbacks
* to facilitate any secondary processes that may want to use
* this mempool.
*/
int32_t ops_index;
struct rte_mempool_cache *local_cache; /**< Per-lcore local cache */
uint32_t populated_size; /**< Number of populated objects. */
struct rte_mempool_objhdr_list elt_list; /**< List of objects in pool */
uint32_t nb_mem_chunks; /**< Number of memory chunks */
struct rte_mempool_memhdr_list mem_list; /**< List of memory chunks */
#ifdef RTE_LIBRTE_MEMPOOL_STATS
/** Per-lcore statistics.
*
* Plus one, for unregistered non-EAL threads.
*/
struct rte_mempool_debug_stats stats[RTE_MAX_LCORE + 1];
#endif
} __rte_cache_aligned;
/** Spreading among memory channels not required. */
#define RTE_MEMPOOL_F_NO_SPREAD 0x0001
/**
* Backward compatibility synonym for RTE_MEMPOOL_F_NO_SPREAD.
* To be deprecated.
*/
#define MEMPOOL_F_NO_SPREAD RTE_MEMPOOL_F_NO_SPREAD
/** Do not align objects on cache lines. */
#define RTE_MEMPOOL_F_NO_CACHE_ALIGN 0x0002
/**
* Backward compatibility synonym for RTE_MEMPOOL_F_NO_CACHE_ALIGN.
* To be deprecated.
*/
#define MEMPOOL_F_NO_CACHE_ALIGN RTE_MEMPOOL_F_NO_CACHE_ALIGN
/** Default put is "single-producer". */
#define RTE_MEMPOOL_F_SP_PUT 0x0004
/**
* Backward compatibility synonym for RTE_MEMPOOL_F_SP_PUT.
* To be deprecated.
*/
#define MEMPOOL_F_SP_PUT RTE_MEMPOOL_F_SP_PUT
/** Default get is "single-consumer". */
#define RTE_MEMPOOL_F_SC_GET 0x0008
/**
* Backward compatibility synonym for RTE_MEMPOOL_F_SC_GET.
* To be deprecated.
*/
#define MEMPOOL_F_SC_GET RTE_MEMPOOL_F_SC_GET
/** Internal: pool is created. */
#define RTE_MEMPOOL_F_POOL_CREATED 0x0010
/** Don't need IOVA contiguous objects. */
#define RTE_MEMPOOL_F_NO_IOVA_CONTIG 0x0020
/**
* Backward compatibility synonym for RTE_MEMPOOL_F_NO_IOVA_CONTIG.
* To be deprecated.
*/
#define MEMPOOL_F_NO_IOVA_CONTIG RTE_MEMPOOL_F_NO_IOVA_CONTIG
/** Internal: no object from the pool can be used for device IO (DMA). */
#define RTE_MEMPOOL_F_NON_IO 0x0040
/**
* This macro lists all the mempool flags an application may request.
*/
#define RTE_MEMPOOL_VALID_USER_FLAGS (RTE_MEMPOOL_F_NO_SPREAD \
| RTE_MEMPOOL_F_NO_CACHE_ALIGN \
| RTE_MEMPOOL_F_SP_PUT \
| RTE_MEMPOOL_F_SC_GET \
| RTE_MEMPOOL_F_NO_IOVA_CONTIG \
)
/**
* @internal When stats is enabled, store some statistics.
*
* @param mp
* Pointer to the memory pool.
* @param name
* Name of the statistics field to increment in the memory pool.
* @param n
* Number to add to the statistics.
*/
#ifdef RTE_LIBRTE_MEMPOOL_STATS
#define RTE_MEMPOOL_STAT_ADD(mp, name, n) do { \
unsigned int __lcore_id = rte_lcore_id(); \
if (likely(__lcore_id < RTE_MAX_LCORE)) \
(mp)->stats[__lcore_id].name += (n); \
else \
__atomic_fetch_add(&((mp)->stats[RTE_MAX_LCORE].name), \
(n), __ATOMIC_RELAXED); \
} while (0)
#else
#define RTE_MEMPOOL_STAT_ADD(mp, name, n) do {} while (0)
#endif
/**
* @internal When stats is enabled, store some statistics.
*
* @param cache
* Pointer to the memory pool cache.
* @param name
* Name of the statistics field to increment in the memory pool cache.
* @param n
* Number to add to the statistics.
*/
#ifdef RTE_LIBRTE_MEMPOOL_STATS
#define RTE_MEMPOOL_CACHE_STAT_ADD(cache, name, n) ((cache)->stats.name += (n))
#else
#define RTE_MEMPOOL_CACHE_STAT_ADD(cache, name, n) do {} while (0)
#endif
/**
* @internal Calculate the size of the mempool header.
*
* @param mp
* Pointer to the memory pool.
* @param cs
* Size of the per-lcore cache.
*/
#define RTE_MEMPOOL_HEADER_SIZE(mp, cs) \
(sizeof(*(mp)) + (((cs) == 0) ? 0 : \
(sizeof(struct rte_mempool_cache) * RTE_MAX_LCORE)))
/* return the header of a mempool object (internal) */
static inline struct rte_mempool_objhdr *
rte_mempool_get_header(void *obj)
{
return (struct rte_mempool_objhdr *)RTE_PTR_SUB(obj,
sizeof(struct rte_mempool_objhdr));
}
/**
* Return a pointer to the mempool owning this object.
*
* @param obj
* An object that is owned by a pool. If this is not the case,
* the behavior is undefined.
* @return
* A pointer to the mempool structure.
*/
static inline struct rte_mempool *rte_mempool_from_obj(void *obj)
{
struct rte_mempool_objhdr *hdr = rte_mempool_get_header(obj);
return hdr->mp;
}
/* return the trailer of a mempool object (internal) */
static inline struct rte_mempool_objtlr *rte_mempool_get_trailer(void *obj)
{
struct rte_mempool *mp = rte_mempool_from_obj(obj);
return (struct rte_mempool_objtlr *)RTE_PTR_ADD(obj, mp->elt_size);
}
/**
* @internal Check and update cookies or panic.
*
* @param mp
* Pointer to the memory pool.
* @param obj_table_const
* Pointer to a table of void * pointers (objects).
* @param n
* Index of object in object table.
* @param free
* - 0: object is supposed to be allocated, mark it as free
* - 1: object is supposed to be free, mark it as allocated
* - 2: just check that cookie is valid (free or allocated)
*/
void rte_mempool_check_cookies(const struct rte_mempool *mp,
void * const *obj_table_const, unsigned n, int free);
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
#define RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table_const, n, free) \
rte_mempool_check_cookies(mp, obj_table_const, n, free)
#else
#define RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table_const, n, free) do {} while (0)
#endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
/**
* @internal Check contiguous object blocks and update cookies or panic.
*
* @param mp
* Pointer to the memory pool.
* @param first_obj_table_const
* Pointer to a table of void * pointers (first object of the contiguous
* object blocks).
* @param n
* Number of contiguous object blocks.
* @param free
* - 0: object is supposed to be allocated, mark it as free
* - 1: object is supposed to be free, mark it as allocated
* - 2: just check that cookie is valid (free or allocated)
*/
void rte_mempool_contig_blocks_check_cookies(const struct rte_mempool *mp,
void * const *first_obj_table_const, unsigned int n, int free);
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
#define RTE_MEMPOOL_CONTIG_BLOCKS_CHECK_COOKIES(mp, first_obj_table_const, n, \
free) \
rte_mempool_contig_blocks_check_cookies(mp, first_obj_table_const, n, \
free)
#else
#define RTE_MEMPOOL_CONTIG_BLOCKS_CHECK_COOKIES(mp, first_obj_table_const, n, \
free) \
do {} while (0)
#endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
#define RTE_MEMPOOL_OPS_NAMESIZE 32 /**< Max length of ops struct name. */
/**
* Prototype for implementation specific data provisioning function.
*
* The function should provide the implementation specific memory for
* use by the other mempool ops functions in a given mempool ops struct.
* E.g. the default ops provides an instance of the rte_ring for this purpose.
* it will most likely point to a different type of data structure, and
* will be transparent to the application programmer.
* This function should set mp->pool_data.
*/
typedef int (*rte_mempool_alloc_t)(struct rte_mempool *mp);
/**
* Free the opaque private data pointed to by mp->pool_data pointer.
*/
typedef void (*rte_mempool_free_t)(struct rte_mempool *mp);
/**
* Enqueue an object into the external pool.
*/
typedef int (*rte_mempool_enqueue_t)(struct rte_mempool *mp,
void * const *obj_table, unsigned int n);
/**
* Dequeue an object from the external pool.
*/
typedef int (*rte_mempool_dequeue_t)(struct rte_mempool *mp,
void **obj_table, unsigned int n);
/**
* Dequeue a number of contiguous object blocks from the external pool.
*/
typedef int (*rte_mempool_dequeue_contig_blocks_t)(struct rte_mempool *mp,
void **first_obj_table, unsigned int n);
/**
* Return the number of available objects in the external pool.
*/
typedef unsigned (*rte_mempool_get_count)(const struct rte_mempool *mp);
/**
* Calculate memory size required to store given number of objects.
*
* If mempool objects are not required to be IOVA-contiguous
* (the flag RTE_MEMPOOL_F_NO_IOVA_CONTIG is set), min_chunk_size defines
* virtually contiguous chunk size. Otherwise, if mempool objects must
* be IOVA-contiguous (the flag RTE_MEMPOOL_F_NO_IOVA_CONTIG is clear),
* min_chunk_size defines IOVA-contiguous chunk size.
*
* @param[in] mp
* Pointer to the memory pool.
* @param[in] obj_num
* Number of objects.
* @param[in] pg_shift
* LOG2 of the physical pages size. If set to 0, ignore page boundaries.
* @param[out] min_chunk_size
* Location for minimum size of the memory chunk which may be used to
* store memory pool objects.
* @param[out] align
* Location for required memory chunk alignment.
* @return
* Required memory size.
*/
typedef ssize_t (*rte_mempool_calc_mem_size_t)(const struct rte_mempool *mp,
uint32_t obj_num, uint32_t pg_shift,
size_t *min_chunk_size, size_t *align);
/**
* @internal Helper to calculate memory size required to store given
* number of objects.
*
* This function is internal to mempool library and mempool drivers.
*
* If page boundaries may be ignored, it is just a product of total
* object size including header and trailer and number of objects.
* Otherwise, it is a number of pages required to store given number of
* objects without crossing page boundary.
*
* Note that if object size is bigger than page size, then it assumes
* that pages are grouped in subsets of physically continuous pages big
* enough to store at least one object.
*
* Minimum size of memory chunk is the total element size.
* Required memory chunk alignment is the cache line size.
*
* @param[in] mp
* A pointer to the mempool structure.
* @param[in] obj_num
* Number of objects to be added in mempool.
* @param[in] pg_shift
* LOG2 of the physical pages size. If set to 0, ignore page boundaries.
* @param[in] chunk_reserve
* Amount of memory that must be reserved at the beginning of each page,
* or at the beginning of the memory area if pg_shift is 0.
* @param[out] min_chunk_size
* Location for minimum size of the memory chunk which may be used to
* store memory pool objects.
* @param[out] align
* Location for required memory chunk alignment.
* @return
* Required memory size.
*/
ssize_t rte_mempool_op_calc_mem_size_helper(const struct rte_mempool *mp,
uint32_t obj_num, uint32_t pg_shift, size_t chunk_reserve,
size_t *min_chunk_size, size_t *align);
/**
* Default way to calculate memory size required to store given number of
* objects.
*
* Equivalent to rte_mempool_op_calc_mem_size_helper(mp, obj_num, pg_shift,
* 0, min_chunk_size, align).
*/
ssize_t rte_mempool_op_calc_mem_size_default(const struct rte_mempool *mp,
uint32_t obj_num, uint32_t pg_shift,
size_t *min_chunk_size, size_t *align);
/**
* Function to be called for each populated object.
*
* @param[in] mp
* A pointer to the mempool structure.
* @param[in] opaque
* An opaque pointer passed to iterator.
* @param[in] vaddr
* Object virtual address.
* @param[in] iova
* Input/output virtual address of the object or RTE_BAD_IOVA.
*/
typedef void (rte_mempool_populate_obj_cb_t)(struct rte_mempool *mp,
void *opaque, void *vaddr, rte_iova_t iova);
/**
* Populate memory pool objects using provided memory chunk.
*
* Populated objects should be enqueued to the pool, e.g. using
* rte_mempool_ops_enqueue_bulk().
*
* If the given IO address is unknown (iova = RTE_BAD_IOVA),
* the chunk doesn't need to be physically contiguous (only virtually),
* and allocated objects may span two pages.
*
* @param[in] mp
* A pointer to the mempool structure.
* @param[in] max_objs
* Maximum number of objects to be populated.
* @param[in] vaddr
* The virtual address of memory that should be used to store objects.
* @param[in] iova
* The IO address
* @param[in] len
* The length of memory in bytes.
* @param[in] obj_cb
* Callback function to be executed for each populated object.
* @param[in] obj_cb_arg
* An opaque pointer passed to the callback function.
* @return
* The number of objects added on success.
* On error, no objects are populated and a negative errno is returned.
*/
typedef int (*rte_mempool_populate_t)(struct rte_mempool *mp,
unsigned int max_objs,
void *vaddr, rte_iova_t iova, size_t len,
rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
/**
* Align objects on addresses multiple of total_elt_sz.
*/
#define RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ 0x0001
/**
* @internal Helper to populate memory pool object using provided memory
* chunk: just slice objects one by one, taking care of not
* crossing page boundaries.
*
* If RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ is set in flags, the addresses
* of object headers will be aligned on a multiple of total_elt_sz.
* This feature is used by octeontx hardware.
*
* This function is internal to mempool library and mempool drivers.
*
* @param[in] mp
* A pointer to the mempool structure.
* @param[in] flags
* Logical OR of following flags:
* - RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ: align objects on addresses
* multiple of total_elt_sz.
* @param[in] max_objs
* Maximum number of objects to be added in mempool.
* @param[in] vaddr
* The virtual address of memory that should be used to store objects.
* @param[in] iova
* The IO address corresponding to vaddr, or RTE_BAD_IOVA.
* @param[in] len
* The length of memory in bytes.
* @param[in] obj_cb
* Callback function to be executed for each populated object.
* @param[in] obj_cb_arg
* An opaque pointer passed to the callback function.
* @return
* The number of objects added in mempool.
*/
int rte_mempool_op_populate_helper(struct rte_mempool *mp,
unsigned int flags, unsigned int max_objs,
void *vaddr, rte_iova_t iova, size_t len,
rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
/**
* Default way to populate memory pool object using provided memory chunk.
*
* Equivalent to rte_mempool_op_populate_helper(mp, 0, max_objs, vaddr, iova,
* len, obj_cb, obj_cb_arg).
*/
int rte_mempool_op_populate_default(struct rte_mempool *mp,
unsigned int max_objs,
void *vaddr, rte_iova_t iova, size_t len,
rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
/**
* Get some additional information about a mempool.
*/
typedef int (*rte_mempool_get_info_t)(const struct rte_mempool *mp,
struct rte_mempool_info *info);
/** Structure defining mempool operations structure */
struct rte_mempool_ops {
char name[RTE_MEMPOOL_OPS_NAMESIZE]; /**< Name of mempool ops struct. */
rte_mempool_alloc_t alloc; /**< Allocate private data. */
rte_mempool_free_t free; /**< Free the external pool. */
rte_mempool_enqueue_t enqueue; /**< Enqueue an object. */
rte_mempool_dequeue_t dequeue; /**< Dequeue an object. */
rte_mempool_get_count get_count; /**< Get qty of available objs. */
/**
* Optional callback to calculate memory size required to
* store specified number of objects.
*/
rte_mempool_calc_mem_size_t calc_mem_size;
/**
* Optional callback to populate mempool objects using
* provided memory chunk.
*/
rte_mempool_populate_t populate;
/**
* Get mempool info
*/
rte_mempool_get_info_t get_info;
/**
* Dequeue a number of contiguous object blocks.
*/
rte_mempool_dequeue_contig_blocks_t dequeue_contig_blocks;
} __rte_cache_aligned;
#define RTE_MEMPOOL_MAX_OPS_IDX 16 /**< Max registered ops structs */
/**
* Structure storing the table of registered ops structs, each of which contain
* the function pointers for the mempool ops functions.
* Each process has its own storage for this ops struct array so that
* the mempools can be shared across primary and secondary processes.
* The indices used to access the array are valid across processes, whereas
* any function pointers stored directly in the mempool struct would not be.
* This results in us simply having "ops_index" in the mempool struct.
*/
struct rte_mempool_ops_table {
rte_spinlock_t sl; /**< Spinlock for add/delete. */
uint32_t num_ops; /**< Number of used ops structs in the table. */
/**
* Storage for all possible ops structs.
*/
struct rte_mempool_ops ops[RTE_MEMPOOL_MAX_OPS_IDX];
} __rte_cache_aligned;
/** Array of registered ops structs. */
extern struct rte_mempool_ops_table rte_mempool_ops_table;
/**
* @internal Get the mempool ops struct from its index.
*
* @param ops_index
* The index of the ops struct in the ops struct table. It must be a valid
* index: (0 <= idx < num_ops).
* @return
* The pointer to the ops struct in the table.
*/
static inline struct rte_mempool_ops *
rte_mempool_get_ops(int ops_index)
{
RTE_VERIFY((ops_index >= 0) && (ops_index < RTE_MEMPOOL_MAX_OPS_IDX));
return &rte_mempool_ops_table.ops[ops_index];
}
/**
* @internal Wrapper for mempool_ops alloc callback.
*
* @param mp
* Pointer to the memory pool.
* @return
* - 0: Success; successfully allocated mempool pool_data.
* - <0: Error; code of alloc function.
*/
int
rte_mempool_ops_alloc(struct rte_mempool *mp);
/**
* @internal Wrapper for mempool_ops dequeue callback.
*
* @param mp
* Pointer to the memory pool.
* @param obj_table
* Pointer to a table of void * pointers (objects).
* @param n
* Number of objects to get.
* @return
* - 0: Success; got n objects.
* - <0: Error; code of dequeue function.
*/
static inline int
rte_mempool_ops_dequeue_bulk(struct rte_mempool *mp,
void **obj_table, unsigned n)
{
struct rte_mempool_ops *ops;
int ret;
rte_mempool_trace_ops_dequeue_bulk(mp, obj_table, n);
ops = rte_mempool_get_ops(mp->ops_index);
ret = ops->dequeue(mp, obj_table, n);
if (ret == 0) {
RTE_MEMPOOL_STAT_ADD(mp, get_common_pool_bulk, 1);
RTE_MEMPOOL_STAT_ADD(mp, get_common_pool_objs, n);
}
return ret;
}
/**
* @internal Wrapper for mempool_ops dequeue_contig_blocks callback.
*
* @param[in] mp
* Pointer to the memory pool.
* @param[out] first_obj_table
* Pointer to a table of void * pointers (first objects).
* @param[in] n
* Number of blocks to get.
* @return
* - 0: Success; got n objects.
* - <0: Error; code of dequeue function.
*/
static inline int
rte_mempool_ops_dequeue_contig_blocks(struct rte_mempool *mp,
void **first_obj_table, unsigned int n)
{
struct rte_mempool_ops *ops;
ops = rte_mempool_get_ops(mp->ops_index);
RTE_ASSERT(ops->dequeue_contig_blocks != NULL);
rte_mempool_trace_ops_dequeue_contig_blocks(mp, first_obj_table, n);
return ops->dequeue_contig_blocks(mp, first_obj_table, n);
}
/**
* @internal wrapper for mempool_ops enqueue callback.
*
* @param mp
* Pointer to the memory pool.
* @param obj_table
* Pointer to a table of void * pointers (objects).
* @param n
* Number of objects to put.
* @return
* - 0: Success; n objects supplied.
* - <0: Error; code of enqueue function.
*/
static inline int
rte_mempool_ops_enqueue_bulk(struct rte_mempool *mp, void * const *obj_table,
unsigned n)
{
struct rte_mempool_ops *ops;
int ret;
RTE_MEMPOOL_STAT_ADD(mp, put_common_pool_bulk, 1);
RTE_MEMPOOL_STAT_ADD(mp, put_common_pool_objs, n);
rte_mempool_trace_ops_enqueue_bulk(mp, obj_table, n);
ops = rte_mempool_get_ops(mp->ops_index);
ret = ops->enqueue(mp, obj_table, n);
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
if (unlikely(ret < 0))
RTE_LOG(CRIT, MEMPOOL, "cannot enqueue %u objects to mempool %s\n",
n, mp->name);
#endif
return ret;
}
/**
* @internal wrapper for mempool_ops get_count callback.
*
* @param mp
* Pointer to the memory pool.
* @return
* The number of available objects in the external pool.
*/
unsigned
rte_mempool_ops_get_count(const struct rte_mempool *mp);
/**
* @internal wrapper for mempool_ops calc_mem_size callback.
* API to calculate size of memory required to store specified number of
* object.
*
* @param[in] mp
* Pointer to the memory pool.
* @param[in] obj_num
* Number of objects.
* @param[in] pg_shift
* LOG2 of the physical pages size. If set to 0, ignore page boundaries.
* @param[out] min_chunk_size
* Location for minimum size of the memory chunk which may be used to
* store memory pool objects.
* @param[out] align
* Location for required memory chunk alignment.
* @return
* Required memory size aligned at page boundary.
*/
ssize_t rte_mempool_ops_calc_mem_size(const struct rte_mempool *mp,
uint32_t obj_num, uint32_t pg_shift,
size_t *min_chunk_size, size_t *align);
/**
* @internal wrapper for mempool_ops populate callback.
*
* Populate memory pool objects using provided memory chunk.
*
* @param[in] mp
* A pointer to the mempool structure.
* @param[in] max_objs
* Maximum number of objects to be populated.
* @param[in] vaddr
* The virtual address of memory that should be used to store objects.
* @param[in] iova
* The IO address
* @param[in] len
* The length of memory in bytes.
* @param[in] obj_cb
* Callback function to be executed for each populated object.
* @param[in] obj_cb_arg
* An opaque pointer passed to the callback function.
* @return
* The number of objects added on success.
* On error, no objects are populated and a negative errno is returned.
*/
int rte_mempool_ops_populate(struct rte_mempool *mp, unsigned int max_objs,
void *vaddr, rte_iova_t iova, size_t len,
rte_mempool_populate_obj_cb_t *obj_cb,
void *obj_cb_arg);
/**
* Wrapper for mempool_ops get_info callback.
*
* @param[in] mp
* Pointer to the memory pool.
* @param[out] info
* Pointer to the rte_mempool_info structure
* @return
* - 0: Success; The mempool driver supports retrieving supplementary
* mempool information
* - -ENOTSUP - doesn't support get_info ops (valid case).
*/
int rte_mempool_ops_get_info(const struct rte_mempool *mp,
struct rte_mempool_info *info);
/**
* @internal wrapper for mempool_ops free callback.
*
* @param mp
* Pointer to the memory pool.
*/
void
rte_mempool_ops_free(struct rte_mempool *mp);
/**
* Set the ops of a mempool.
*
* This can only be done on a mempool that is not populated, i.e. just after
* a call to rte_mempool_create_empty().
*
* @param mp
* Pointer to the memory pool.
* @param name
* Name of the ops structure to use for this mempool.
* @param pool_config
* Opaque data that can be passed by the application to the ops functions.
* @return
* - 0: Success; the mempool is now using the requested ops functions.
* - -EINVAL - Invalid ops struct name provided.
* - -EEXIST - mempool already has an ops struct assigned.
*/
int
rte_mempool_set_ops_byname(struct rte_mempool *mp, const char *name,
void *pool_config);
/**
* Register mempool operations.
*
* @param ops
* Pointer to an ops structure to register.
* @return
* - >=0: Success; return the index of the ops struct in the table.
* - -EINVAL - some missing callbacks while registering ops struct.
* - -ENOSPC - the maximum number of ops structs has been reached.
*/
int rte_mempool_register_ops(const struct rte_mempool_ops *ops);
/**
* Macro to statically register the ops of a mempool handler.
* Note that the rte_mempool_register_ops fails silently here when
* more than RTE_MEMPOOL_MAX_OPS_IDX is registered.
*/
#define RTE_MEMPOOL_REGISTER_OPS(ops) \
RTE_INIT(mp_hdlr_init_##ops) \
{ \
rte_mempool_register_ops(&ops); \
}
/**
* An object callback function for mempool.
*
* Used by rte_mempool_create() and rte_mempool_obj_iter().
*/
typedef void (rte_mempool_obj_cb_t)(struct rte_mempool *mp,
void *opaque, void *obj, unsigned obj_idx);
typedef rte_mempool_obj_cb_t rte_mempool_obj_ctor_t; /* compat */
/**
* A memory callback function for mempool.
*
* Used by rte_mempool_mem_iter().
*/
typedef void (rte_mempool_mem_cb_t)(struct rte_mempool *mp,
void *opaque, struct rte_mempool_memhdr *memhdr,
unsigned mem_idx);
/**
* A mempool constructor callback function.
*
* Arguments are the mempool and the opaque pointer given by the user in
* rte_mempool_create().
*/
typedef void (rte_mempool_ctor_t)(struct rte_mempool *, void *);
/**
* Create a new mempool named *name* in memory.
*
* This function uses ``rte_memzone_reserve()`` to allocate memory. The
* pool contains n elements of elt_size. Its size is set to n.
*
* @param name
* The name of the mempool.
* @param n
* The number of elements in the mempool. The optimum size (in terms of
* memory usage) for a mempool is when n is a power of two minus one:
* n = (2^q - 1).
* @param elt_size
* The size of each element.
* @param cache_size
* If cache_size is non-zero, the rte_mempool library will try to
* limit the accesses to the common lockless pool, by maintaining a
* per-lcore object cache. This argument must be lower or equal to
* RTE_MEMPOOL_CACHE_MAX_SIZE and n / 1.5. It is advised to choose
* cache_size to have "n modulo cache_size == 0": if this is
* not the case, some elements will always stay in the pool and will
* never be used. The access to the per-lcore table is of course
* faster than the multi-producer/consumer pool. The cache can be
* disabled if the cache_size argument is set to 0; it can be useful to
* avoid losing objects in cache.
* @param private_data_size
* The size of the private data appended after the mempool
* structure. This is useful for storing some private data after the
* mempool structure, as is done for rte_mbuf_pool for example.
* @param mp_init
* A function pointer that is called for initialization of the pool,
* before object initialization. The user can initialize the private
* data in this function if needed. This parameter can be NULL if
* not needed.
* @param mp_init_arg
* An opaque pointer to data that can be used in the mempool
* constructor function.
* @param obj_init
* A function pointer that is called for each object at
* initialization of the pool. The user can set some meta data in
* objects if needed. This parameter can be NULL if not needed.
* The obj_init() function takes the mempool pointer, the init_arg,
* the object pointer and the object number as parameters.
* @param obj_init_arg
* An opaque pointer to data that can be used as an argument for
* each call to the object constructor function.
* @param socket_id
* The *socket_id* argument is the socket identifier in the case of
* NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
* constraint for the reserved zone.
* @param flags
* The *flags* arguments is an OR of following flags:
* - RTE_MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread
* between channels in RAM: the pool allocator will add padding
* between objects depending on the hardware configuration. See
* Memory alignment constraints for details. If this flag is set,
* the allocator will just align them to a cache line.
* - RTE_MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are
* cache-aligned. This flag removes this constraint, and no
* padding will be present between objects. This flag implies
* RTE_MEMPOOL_F_NO_SPREAD.
* - RTE_MEMPOOL_F_SP_PUT: If this flag is set, the default behavior
* when using rte_mempool_put() or rte_mempool_put_bulk() is
* "single-producer". Otherwise, it is "multi-producers".
* - RTE_MEMPOOL_F_SC_GET: If this flag is set, the default behavior
* when using rte_mempool_get() or rte_mempool_get_bulk() is
* "single-consumer". Otherwise, it is "multi-consumers".
* - RTE_MEMPOOL_F_NO_IOVA_CONTIG: If set, allocated objects won't
* necessarily be contiguous in IO memory.
* @return
* The pointer to the new allocated mempool, on success. NULL on error
* with rte_errno set appropriately. Possible rte_errno values include:
* - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
* - EINVAL - cache size provided is too large or an unknown flag was passed
* - ENOSPC - the maximum number of memzones has already been allocated
* - EEXIST - a memzone with the same name already exists
* - ENOMEM - no appropriate memory area found in which to create memzone
*/
struct rte_mempool *
rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
unsigned cache_size, unsigned private_data_size,
rte_mempool_ctor_t *mp_init, void *mp_init_arg,
rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
int socket_id, unsigned flags);
/**
* Create an empty mempool
*
* The mempool is allocated and initialized, but it is not populated: no
* memory is allocated for the mempool elements. The user has to call
* rte_mempool_populate_*() to add memory chunks to the pool. Once
* populated, the user may also want to initialize each object with
* rte_mempool_obj_iter().
*
* @param name
* The name of the mempool.
* @param n
* The maximum number of elements that can be added in the mempool.
* The optimum size (in terms of memory usage) for a mempool is when n
* is a power of two minus one: n = (2^q - 1).
* @param elt_size
* The size of each element.
* @param cache_size
* Size of the cache. See rte_mempool_create() for details.
* @param private_data_size
* The size of the private data appended after the mempool
* structure. This is useful for storing some private data after the
* mempool structure, as is done for rte_mbuf_pool for example.
* @param socket_id
* The *socket_id* argument is the socket identifier in the case of
* NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
* constraint for the reserved zone.
* @param flags
* Flags controlling the behavior of the mempool. See
* rte_mempool_create() for details.
* @return
* The pointer to the new allocated mempool, on success. NULL on error
* with rte_errno set appropriately. See rte_mempool_create() for details.
*/
struct rte_mempool *
rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
unsigned cache_size, unsigned private_data_size,
int socket_id, unsigned flags);
/**
* Free a mempool
*
* Unlink the mempool from global list, free the memory chunks, and all
* memory referenced by the mempool. The objects must not be used by
* other cores as they will be freed.
*
* @param mp
* A pointer to the mempool structure.
* If NULL then, the function does nothing.
*/
void
rte_mempool_free(struct rte_mempool *mp);
/**
* Add physically contiguous memory for objects in the pool at init
*
* Add a virtually and physically contiguous memory chunk in the pool
* where objects can be instantiated.
*
* If the given IO address is unknown (iova = RTE_BAD_IOVA),
* the chunk doesn't need to be physically contiguous (only virtually),
* and allocated objects may span two pages.
*
* @param mp
* A pointer to the mempool structure.
* @param vaddr
* The virtual address of memory that should be used to store objects.
* @param iova
* The IO address
* @param len
* The length of memory in bytes.
* @param free_cb
* The callback used to free this chunk when destroying the mempool.
* @param opaque
* An opaque argument passed to free_cb.
* @return
* The number of objects added on success (strictly positive).
* On error, the chunk is not added in the memory list of the
* mempool the following code is returned:
* (0): not enough room in chunk for one object.
* (-ENOSPC): mempool is already populated.
* (-ENOMEM): allocation failure.
*/
int rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
void *opaque);
/**
* Add virtually contiguous memory for objects in the pool at init
*
* Add a virtually contiguous memory chunk in the pool where objects can
* be instantiated.
*
* @param mp
* A pointer to the mempool structure.
* @param addr
* The virtual address of memory that should be used to store objects.
* @param len
* The length of memory in bytes.
* @param pg_sz
* The size of memory pages in this virtual area.
* @param free_cb
* The callback used to free this chunk when destroying the mempool.
* @param opaque
* An opaque argument passed to free_cb.
* @return
* The number of objects added on success (strictly positive).
* On error, the chunk is not added in the memory list of the
* mempool the following code is returned:
* (0): not enough room in chunk for one object.
* (-ENOSPC): mempool is already populated.
* (-ENOMEM): allocation failure.
*/
int
rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
void *opaque);
/**
* Add memory for objects in the pool at init
*
* This is the default function used by rte_mempool_create() to populate
* the mempool. It adds memory allocated using rte_memzone_reserve().
*
* @param mp
* A pointer to the mempool structure.
* @return
* The number of objects added on success.
* On error, the chunk is not added in the memory list of the
* mempool and a negative errno is returned.
*/
int rte_mempool_populate_default(struct rte_mempool *mp);
/**
* Add memory from anonymous mapping for objects in the pool at init
*
* This function mmap an anonymous memory zone that is locked in
* memory to store the objects of the mempool.
*
* @param mp
* A pointer to the mempool structure.
* @return
* The number of objects added on success.
* On error, 0 is returned, rte_errno is set, and the chunk is not added in
* the memory list of the mempool.
*/
int rte_mempool_populate_anon(struct rte_mempool *mp);
/**
* Call a function for each mempool element
*
* Iterate across all objects attached to a rte_mempool and call the
* callback function on it.
*
* @param mp
* A pointer to an initialized mempool.
* @param obj_cb
* A function pointer that is called for each object.
* @param obj_cb_arg
* An opaque pointer passed to the callback function.
* @return
* Number of objects iterated.
*/
uint32_t rte_mempool_obj_iter(struct rte_mempool *mp,
rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg);
/**
* Call a function for each mempool memory chunk
*
* Iterate across all memory chunks attached to a rte_mempool and call
* the callback function on it.
*
* @param mp
* A pointer to an initialized mempool.
* @param mem_cb
* A function pointer that is called for each memory chunk.
* @param mem_cb_arg
* An opaque pointer passed to the callback function.
* @return
* Number of memory chunks iterated.
*/
uint32_t rte_mempool_mem_iter(struct rte_mempool *mp,
rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg);
/**
* Dump the status of the mempool to a file.
*
* @param f
* A pointer to a file for output
* @param mp
* A pointer to the mempool structure.
*/
void rte_mempool_dump(FILE *f, struct rte_mempool *mp);
/**
* Create a user-owned mempool cache.
*
* This can be used by unregistered non-EAL threads to enable caching when they
* interact with a mempool.
*
* @param size
* The size of the mempool cache. See rte_mempool_create()'s cache_size
* parameter description for more information. The same limits and
* considerations apply here too.
* @param socket_id
* The socket identifier in the case of NUMA. The value can be
* SOCKET_ID_ANY if there is no NUMA constraint for the reserved zone.
*/
struct rte_mempool_cache *
rte_mempool_cache_create(uint32_t size, int socket_id);
/**
* Free a user-owned mempool cache.
*
* @param cache
* A pointer to the mempool cache.
*/
void
rte_mempool_cache_free(struct rte_mempool_cache *cache);
/**
* Get a pointer to the per-lcore default mempool cache.
*
* @param mp
* A pointer to the mempool structure.
* @param lcore_id
* The logical core id.
* @return
* A pointer to the mempool cache or NULL if disabled or unregistered non-EAL
* thread.
*/
static __rte_always_inline struct rte_mempool_cache *
rte_mempool_default_cache(struct rte_mempool *mp, unsigned lcore_id)
{
if (mp->cache_size == 0)
return NULL;
if (lcore_id >= RTE_MAX_LCORE)
return NULL;
rte_mempool_trace_default_cache(mp, lcore_id,
&mp->local_cache[lcore_id]);
return &mp->local_cache[lcore_id];
}
/**
* Flush a user-owned mempool cache to the specified mempool.
*
* @param cache
* A pointer to the mempool cache.
* @param mp
* A pointer to the mempool.
*/
static __rte_always_inline void
rte_mempool_cache_flush(struct rte_mempool_cache *cache,
struct rte_mempool *mp)
{
if (cache == NULL)
cache = rte_mempool_default_cache(mp, rte_lcore_id());
if (cache == NULL || cache->len == 0)
return;
rte_mempool_trace_cache_flush(cache, mp);
rte_mempool_ops_enqueue_bulk(mp, cache->objs, cache->len);
cache->len = 0;
}
/**
* @internal Put several objects back in the mempool; used internally.
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* @param n
* The number of objects to store back in the mempool, must be strictly
* positive.
* @param cache
* A pointer to a mempool cache structure. May be NULL if not needed.
*/
static __rte_always_inline void
rte_mempool_do_generic_put(struct rte_mempool *mp, void * const *obj_table,
unsigned int n, struct rte_mempool_cache *cache)
{
void **cache_objs;
/* No cache provided */
if (unlikely(cache == NULL))
goto driver_enqueue;
/* increment stat now, adding in mempool always success */
RTE_MEMPOOL_CACHE_STAT_ADD(cache, put_bulk, 1);
RTE_MEMPOOL_CACHE_STAT_ADD(cache, put_objs, n);
/* The request itself is too big for the cache */
if (unlikely(n > cache->flushthresh))
goto driver_enqueue_stats_incremented;
/*
* The cache follows the following algorithm:
* 1. If the objects cannot be added to the cache without crossing
* the flush threshold, flush the cache to the backend.
* 2. Add the objects to the cache.
*/
if (cache->len + n <= cache->flushthresh) {
cache_objs = &cache->objs[cache->len];
cache->len += n;
} else {
cache_objs = &cache->objs[0];
rte_mempool_ops_enqueue_bulk(mp, cache_objs, cache->len);
cache->len = n;
}
/* Add the objects to the cache. */
rte_memcpy(cache_objs, obj_table, sizeof(void *) * n);
return;
driver_enqueue:
/* increment stat now, adding in mempool always success */
RTE_MEMPOOL_STAT_ADD(mp, put_bulk, 1);
RTE_MEMPOOL_STAT_ADD(mp, put_objs, n);
driver_enqueue_stats_incremented:
/* push objects to the backend */
rte_mempool_ops_enqueue_bulk(mp, obj_table, n);
}
/**
* Put several objects back in the mempool.
*
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* @param n
* The number of objects to add in the mempool from the obj_table.
* @param cache
* A pointer to a mempool cache structure. May be NULL if not needed.
*/
static __rte_always_inline void
rte_mempool_generic_put(struct rte_mempool *mp, void * const *obj_table,
unsigned int n, struct rte_mempool_cache *cache)
{
rte_mempool_trace_generic_put(mp, obj_table, n, cache);
RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table, n, 0);
rte_mempool_do_generic_put(mp, obj_table, n, cache);
}
/**
* Put several objects back in the mempool.
*
* This function calls the multi-producer or the single-producer
* version depending on the default behavior that was specified at
* mempool creation time (see flags).
*
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* @param n
* The number of objects to add in the mempool from obj_table.
*/
static __rte_always_inline void
rte_mempool_put_bulk(struct rte_mempool *mp, void * const *obj_table,
unsigned int n)
{
struct rte_mempool_cache *cache;
cache = rte_mempool_default_cache(mp, rte_lcore_id());
rte_mempool_trace_put_bulk(mp, obj_table, n, cache);
rte_mempool_generic_put(mp, obj_table, n, cache);
}
/**
* Put one object back in the mempool.
*
* This function calls the multi-producer or the single-producer
* version depending on the default behavior that was specified at
* mempool creation time (see flags).
*
* @param mp
* A pointer to the mempool structure.
* @param obj
* A pointer to the object to be added.
*/
static __rte_always_inline void
rte_mempool_put(struct rte_mempool *mp, void *obj)
{
rte_mempool_put_bulk(mp, &obj, 1);
}
/**
* @internal Get several objects from the mempool; used internally.
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* @param n
* The number of objects to get, must be strictly positive.
* @param cache
* A pointer to a mempool cache structure. May be NULL if not needed.
* @return
* - >=0: Success; number of objects supplied.
* - <0: Error; code of driver dequeue function.
*/
static __rte_always_inline int
rte_mempool_do_generic_get(struct rte_mempool *mp, void **obj_table,
unsigned int n, struct rte_mempool_cache *cache)
{
int ret;
unsigned int remaining = n;
uint32_t index, len;
void **cache_objs;
/* No cache provided */
if (unlikely(cache == NULL))
goto driver_dequeue;
/* Use the cache as much as we have to return hot objects first */
len = RTE_MIN(remaining, cache->len);
cache_objs = &cache->objs[cache->len];
cache->len -= len;
remaining -= len;
for (index = 0; index < len; index++)
*obj_table++ = *--cache_objs;
if (remaining == 0) {
/* The entire request is satisfied from the cache. */
RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_bulk, 1);
RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_objs, n);
return 0;
}
/* if dequeue below would overflow mem allocated for cache */
if (unlikely(remaining > RTE_MEMPOOL_CACHE_MAX_SIZE))
goto driver_dequeue;
/* Fill the cache from the backend; fetch size + remaining objects. */
ret = rte_mempool_ops_dequeue_bulk(mp, cache->objs,
cache->size + remaining);
if (unlikely(ret < 0)) {
/*
* We are buffer constrained, and not able to allocate
* cache + remaining.
* Do not fill the cache, just satisfy the remaining part of
* the request directly from the backend.
*/
goto driver_dequeue;
}
/* Satisfy the remaining part of the request from the filled cache. */
cache_objs = &cache->objs[cache->size + remaining];
for (index = 0; index < remaining; index++)
*obj_table++ = *--cache_objs;
cache->len = cache->size;
RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_bulk, 1);
RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_objs, n);
return 0;
driver_dequeue:
/* Get remaining objects directly from the backend. */
ret = rte_mempool_ops_dequeue_bulk(mp, obj_table, remaining);
if (ret < 0) {
if (likely(cache != NULL)) {
cache->len = n - remaining;
/*
* No further action is required to roll the first part
* of the request back into the cache, as objects in
* the cache are intact.
*/
}
RTE_MEMPOOL_STAT_ADD(mp, get_fail_bulk, 1);
RTE_MEMPOOL_STAT_ADD(mp, get_fail_objs, n);
} else {
if (likely(cache != NULL)) {
RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_bulk, 1);
RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_objs, n);
} else {
RTE_MEMPOOL_STAT_ADD(mp, get_success_bulk, 1);
RTE_MEMPOOL_STAT_ADD(mp, get_success_objs, n);
}
}
return ret;
}
/**
* Get several objects from the mempool.
*
* If cache is enabled, objects will be retrieved first from cache,
* subsequently from the common pool. Note that it can return -ENOENT when
* the local cache and common pool are empty, even if cache from other
* lcores are full.
*
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects) that will be filled.
* @param n
* The number of objects to get from mempool to obj_table.
* @param cache
* A pointer to a mempool cache structure. May be NULL if not needed.
* @return
* - 0: Success; objects taken.
* - -ENOENT: Not enough entries in the mempool; no object is retrieved.
*/
static __rte_always_inline int
rte_mempool_generic_get(struct rte_mempool *mp, void **obj_table,
unsigned int n, struct rte_mempool_cache *cache)
{
int ret;
ret = rte_mempool_do_generic_get(mp, obj_table, n, cache);
if (ret == 0)
RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table, n, 1);
rte_mempool_trace_generic_get(mp, obj_table, n, cache);
return ret;
}
/**
* Get several objects from the mempool.
*
* This function calls the multi-consumers or the single-consumer
* version, depending on the default behaviour that was specified at
* mempool creation time (see flags).
*
* If cache is enabled, objects will be retrieved first from cache,
* subsequently from the common pool. Note that it can return -ENOENT when
* the local cache and common pool are empty, even if cache from other
* lcores are full.
*
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects) that will be filled.
* @param n
* The number of objects to get from the mempool to obj_table.
* @return
* - 0: Success; objects taken
* - -ENOENT: Not enough entries in the mempool; no object is retrieved.
*/
static __rte_always_inline int
rte_mempool_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned int n)
{
struct rte_mempool_cache *cache;
cache = rte_mempool_default_cache(mp, rte_lcore_id());
rte_mempool_trace_get_bulk(mp, obj_table, n, cache);
return rte_mempool_generic_get(mp, obj_table, n, cache);
}
/**
* Get one object from the mempool.
*
* This function calls the multi-consumers or the single-consumer
* version, depending on the default behavior that was specified at
* mempool creation (see flags).
*
* If cache is enabled, objects will be retrieved first from cache,
* subsequently from the common pool. Note that it can return -ENOENT when
* the local cache and common pool are empty, even if cache from other
* lcores are full.
*
* @param mp
* A pointer to the mempool structure.
* @param obj_p
* A pointer to a void * pointer (object) that will be filled.
* @return
* - 0: Success; objects taken.
* - -ENOENT: Not enough entries in the mempool; no object is retrieved.
*/
static __rte_always_inline int
rte_mempool_get(struct rte_mempool *mp, void **obj_p)
{
return rte_mempool_get_bulk(mp, obj_p, 1);
}
/**
* Get a contiguous blocks of objects from the mempool.
*
* If cache is enabled, consider to flush it first, to reuse objects
* as soon as possible.
*
* The application should check that the driver supports the operation
* by calling rte_mempool_ops_get_info() and checking that `contig_block_size`
* is not zero.
*
* @param mp
* A pointer to the mempool structure.
* @param first_obj_table
* A pointer to a pointer to the first object in each block.
* @param n
* The number of blocks to get from mempool.
* @return
* - 0: Success; blocks taken.
* - -ENOBUFS: Not enough entries in the mempool; no object is retrieved.
* - -EOPNOTSUPP: The mempool driver does not support block dequeue
*/
static __rte_always_inline int
rte_mempool_get_contig_blocks(struct rte_mempool *mp,
void **first_obj_table, unsigned int n)
{
int ret;
ret = rte_mempool_ops_dequeue_contig_blocks(mp, first_obj_table, n);
if (ret == 0) {
RTE_MEMPOOL_STAT_ADD(mp, get_success_bulk, 1);
RTE_MEMPOOL_STAT_ADD(mp, get_success_blks, n);
RTE_MEMPOOL_CONTIG_BLOCKS_CHECK_COOKIES(mp, first_obj_table, n,
1);
} else {
RTE_MEMPOOL_STAT_ADD(mp, get_fail_bulk, 1);
RTE_MEMPOOL_STAT_ADD(mp, get_fail_blks, n);
}
rte_mempool_trace_get_contig_blocks(mp, first_obj_table, n);
return ret;
}
/**
* Return the number of entries in the mempool.
*
* When cache is enabled, this function has to browse the length of
* all lcores, so it should not be used in a data path, but only for
* debug purposes. User-owned mempool caches are not accounted for.
*
* @param mp
* A pointer to the mempool structure.
* @return
* The number of entries in the mempool.
*/
unsigned int rte_mempool_avail_count(const struct rte_mempool *mp);
/**
* Return the number of elements which have been allocated from the mempool
*
* When cache is enabled, this function has to browse the length of
* all lcores, so it should not be used in a data path, but only for
* debug purposes.
*
* @param mp
* A pointer to the mempool structure.
* @return
* The number of free entries in the mempool.
*/
unsigned int
rte_mempool_in_use_count(const struct rte_mempool *mp);
/**
* Test if the mempool is full.
*
* When cache is enabled, this function has to browse the length of all
* lcores, so it should not be used in a data path, but only for debug
* purposes. User-owned mempool caches are not accounted for.
*
* @param mp
* A pointer to the mempool structure.
* @return
* - 1: The mempool is full.
* - 0: The mempool is not full.
*/
static inline int
rte_mempool_full(const struct rte_mempool *mp)
{
return rte_mempool_avail_count(mp) == mp->size;
}
/**
* Test if the mempool is empty.
*
* When cache is enabled, this function has to browse the length of all
* lcores, so it should not be used in a data path, but only for debug
* purposes. User-owned mempool caches are not accounted for.
*
* @param mp
* A pointer to the mempool structure.
* @return
* - 1: The mempool is empty.
* - 0: The mempool is not empty.
*/
static inline int
rte_mempool_empty(const struct rte_mempool *mp)
{
return rte_mempool_avail_count(mp) == 0;
}
/**
* Return the IO address of elt, which is an element of the pool mp.
*
* @param elt
* A pointer (virtual address) to the element of the pool.
* @return
* The IO address of the elt element.
* If the mempool was created with RTE_MEMPOOL_F_NO_IOVA_CONTIG, the
* returned value is RTE_BAD_IOVA.
*/
static inline rte_iova_t
rte_mempool_virt2iova(const void *elt)
{
const struct rte_mempool_objhdr *hdr;
hdr = (const struct rte_mempool_objhdr *)RTE_PTR_SUB(elt,
sizeof(*hdr));
return hdr->iova;
}
/**
* Check the consistency of mempool objects.
*
* Verify the coherency of fields in the mempool structure. Also check
* that the cookies of mempool objects (even the ones that are not
* present in pool) have a correct value. If not, a panic will occur.
*
* @param mp
* A pointer to the mempool structure.
*/
void rte_mempool_audit(struct rte_mempool *mp);
/**
* Return a pointer to the private data in an mempool structure.
*
* @param mp
* A pointer to the mempool structure.
* @return
* A pointer to the private data.
*/
static inline void *rte_mempool_get_priv(struct rte_mempool *mp)
{
return (char *)mp +
RTE_MEMPOOL_HEADER_SIZE(mp, mp->cache_size);
}
/**
* Dump the status of all mempools on the console
*
* @param f
* A pointer to a file for output
*/
void rte_mempool_list_dump(FILE *f);
/**
* Search a mempool from its name
*
* @param name
* The name of the mempool.
* @return
* The pointer to the mempool matching the name, or NULL if not found.
* NULL on error
* with rte_errno set appropriately. Possible rte_errno values include:
* - ENOENT - required entry not available to return.
*
*/
struct rte_mempool *rte_mempool_lookup(const char *name);
/**
* Get the header, trailer and total size of a mempool element.
*
* Given a desired size of the mempool element and mempool flags,
* calculates header, trailer, body and total sizes of the mempool object.
*
* @param elt_size
* The size of each element, without header and trailer.
* @param flags
* The flags used for the mempool creation.
* Consult rte_mempool_create() for more information about possible values.
* The size of each element.
* @param sz
* The calculated detailed size the mempool object. May be NULL.
* @return
* Total size of the mempool object.
*/
uint32_t rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
struct rte_mempool_objsz *sz);
/**
* Walk list of all memory pools
*
* @param func
* Iterator function
* @param arg
* Argument passed to iterator
*/
void rte_mempool_walk(void (*func)(struct rte_mempool *, void *arg),
void *arg);
/**
* @internal Get page size used for mempool object allocation.
* This function is internal to mempool library and mempool drivers.
*/
int
rte_mempool_get_page_size(struct rte_mempool *mp, size_t *pg_sz);
/**
* Mempool event type.
* @internal
*/
enum rte_mempool_event {
/** Occurs after a mempool is fully populated. */
RTE_MEMPOOL_EVENT_READY = 0,
/** Occurs before the destruction of a mempool begins. */
RTE_MEMPOOL_EVENT_DESTROY = 1,
};
/**
* @internal
* Mempool event callback.
*
* rte_mempool_event_callback_register() may be called from within the callback,
* but the callbacks registered this way will not be invoked for the same event.
* rte_mempool_event_callback_unregister() may only be safely called
* to remove the running callback.
*/
typedef void (rte_mempool_event_callback)(
enum rte_mempool_event event,
struct rte_mempool *mp,
void *user_data);
/**
* @internal
* Register a callback function invoked on mempool life cycle event.
* The function will be invoked in the process
* that performs an action which triggers the callback.
* Registration is process-private,
* i.e. each process must manage callbacks on its own if needed.
*
* @param func
* Callback function.
* @param user_data
* User data.
*
* @return
* 0 on success, negative on failure and rte_errno is set.
*/
__rte_internal
int
rte_mempool_event_callback_register(rte_mempool_event_callback *func,
void *user_data);
/**
* @internal
* Unregister a callback added with rte_mempool_event_callback_register().
* @p func and @p user_data must exactly match registration parameters.
*
* @param func
* Callback function.
* @param user_data
* User data.
*
* @return
* 0 on success, negative on failure and rte_errno is set.
*/
__rte_internal
int
rte_mempool_event_callback_unregister(rte_mempool_event_callback *func,
void *user_data);
#ifdef __cplusplus
}
#endif
#endif /* _RTE_MEMPOOL_H_ */