14255b3515
Packets destined to the to-be-stopped queue should not be dropped
(neither in HW nor in the driver), so re-program the RSS Table without
this queue on stop and add it back to the table on start unless it
is a Representor VF.
Since 0th entry is used for default ring, use fw_grp_id + 1 to change
the RSS table population logic by programming valid IDs instead of the
default zeroth entry in case of an invalid fw_grp_id.
Destroy and recreate the trio of Rx rings(compl, Rx, AG) every time in
start so that HW is in sync with software.
Fixes: 9b63c6fd70
("net/bnxt: support Rx/Tx queue start/stop")
Cc: stable@dpdk.org
Signed-off-by: Somnath Kotur <somnath.kotur@broadcom.com>
Reviewed-by: Ray Jui <ray.jui@broadcom.com>
Reviewed-by: Scott Branden <scott.branden@broadcom.com>
Reviewed-by: Randy Schacher <stuart.schacher@broadcom.com>
Signed-off-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
806 lines
21 KiB
C
806 lines
21 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2014-2018 Broadcom
|
|
* All rights reserved.
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
#include <stdbool.h>
|
|
|
|
#include <rte_bitmap.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_memory.h>
|
|
|
|
#include "bnxt.h"
|
|
#include "bnxt_cpr.h"
|
|
#include "bnxt_ring.h"
|
|
#include "bnxt_rxr.h"
|
|
#include "bnxt_rxq.h"
|
|
#include "hsi_struct_def_dpdk.h"
|
|
|
|
/*
|
|
* RX Ring handling
|
|
*/
|
|
|
|
static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
|
|
{
|
|
struct rte_mbuf *data;
|
|
|
|
data = rte_mbuf_raw_alloc(mb);
|
|
|
|
return data;
|
|
}
|
|
|
|
static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
|
|
struct bnxt_rx_ring_info *rxr,
|
|
uint16_t prod)
|
|
{
|
|
struct rx_prod_pkt_bd *rxbd = &rxr->rx_desc_ring[prod];
|
|
struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
|
|
struct rte_mbuf *mbuf;
|
|
|
|
mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
|
|
if (!mbuf) {
|
|
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rx_buf->mbuf = mbuf;
|
|
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
|
|
|
|
rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
|
|
struct bnxt_rx_ring_info *rxr,
|
|
uint16_t prod)
|
|
{
|
|
struct rx_prod_pkt_bd *rxbd = &rxr->ag_desc_ring[prod];
|
|
struct bnxt_sw_rx_bd *rx_buf = &rxr->ag_buf_ring[prod];
|
|
struct rte_mbuf *mbuf;
|
|
|
|
mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
|
|
if (!mbuf) {
|
|
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (rxbd == NULL)
|
|
PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
|
|
if (rx_buf == NULL)
|
|
PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
|
|
|
|
|
|
rx_buf->mbuf = mbuf;
|
|
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
|
|
|
|
rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
|
|
struct rte_mbuf *mbuf)
|
|
{
|
|
uint16_t prod = RING_NEXT(rxr->rx_ring_struct, rxr->rx_prod);
|
|
struct bnxt_sw_rx_bd *prod_rx_buf;
|
|
struct rx_prod_pkt_bd *prod_bd;
|
|
|
|
prod_rx_buf = &rxr->rx_buf_ring[prod];
|
|
|
|
RTE_ASSERT(prod_rx_buf->mbuf == NULL);
|
|
RTE_ASSERT(mbuf != NULL);
|
|
|
|
prod_rx_buf->mbuf = mbuf;
|
|
|
|
prod_bd = &rxr->rx_desc_ring[prod];
|
|
|
|
prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
|
|
|
|
rxr->rx_prod = prod;
|
|
}
|
|
|
|
#ifdef BNXT_DEBUG
|
|
static void bnxt_reuse_ag_mbuf(struct bnxt_rx_ring_info *rxr, uint16_t cons,
|
|
struct rte_mbuf *mbuf)
|
|
{
|
|
uint16_t prod = rxr->ag_prod;
|
|
struct bnxt_sw_rx_bd *prod_rx_buf;
|
|
struct rx_prod_pkt_bd *prod_bd, *cons_bd;
|
|
|
|
prod_rx_buf = &rxr->ag_buf_ring[prod];
|
|
|
|
prod_rx_buf->mbuf = mbuf;
|
|
|
|
prod_bd = &rxr->ag_desc_ring[prod];
|
|
cons_bd = &rxr->ag_desc_ring[cons];
|
|
|
|
prod_bd->address = cons_bd->addr;
|
|
}
|
|
#endif
|
|
|
|
static inline
|
|
struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
|
|
uint16_t cons)
|
|
{
|
|
struct bnxt_sw_rx_bd *cons_rx_buf;
|
|
struct rte_mbuf *mbuf;
|
|
|
|
cons_rx_buf = &rxr->rx_buf_ring[cons];
|
|
RTE_ASSERT(cons_rx_buf->mbuf != NULL);
|
|
mbuf = cons_rx_buf->mbuf;
|
|
cons_rx_buf->mbuf = NULL;
|
|
return mbuf;
|
|
}
|
|
|
|
static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
|
|
struct rx_tpa_start_cmpl *tpa_start,
|
|
struct rx_tpa_start_cmpl_hi *tpa_start1)
|
|
{
|
|
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
|
|
uint8_t agg_id = rte_le_to_cpu_32(tpa_start->agg_id &
|
|
RX_TPA_START_CMPL_AGG_ID_MASK) >> RX_TPA_START_CMPL_AGG_ID_SFT;
|
|
uint16_t data_cons;
|
|
struct bnxt_tpa_info *tpa_info;
|
|
struct rte_mbuf *mbuf;
|
|
|
|
data_cons = tpa_start->opaque;
|
|
tpa_info = &rxr->tpa_info[agg_id];
|
|
|
|
mbuf = bnxt_consume_rx_buf(rxr, data_cons);
|
|
|
|
bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
|
|
|
|
tpa_info->mbuf = mbuf;
|
|
tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
|
|
|
|
mbuf->nb_segs = 1;
|
|
mbuf->next = NULL;
|
|
mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
|
|
mbuf->data_len = mbuf->pkt_len;
|
|
mbuf->port = rxq->port_id;
|
|
mbuf->ol_flags = PKT_RX_LRO;
|
|
if (likely(tpa_start->flags_type &
|
|
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
|
|
mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
|
|
mbuf->ol_flags |= PKT_RX_RSS_HASH;
|
|
} else {
|
|
mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
|
|
mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
|
|
}
|
|
if (tpa_start1->flags2 &
|
|
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
|
|
mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
|
|
mbuf->ol_flags |= PKT_RX_VLAN;
|
|
}
|
|
if (likely(tpa_start1->flags2 &
|
|
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
|
|
mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
|
|
|
|
/* recycle next mbuf */
|
|
data_cons = RING_NEXT(rxr->rx_ring_struct, data_cons);
|
|
bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
|
|
}
|
|
|
|
static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
|
|
uint8_t agg_bufs, uint32_t raw_cp_cons)
|
|
{
|
|
uint16_t last_cp_cons;
|
|
struct rx_pkt_cmpl *agg_cmpl;
|
|
|
|
raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
|
|
last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
|
|
agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
|
|
cpr->valid = FLIP_VALID(raw_cp_cons,
|
|
cpr->cp_ring_struct->ring_mask,
|
|
cpr->valid);
|
|
return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
|
|
}
|
|
|
|
/* TPA consume agg buffer out of order, allocate connected data only */
|
|
static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
|
|
{
|
|
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
|
|
uint16_t next = RING_NEXT(rxr->ag_ring_struct, rxr->ag_prod);
|
|
|
|
/* TODO batch allocation for better performance */
|
|
while (rte_bitmap_get(rxr->ag_bitmap, next)) {
|
|
if (unlikely(bnxt_alloc_ag_data(rxq, rxr, next))) {
|
|
PMD_DRV_LOG(ERR,
|
|
"agg mbuf alloc failed: prod=0x%x\n", next);
|
|
break;
|
|
}
|
|
rte_bitmap_clear(rxr->ag_bitmap, next);
|
|
rxr->ag_prod = next;
|
|
next = RING_NEXT(rxr->ag_ring_struct, next);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
|
|
struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
|
|
uint8_t agg_buf)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
|
|
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
|
|
int i;
|
|
uint16_t cp_cons, ag_cons;
|
|
struct rx_pkt_cmpl *rxcmp;
|
|
struct rte_mbuf *last = mbuf;
|
|
|
|
for (i = 0; i < agg_buf; i++) {
|
|
struct bnxt_sw_rx_bd *ag_buf;
|
|
struct rte_mbuf *ag_mbuf;
|
|
*tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
|
|
cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
|
|
rxcmp = (struct rx_pkt_cmpl *)
|
|
&cpr->cp_desc_ring[cp_cons];
|
|
|
|
#ifdef BNXT_DEBUG
|
|
bnxt_dump_cmpl(cp_cons, rxcmp);
|
|
#endif
|
|
|
|
ag_cons = rxcmp->opaque;
|
|
RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
|
|
ag_buf = &rxr->ag_buf_ring[ag_cons];
|
|
ag_mbuf = ag_buf->mbuf;
|
|
RTE_ASSERT(ag_mbuf != NULL);
|
|
|
|
ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
|
|
|
|
mbuf->nb_segs++;
|
|
mbuf->pkt_len += ag_mbuf->data_len;
|
|
|
|
last->next = ag_mbuf;
|
|
last = ag_mbuf;
|
|
|
|
ag_buf->mbuf = NULL;
|
|
|
|
/*
|
|
* As aggregation buffer consumed out of order in TPA module,
|
|
* use bitmap to track freed slots to be allocated and notified
|
|
* to NIC
|
|
*/
|
|
rte_bitmap_set(rxr->ag_bitmap, ag_cons);
|
|
}
|
|
bnxt_prod_ag_mbuf(rxq);
|
|
return 0;
|
|
}
|
|
|
|
static inline struct rte_mbuf *bnxt_tpa_end(
|
|
struct bnxt_rx_queue *rxq,
|
|
uint32_t *raw_cp_cons,
|
|
struct rx_tpa_end_cmpl *tpa_end,
|
|
struct rx_tpa_end_cmpl_hi *tpa_end1 __rte_unused)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
|
|
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
|
|
uint8_t agg_id = (tpa_end->agg_id & RX_TPA_END_CMPL_AGG_ID_MASK)
|
|
>> RX_TPA_END_CMPL_AGG_ID_SFT;
|
|
struct rte_mbuf *mbuf;
|
|
uint8_t agg_bufs;
|
|
struct bnxt_tpa_info *tpa_info;
|
|
|
|
tpa_info = &rxr->tpa_info[agg_id];
|
|
mbuf = tpa_info->mbuf;
|
|
RTE_ASSERT(mbuf != NULL);
|
|
|
|
rte_prefetch0(mbuf);
|
|
agg_bufs = (rte_le_to_cpu_32(tpa_end->agg_bufs_v1) &
|
|
RX_TPA_END_CMPL_AGG_BUFS_MASK) >> RX_TPA_END_CMPL_AGG_BUFS_SFT;
|
|
if (agg_bufs) {
|
|
if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
|
|
return NULL;
|
|
bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs);
|
|
}
|
|
mbuf->l4_len = tpa_end->payload_offset;
|
|
|
|
struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
|
|
RTE_ASSERT(new_data != NULL);
|
|
if (!new_data) {
|
|
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
|
|
return NULL;
|
|
}
|
|
tpa_info->mbuf = new_data;
|
|
|
|
return mbuf;
|
|
}
|
|
|
|
static uint32_t
|
|
bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
|
|
{
|
|
uint32_t l3, pkt_type = 0;
|
|
uint32_t t_ipcs = 0, ip6 = 0, vlan = 0;
|
|
uint32_t flags_type;
|
|
|
|
vlan = !!(rxcmp1->flags2 &
|
|
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN));
|
|
pkt_type |= vlan ? RTE_PTYPE_L2_ETHER_VLAN : RTE_PTYPE_L2_ETHER;
|
|
|
|
t_ipcs = !!(rxcmp1->flags2 &
|
|
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC));
|
|
ip6 = !!(rxcmp1->flags2 &
|
|
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_IP_TYPE));
|
|
|
|
flags_type = rxcmp->flags_type &
|
|
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
|
|
|
|
if (!t_ipcs && !ip6)
|
|
l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
|
|
else if (!t_ipcs && ip6)
|
|
l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
|
|
else if (t_ipcs && !ip6)
|
|
l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
|
|
else
|
|
l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
|
|
|
|
switch (flags_type) {
|
|
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_ICMP):
|
|
if (!t_ipcs)
|
|
pkt_type |= l3 | RTE_PTYPE_L4_ICMP;
|
|
else
|
|
pkt_type |= l3 | RTE_PTYPE_INNER_L4_ICMP;
|
|
break;
|
|
|
|
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_TCP):
|
|
if (!t_ipcs)
|
|
pkt_type |= l3 | RTE_PTYPE_L4_TCP;
|
|
else
|
|
pkt_type |= l3 | RTE_PTYPE_INNER_L4_TCP;
|
|
break;
|
|
|
|
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_UDP):
|
|
if (!t_ipcs)
|
|
pkt_type |= l3 | RTE_PTYPE_L4_UDP;
|
|
else
|
|
pkt_type |= l3 | RTE_PTYPE_INNER_L4_UDP;
|
|
break;
|
|
|
|
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_IP):
|
|
pkt_type |= l3;
|
|
break;
|
|
}
|
|
|
|
return pkt_type;
|
|
}
|
|
|
|
static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
|
|
struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
|
|
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
|
|
struct rx_pkt_cmpl *rxcmp;
|
|
struct rx_pkt_cmpl_hi *rxcmp1;
|
|
uint32_t tmp_raw_cons = *raw_cons;
|
|
uint16_t cons, prod, cp_cons =
|
|
RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
|
|
#ifdef BNXT_DEBUG
|
|
uint16_t ag_cons;
|
|
#endif
|
|
struct rte_mbuf *mbuf;
|
|
int rc = 0;
|
|
uint8_t agg_buf = 0;
|
|
uint16_t cmp_type;
|
|
|
|
rxcmp = (struct rx_pkt_cmpl *)
|
|
&cpr->cp_desc_ring[cp_cons];
|
|
|
|
tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
|
|
cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
|
|
rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
|
|
|
|
if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
|
|
return -EBUSY;
|
|
|
|
cpr->valid = FLIP_VALID(cp_cons,
|
|
cpr->cp_ring_struct->ring_mask,
|
|
cpr->valid);
|
|
|
|
cmp_type = CMP_TYPE(rxcmp);
|
|
if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
|
|
bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
|
|
(struct rx_tpa_start_cmpl_hi *)rxcmp1);
|
|
rc = -EINVAL; /* Continue w/o new mbuf */
|
|
goto next_rx;
|
|
} else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
|
|
mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
|
|
(struct rx_tpa_end_cmpl *)rxcmp,
|
|
(struct rx_tpa_end_cmpl_hi *)rxcmp1);
|
|
if (unlikely(!mbuf))
|
|
return -EBUSY;
|
|
*rx_pkt = mbuf;
|
|
goto next_rx;
|
|
} else if (cmp_type != 0x11) {
|
|
rc = -EINVAL;
|
|
goto next_rx;
|
|
}
|
|
|
|
agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
|
|
>> RX_PKT_CMPL_AGG_BUFS_SFT;
|
|
if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
|
|
return -EBUSY;
|
|
|
|
prod = rxr->rx_prod;
|
|
|
|
cons = rxcmp->opaque;
|
|
mbuf = bnxt_consume_rx_buf(rxr, cons);
|
|
if (mbuf == NULL)
|
|
return -EBUSY;
|
|
|
|
rte_prefetch0(mbuf);
|
|
|
|
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
|
|
mbuf->nb_segs = 1;
|
|
mbuf->next = NULL;
|
|
mbuf->pkt_len = rxcmp->len;
|
|
mbuf->data_len = mbuf->pkt_len;
|
|
mbuf->port = rxq->port_id;
|
|
mbuf->ol_flags = 0;
|
|
if (rxcmp->flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
|
|
mbuf->hash.rss = rxcmp->rss_hash;
|
|
mbuf->ol_flags |= PKT_RX_RSS_HASH;
|
|
} else {
|
|
mbuf->hash.fdir.id = rxcmp1->cfa_code;
|
|
mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
|
|
}
|
|
|
|
if ((rxcmp->flags_type & rte_cpu_to_le_16(RX_PKT_CMPL_FLAGS_MASK)) ==
|
|
RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)
|
|
mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
|
|
|
|
if (agg_buf)
|
|
bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf);
|
|
|
|
if (rxcmp1->flags2 & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
|
|
mbuf->vlan_tci = rxcmp1->metadata &
|
|
(RX_PKT_CMPL_METADATA_VID_MASK |
|
|
RX_PKT_CMPL_METADATA_DE |
|
|
RX_PKT_CMPL_METADATA_PRI_MASK);
|
|
mbuf->ol_flags |= PKT_RX_VLAN;
|
|
}
|
|
|
|
if (likely(RX_CMP_IP_CS_OK(rxcmp1)))
|
|
mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
|
|
else if (likely(RX_CMP_IP_CS_UNKNOWN(rxcmp1)))
|
|
mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
|
|
else
|
|
mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
|
|
|
|
if (likely(RX_CMP_L4_CS_OK(rxcmp1)))
|
|
mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
|
|
else if (likely(RX_CMP_L4_CS_UNKNOWN(rxcmp1)))
|
|
mbuf->ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
|
|
else
|
|
mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
|
|
|
|
mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
|
|
|
|
#ifdef BNXT_DEBUG
|
|
if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
|
|
/* Re-install the mbuf back to the rx ring */
|
|
bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
|
|
if (agg_buf)
|
|
bnxt_reuse_ag_mbuf(rxr, ag_cons, mbuf);
|
|
|
|
rc = -EIO;
|
|
goto next_rx;
|
|
}
|
|
#endif
|
|
/*
|
|
* TODO: Redesign this....
|
|
* If the allocation fails, the packet does not get received.
|
|
* Simply returning this will result in slowly falling behind
|
|
* on the producer ring buffers.
|
|
* Instead, "filling up" the producer just before ringing the
|
|
* doorbell could be a better solution since it will let the
|
|
* producer ring starve until memory is available again pushing
|
|
* the drops into hardware and getting them out of the driver
|
|
* allowing recovery to a full producer ring.
|
|
*
|
|
* This could also help with cache usage by preventing per-packet
|
|
* calls in favour of a tight loop with the same function being called
|
|
* in it.
|
|
*/
|
|
prod = RING_NEXT(rxr->rx_ring_struct, prod);
|
|
if (bnxt_alloc_rx_data(rxq, rxr, prod)) {
|
|
PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n", prod);
|
|
rc = -ENOMEM;
|
|
goto rx;
|
|
}
|
|
rxr->rx_prod = prod;
|
|
/*
|
|
* All MBUFs are allocated with the same size under DPDK,
|
|
* no optimization for rx_copy_thresh
|
|
*/
|
|
rx:
|
|
*rx_pkt = mbuf;
|
|
|
|
next_rx:
|
|
|
|
*raw_cons = tmp_raw_cons;
|
|
|
|
return rc;
|
|
}
|
|
|
|
uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct bnxt_rx_queue *rxq = rx_queue;
|
|
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
|
|
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
|
|
uint32_t raw_cons = cpr->cp_raw_cons;
|
|
uint32_t cons;
|
|
int nb_rx_pkts = 0;
|
|
struct rx_pkt_cmpl *rxcmp;
|
|
uint16_t prod = rxr->rx_prod;
|
|
uint16_t ag_prod = rxr->ag_prod;
|
|
int rc = 0;
|
|
bool evt = false;
|
|
|
|
/* If Rx Q was stopped return. RxQ0 cannot be stopped. */
|
|
if (unlikely(((rxq->rx_deferred_start ||
|
|
!rte_spinlock_trylock(&rxq->lock)) &&
|
|
rxq->queue_id)))
|
|
return 0;
|
|
|
|
/* Handle RX burst request */
|
|
while (1) {
|
|
cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
|
|
rte_prefetch0(&cpr->cp_desc_ring[cons]);
|
|
rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
|
|
|
|
if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
|
|
break;
|
|
cpr->valid = FLIP_VALID(cons,
|
|
cpr->cp_ring_struct->ring_mask,
|
|
cpr->valid);
|
|
|
|
/* TODO: Avoid magic numbers... */
|
|
if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
|
|
rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
|
|
if (likely(!rc) || rc == -ENOMEM)
|
|
nb_rx_pkts++;
|
|
if (rc == -EBUSY) /* partial completion */
|
|
break;
|
|
} else {
|
|
evt =
|
|
bnxt_event_hwrm_resp_handler(rxq->bp,
|
|
(struct cmpl_base *)rxcmp);
|
|
}
|
|
|
|
raw_cons = NEXT_RAW_CMP(raw_cons);
|
|
if (nb_rx_pkts == nb_pkts || evt)
|
|
break;
|
|
/* Post some Rx buf early in case of larger burst processing */
|
|
if (nb_rx_pkts == BNXT_RX_POST_THRESH)
|
|
B_RX_DB(rxr->rx_doorbell, rxr->rx_prod);
|
|
}
|
|
|
|
cpr->cp_raw_cons = raw_cons;
|
|
if (!nb_rx_pkts && !evt) {
|
|
/*
|
|
* For PMD, there is no need to keep on pushing to REARM
|
|
* the doorbell if there are no new completions
|
|
*/
|
|
goto done;
|
|
}
|
|
|
|
if (prod != rxr->rx_prod)
|
|
B_RX_DB(rxr->rx_doorbell, rxr->rx_prod);
|
|
|
|
/* Ring the AGG ring DB */
|
|
if (ag_prod != rxr->ag_prod)
|
|
B_RX_DB(rxr->ag_doorbell, rxr->ag_prod);
|
|
|
|
B_CP_DIS_DB(cpr, cpr->cp_raw_cons);
|
|
|
|
/* Attempt to alloc Rx buf in case of a previous allocation failure. */
|
|
if (rc == -ENOMEM) {
|
|
int i;
|
|
|
|
for (i = prod; i <= nb_rx_pkts;
|
|
i = RING_NEXT(rxr->rx_ring_struct, i)) {
|
|
struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
|
|
|
|
/* Buffer already allocated for this index. */
|
|
if (rx_buf->mbuf != NULL)
|
|
continue;
|
|
|
|
/* This slot is empty. Alloc buffer for Rx */
|
|
if (!bnxt_alloc_rx_data(rxq, rxr, i)) {
|
|
rxr->rx_prod = i;
|
|
B_RX_DB(rxr->rx_doorbell, rxr->rx_prod);
|
|
} else {
|
|
PMD_DRV_LOG(ERR, "Alloc mbuf failed\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
done:
|
|
rte_spinlock_unlock(&rxq->lock);
|
|
|
|
return nb_rx_pkts;
|
|
}
|
|
|
|
void bnxt_free_rx_rings(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
struct bnxt_rx_queue *rxq;
|
|
|
|
if (!bp->rx_queues)
|
|
return;
|
|
|
|
for (i = 0; i < (int)bp->rx_nr_rings; i++) {
|
|
rxq = bp->rx_queues[i];
|
|
if (!rxq)
|
|
continue;
|
|
|
|
bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
|
|
rte_free(rxq->rx_ring->rx_ring_struct);
|
|
|
|
/* Free the Aggregator ring */
|
|
bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
|
|
rte_free(rxq->rx_ring->ag_ring_struct);
|
|
rxq->rx_ring->ag_ring_struct = NULL;
|
|
|
|
rte_free(rxq->rx_ring);
|
|
|
|
bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
|
|
rte_free(rxq->cp_ring->cp_ring_struct);
|
|
rte_free(rxq->cp_ring);
|
|
|
|
rte_free(rxq);
|
|
bp->rx_queues[i] = NULL;
|
|
}
|
|
}
|
|
|
|
int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr;
|
|
struct bnxt_rx_ring_info *rxr;
|
|
struct bnxt_ring *ring;
|
|
|
|
rxq->rx_buf_use_size = BNXT_MAX_MTU + ETHER_HDR_LEN + ETHER_CRC_LEN +
|
|
(2 * VLAN_TAG_SIZE);
|
|
rxq->rx_buf_size = rxq->rx_buf_use_size + sizeof(struct rte_mbuf);
|
|
|
|
rxr = rte_zmalloc_socket("bnxt_rx_ring",
|
|
sizeof(struct bnxt_rx_ring_info),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (rxr == NULL)
|
|
return -ENOMEM;
|
|
rxq->rx_ring = rxr;
|
|
|
|
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
|
|
sizeof(struct bnxt_ring),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (ring == NULL)
|
|
return -ENOMEM;
|
|
rxr->rx_ring_struct = ring;
|
|
ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
|
|
ring->ring_mask = ring->ring_size - 1;
|
|
ring->bd = (void *)rxr->rx_desc_ring;
|
|
ring->bd_dma = rxr->rx_desc_mapping;
|
|
ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
|
|
ring->vmem = (void **)&rxr->rx_buf_ring;
|
|
|
|
cpr = rte_zmalloc_socket("bnxt_rx_ring",
|
|
sizeof(struct bnxt_cp_ring_info),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (cpr == NULL)
|
|
return -ENOMEM;
|
|
rxq->cp_ring = cpr;
|
|
|
|
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
|
|
sizeof(struct bnxt_ring),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (ring == NULL)
|
|
return -ENOMEM;
|
|
cpr->cp_ring_struct = ring;
|
|
ring->ring_size = rte_align32pow2(rxr->rx_ring_struct->ring_size *
|
|
(2 + AGG_RING_SIZE_FACTOR));
|
|
ring->ring_mask = ring->ring_size - 1;
|
|
ring->bd = (void *)cpr->cp_desc_ring;
|
|
ring->bd_dma = cpr->cp_desc_mapping;
|
|
ring->vmem_size = 0;
|
|
ring->vmem = NULL;
|
|
|
|
/* Allocate Aggregator rings */
|
|
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
|
|
sizeof(struct bnxt_ring),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (ring == NULL)
|
|
return -ENOMEM;
|
|
rxr->ag_ring_struct = ring;
|
|
ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
|
|
AGG_RING_SIZE_FACTOR);
|
|
ring->ring_mask = ring->ring_size - 1;
|
|
ring->bd = (void *)rxr->ag_desc_ring;
|
|
ring->bd_dma = rxr->ag_desc_mapping;
|
|
ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
|
|
ring->vmem = (void **)&rxr->ag_buf_ring;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
|
|
uint16_t len)
|
|
{
|
|
uint32_t j;
|
|
struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
|
|
|
|
if (!rx_bd_ring)
|
|
return;
|
|
for (j = 0; j < ring->ring_size; j++) {
|
|
rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
|
|
rx_bd_ring[j].len = rte_cpu_to_le_16(len);
|
|
rx_bd_ring[j].opaque = j;
|
|
}
|
|
}
|
|
|
|
int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
|
|
{
|
|
struct bnxt_rx_ring_info *rxr;
|
|
struct bnxt_ring *ring;
|
|
uint32_t prod, type;
|
|
unsigned int i;
|
|
uint16_t size;
|
|
|
|
size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
|
|
if (rxq->rx_buf_use_size <= size)
|
|
size = rxq->rx_buf_use_size;
|
|
|
|
type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT | RX_PROD_PKT_BD_FLAGS_EOP_PAD;
|
|
|
|
rxr = rxq->rx_ring;
|
|
ring = rxr->rx_ring_struct;
|
|
bnxt_init_rxbds(ring, type, size);
|
|
|
|
prod = rxr->rx_prod;
|
|
for (i = 0; i < ring->ring_size; i++) {
|
|
if (bnxt_alloc_rx_data(rxq, rxr, prod) != 0) {
|
|
PMD_DRV_LOG(WARNING,
|
|
"init'ed rx ring %d with %d/%d mbufs only\n",
|
|
rxq->queue_id, i, ring->ring_size);
|
|
break;
|
|
}
|
|
rxr->rx_prod = prod;
|
|
prod = RING_NEXT(rxr->rx_ring_struct, prod);
|
|
}
|
|
|
|
ring = rxr->ag_ring_struct;
|
|
type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
|
|
bnxt_init_rxbds(ring, type, size);
|
|
prod = rxr->ag_prod;
|
|
|
|
for (i = 0; i < ring->ring_size; i++) {
|
|
if (bnxt_alloc_ag_data(rxq, rxr, prod) != 0) {
|
|
PMD_DRV_LOG(WARNING,
|
|
"init'ed AG ring %d with %d/%d mbufs only\n",
|
|
rxq->queue_id, i, ring->ring_size);
|
|
break;
|
|
}
|
|
rxr->ag_prod = prod;
|
|
prod = RING_NEXT(rxr->ag_ring_struct, prod);
|
|
}
|
|
PMD_DRV_LOG(DEBUG, "AGG Done!\n");
|
|
|
|
if (rxr->tpa_info) {
|
|
for (i = 0; i < BNXT_TPA_MAX; i++) {
|
|
rxr->tpa_info[i].mbuf =
|
|
__bnxt_alloc_rx_data(rxq->mb_pool);
|
|
if (!rxr->tpa_info[i].mbuf) {
|
|
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
}
|
|
PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
|
|
|
|
return 0;
|
|
}
|