numam-dpdk/drivers/net/sfc/sfc_ev.c
Andrew Rybchenko 390f9b8d82 net/sfc: support equal stride super-buffer Rx mode
HW Rx descriptor represents many contiguous packet buffers which
follow each other. Number of buffers, stride and maximum DMA
length are setup-time configurable per Rx queue based on provided
mempool. The mempool must support contiguous block allocation and
get info API to retrieve number of objects in the block.

Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
Reviewed-by: Ivan Malov <ivan.malov@oktetlabs.ru>
2018-04-27 18:00:58 +01:00

922 lines
21 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2016-2018 Solarflare Communications Inc.
* All rights reserved.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_alarm.h>
#include <rte_branch_prediction.h>
#include "efx.h"
#include "sfc.h"
#include "sfc_debug.h"
#include "sfc_log.h"
#include "sfc_ev.h"
#include "sfc_rx.h"
#include "sfc_tx.h"
#include "sfc_kvargs.h"
/* Initial delay when waiting for event queue init complete event */
#define SFC_EVQ_INIT_BACKOFF_START_US (1)
/* Maximum delay between event queue polling attempts */
#define SFC_EVQ_INIT_BACKOFF_MAX_US (10 * 1000)
/* Event queue init approx timeout */
#define SFC_EVQ_INIT_TIMEOUT_US (2 * US_PER_S)
/* Management event queue polling period in microseconds */
#define SFC_MGMT_EV_QPOLL_PERIOD_US (US_PER_S)
static const char *
sfc_evq_type2str(enum sfc_evq_type type)
{
switch (type) {
case SFC_EVQ_TYPE_MGMT:
return "mgmt-evq";
case SFC_EVQ_TYPE_RX:
return "rx-evq";
case SFC_EVQ_TYPE_TX:
return "tx-evq";
default:
SFC_ASSERT(B_FALSE);
return NULL;
}
}
static boolean_t
sfc_ev_initialized(void *arg)
{
struct sfc_evq *evq = arg;
/* Init done events may be duplicated on SFN7xxx (SFC bug 31631) */
SFC_ASSERT(evq->init_state == SFC_EVQ_STARTING ||
evq->init_state == SFC_EVQ_STARTED);
evq->init_state = SFC_EVQ_STARTED;
return B_FALSE;
}
static boolean_t
sfc_ev_nop_rx(void *arg, uint32_t label, uint32_t id,
uint32_t size, uint16_t flags)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa,
"EVQ %u unexpected Rx event label=%u id=%#x size=%u flags=%#x",
evq->evq_index, label, id, size, flags);
return B_TRUE;
}
static boolean_t
sfc_ev_efx_rx(void *arg, __rte_unused uint32_t label, uint32_t id,
uint32_t size, uint16_t flags)
{
struct sfc_evq *evq = arg;
struct sfc_efx_rxq *rxq;
unsigned int stop;
unsigned int pending_id;
unsigned int delta;
unsigned int i;
struct sfc_efx_rx_sw_desc *rxd;
if (unlikely(evq->exception))
goto done;
rxq = sfc_efx_rxq_by_dp_rxq(evq->dp_rxq);
SFC_ASSERT(rxq != NULL);
SFC_ASSERT(rxq->evq == evq);
SFC_ASSERT(rxq->flags & SFC_EFX_RXQ_FLAG_STARTED);
stop = (id + 1) & rxq->ptr_mask;
pending_id = rxq->pending & rxq->ptr_mask;
delta = (stop >= pending_id) ? (stop - pending_id) :
(rxq->ptr_mask + 1 - pending_id + stop);
if (delta == 0) {
/*
* Rx event with no new descriptors done and zero length
* is used to abort scattered packet when there is no room
* for the tail.
*/
if (unlikely(size != 0)) {
evq->exception = B_TRUE;
sfc_err(evq->sa,
"EVQ %u RxQ %u invalid RX abort "
"(id=%#x size=%u flags=%#x); needs restart",
evq->evq_index, rxq->dp.dpq.queue_id,
id, size, flags);
goto done;
}
/* Add discard flag to the first fragment */
rxq->sw_desc[pending_id].flags |= EFX_DISCARD;
/* Remove continue flag from the last fragment */
rxq->sw_desc[id].flags &= ~EFX_PKT_CONT;
} else if (unlikely(delta > rxq->batch_max)) {
evq->exception = B_TRUE;
sfc_err(evq->sa,
"EVQ %u RxQ %u completion out of order "
"(id=%#x delta=%u flags=%#x); needs restart",
evq->evq_index, rxq->dp.dpq.queue_id,
id, delta, flags);
goto done;
}
for (i = pending_id; i != stop; i = (i + 1) & rxq->ptr_mask) {
rxd = &rxq->sw_desc[i];
rxd->flags = flags;
SFC_ASSERT(size < (1 << 16));
rxd->size = (uint16_t)size;
}
rxq->pending += delta;
done:
return B_FALSE;
}
static boolean_t
sfc_ev_dp_rx(void *arg, __rte_unused uint32_t label, uint32_t id,
__rte_unused uint32_t size, __rte_unused uint16_t flags)
{
struct sfc_evq *evq = arg;
struct sfc_dp_rxq *dp_rxq;
dp_rxq = evq->dp_rxq;
SFC_ASSERT(dp_rxq != NULL);
SFC_ASSERT(evq->sa->dp_rx->qrx_ev != NULL);
return evq->sa->dp_rx->qrx_ev(dp_rxq, id);
}
static boolean_t
sfc_ev_nop_rx_ps(void *arg, uint32_t label, uint32_t id,
uint32_t pkt_count, uint16_t flags)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa,
"EVQ %u unexpected packed stream Rx event label=%u id=%#x pkt_count=%u flags=%#x",
evq->evq_index, label, id, pkt_count, flags);
return B_TRUE;
}
/* It is not actually used on datapath, but required on RxQ flush */
static boolean_t
sfc_ev_dp_rx_ps(void *arg, __rte_unused uint32_t label, uint32_t id,
__rte_unused uint32_t pkt_count, __rte_unused uint16_t flags)
{
struct sfc_evq *evq = arg;
struct sfc_dp_rxq *dp_rxq;
dp_rxq = evq->dp_rxq;
SFC_ASSERT(dp_rxq != NULL);
if (evq->sa->dp_rx->qrx_ps_ev != NULL)
return evq->sa->dp_rx->qrx_ps_ev(dp_rxq, id);
else
return B_FALSE;
}
static boolean_t
sfc_ev_nop_tx(void *arg, uint32_t label, uint32_t id)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected Tx event label=%u id=%#x",
evq->evq_index, label, id);
return B_TRUE;
}
static boolean_t
sfc_ev_tx(void *arg, __rte_unused uint32_t label, uint32_t id)
{
struct sfc_evq *evq = arg;
struct sfc_dp_txq *dp_txq;
struct sfc_efx_txq *txq;
unsigned int stop;
unsigned int delta;
dp_txq = evq->dp_txq;
SFC_ASSERT(dp_txq != NULL);
txq = sfc_efx_txq_by_dp_txq(dp_txq);
SFC_ASSERT(txq->evq == evq);
if (unlikely((txq->flags & SFC_EFX_TXQ_FLAG_STARTED) == 0))
goto done;
stop = (id + 1) & txq->ptr_mask;
id = txq->pending & txq->ptr_mask;
delta = (stop >= id) ? (stop - id) : (txq->ptr_mask + 1 - id + stop);
txq->pending += delta;
done:
return B_FALSE;
}
static boolean_t
sfc_ev_dp_tx(void *arg, __rte_unused uint32_t label, uint32_t id)
{
struct sfc_evq *evq = arg;
struct sfc_dp_txq *dp_txq;
dp_txq = evq->dp_txq;
SFC_ASSERT(dp_txq != NULL);
SFC_ASSERT(evq->sa->dp_tx->qtx_ev != NULL);
return evq->sa->dp_tx->qtx_ev(dp_txq, id);
}
static boolean_t
sfc_ev_exception(void *arg, uint32_t code, __rte_unused uint32_t data)
{
struct sfc_evq *evq = arg;
if (code == EFX_EXCEPTION_UNKNOWN_SENSOREVT)
return B_FALSE;
evq->exception = B_TRUE;
sfc_warn(evq->sa,
"hardware exception %s (code=%u, data=%#x) on EVQ %u;"
" needs recovery",
(code == EFX_EXCEPTION_RX_RECOVERY) ? "RX_RECOVERY" :
(code == EFX_EXCEPTION_RX_DSC_ERROR) ? "RX_DSC_ERROR" :
(code == EFX_EXCEPTION_TX_DSC_ERROR) ? "TX_DSC_ERROR" :
(code == EFX_EXCEPTION_FWALERT_SRAM) ? "FWALERT_SRAM" :
(code == EFX_EXCEPTION_UNKNOWN_FWALERT) ? "UNKNOWN_FWALERT" :
(code == EFX_EXCEPTION_RX_ERROR) ? "RX_ERROR" :
(code == EFX_EXCEPTION_TX_ERROR) ? "TX_ERROR" :
(code == EFX_EXCEPTION_EV_ERROR) ? "EV_ERROR" :
"UNKNOWN",
code, data, evq->evq_index);
return B_TRUE;
}
static boolean_t
sfc_ev_nop_rxq_flush_done(void *arg, uint32_t rxq_hw_index)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected RxQ %u flush done",
evq->evq_index, rxq_hw_index);
return B_TRUE;
}
static boolean_t
sfc_ev_rxq_flush_done(void *arg, __rte_unused uint32_t rxq_hw_index)
{
struct sfc_evq *evq = arg;
struct sfc_dp_rxq *dp_rxq;
struct sfc_rxq *rxq;
dp_rxq = evq->dp_rxq;
SFC_ASSERT(dp_rxq != NULL);
rxq = sfc_rxq_by_dp_rxq(dp_rxq);
SFC_ASSERT(rxq != NULL);
SFC_ASSERT(rxq->hw_index == rxq_hw_index);
SFC_ASSERT(rxq->evq == evq);
sfc_rx_qflush_done(rxq);
return B_FALSE;
}
static boolean_t
sfc_ev_nop_rxq_flush_failed(void *arg, uint32_t rxq_hw_index)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected RxQ %u flush failed",
evq->evq_index, rxq_hw_index);
return B_TRUE;
}
static boolean_t
sfc_ev_rxq_flush_failed(void *arg, __rte_unused uint32_t rxq_hw_index)
{
struct sfc_evq *evq = arg;
struct sfc_dp_rxq *dp_rxq;
struct sfc_rxq *rxq;
dp_rxq = evq->dp_rxq;
SFC_ASSERT(dp_rxq != NULL);
rxq = sfc_rxq_by_dp_rxq(dp_rxq);
SFC_ASSERT(rxq != NULL);
SFC_ASSERT(rxq->hw_index == rxq_hw_index);
SFC_ASSERT(rxq->evq == evq);
sfc_rx_qflush_failed(rxq);
return B_FALSE;
}
static boolean_t
sfc_ev_nop_txq_flush_done(void *arg, uint32_t txq_hw_index)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected TxQ %u flush done",
evq->evq_index, txq_hw_index);
return B_TRUE;
}
static boolean_t
sfc_ev_txq_flush_done(void *arg, __rte_unused uint32_t txq_hw_index)
{
struct sfc_evq *evq = arg;
struct sfc_dp_txq *dp_txq;
struct sfc_txq *txq;
dp_txq = evq->dp_txq;
SFC_ASSERT(dp_txq != NULL);
txq = sfc_txq_by_dp_txq(dp_txq);
SFC_ASSERT(txq != NULL);
SFC_ASSERT(txq->hw_index == txq_hw_index);
SFC_ASSERT(txq->evq == evq);
sfc_tx_qflush_done(txq);
return B_FALSE;
}
static boolean_t
sfc_ev_software(void *arg, uint16_t magic)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected software event magic=%#.4x",
evq->evq_index, magic);
return B_TRUE;
}
static boolean_t
sfc_ev_sram(void *arg, uint32_t code)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected SRAM event code=%u",
evq->evq_index, code);
return B_TRUE;
}
static boolean_t
sfc_ev_wake_up(void *arg, uint32_t index)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected wake up event index=%u",
evq->evq_index, index);
return B_TRUE;
}
static boolean_t
sfc_ev_timer(void *arg, uint32_t index)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected timer event index=%u",
evq->evq_index, index);
return B_TRUE;
}
static boolean_t
sfc_ev_nop_link_change(void *arg, __rte_unused efx_link_mode_t link_mode)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected link change event",
evq->evq_index);
return B_TRUE;
}
static boolean_t
sfc_ev_link_change(void *arg, efx_link_mode_t link_mode)
{
struct sfc_evq *evq = arg;
struct sfc_adapter *sa = evq->sa;
struct rte_eth_link new_link;
sfc_port_link_mode_to_info(link_mode, &new_link);
if (rte_eth_linkstatus_set(sa->eth_dev, &new_link))
evq->sa->port.lsc_seq++;
return B_FALSE;
}
static const efx_ev_callbacks_t sfc_ev_callbacks = {
.eec_initialized = sfc_ev_initialized,
.eec_rx = sfc_ev_nop_rx,
.eec_rx_ps = sfc_ev_nop_rx_ps,
.eec_tx = sfc_ev_nop_tx,
.eec_exception = sfc_ev_exception,
.eec_rxq_flush_done = sfc_ev_nop_rxq_flush_done,
.eec_rxq_flush_failed = sfc_ev_nop_rxq_flush_failed,
.eec_txq_flush_done = sfc_ev_nop_txq_flush_done,
.eec_software = sfc_ev_software,
.eec_sram = sfc_ev_sram,
.eec_wake_up = sfc_ev_wake_up,
.eec_timer = sfc_ev_timer,
.eec_link_change = sfc_ev_link_change,
};
static const efx_ev_callbacks_t sfc_ev_callbacks_efx_rx = {
.eec_initialized = sfc_ev_initialized,
.eec_rx = sfc_ev_efx_rx,
.eec_rx_ps = sfc_ev_nop_rx_ps,
.eec_tx = sfc_ev_nop_tx,
.eec_exception = sfc_ev_exception,
.eec_rxq_flush_done = sfc_ev_rxq_flush_done,
.eec_rxq_flush_failed = sfc_ev_rxq_flush_failed,
.eec_txq_flush_done = sfc_ev_nop_txq_flush_done,
.eec_software = sfc_ev_software,
.eec_sram = sfc_ev_sram,
.eec_wake_up = sfc_ev_wake_up,
.eec_timer = sfc_ev_timer,
.eec_link_change = sfc_ev_nop_link_change,
};
static const efx_ev_callbacks_t sfc_ev_callbacks_dp_rx = {
.eec_initialized = sfc_ev_initialized,
.eec_rx = sfc_ev_dp_rx,
.eec_rx_ps = sfc_ev_dp_rx_ps,
.eec_tx = sfc_ev_nop_tx,
.eec_exception = sfc_ev_exception,
.eec_rxq_flush_done = sfc_ev_rxq_flush_done,
.eec_rxq_flush_failed = sfc_ev_rxq_flush_failed,
.eec_txq_flush_done = sfc_ev_nop_txq_flush_done,
.eec_software = sfc_ev_software,
.eec_sram = sfc_ev_sram,
.eec_wake_up = sfc_ev_wake_up,
.eec_timer = sfc_ev_timer,
.eec_link_change = sfc_ev_nop_link_change,
};
static const efx_ev_callbacks_t sfc_ev_callbacks_efx_tx = {
.eec_initialized = sfc_ev_initialized,
.eec_rx = sfc_ev_nop_rx,
.eec_rx_ps = sfc_ev_nop_rx_ps,
.eec_tx = sfc_ev_tx,
.eec_exception = sfc_ev_exception,
.eec_rxq_flush_done = sfc_ev_nop_rxq_flush_done,
.eec_rxq_flush_failed = sfc_ev_nop_rxq_flush_failed,
.eec_txq_flush_done = sfc_ev_txq_flush_done,
.eec_software = sfc_ev_software,
.eec_sram = sfc_ev_sram,
.eec_wake_up = sfc_ev_wake_up,
.eec_timer = sfc_ev_timer,
.eec_link_change = sfc_ev_nop_link_change,
};
static const efx_ev_callbacks_t sfc_ev_callbacks_dp_tx = {
.eec_initialized = sfc_ev_initialized,
.eec_rx = sfc_ev_nop_rx,
.eec_rx_ps = sfc_ev_nop_rx_ps,
.eec_tx = sfc_ev_dp_tx,
.eec_exception = sfc_ev_exception,
.eec_rxq_flush_done = sfc_ev_nop_rxq_flush_done,
.eec_rxq_flush_failed = sfc_ev_nop_rxq_flush_failed,
.eec_txq_flush_done = sfc_ev_txq_flush_done,
.eec_software = sfc_ev_software,
.eec_sram = sfc_ev_sram,
.eec_wake_up = sfc_ev_wake_up,
.eec_timer = sfc_ev_timer,
.eec_link_change = sfc_ev_nop_link_change,
};
void
sfc_ev_qpoll(struct sfc_evq *evq)
{
SFC_ASSERT(evq->init_state == SFC_EVQ_STARTED ||
evq->init_state == SFC_EVQ_STARTING);
/* Synchronize the DMA memory for reading not required */
efx_ev_qpoll(evq->common, &evq->read_ptr, evq->callbacks, evq);
if (unlikely(evq->exception) && sfc_adapter_trylock(evq->sa)) {
struct sfc_adapter *sa = evq->sa;
int rc;
if (evq->dp_rxq != NULL) {
unsigned int rxq_sw_index;
rxq_sw_index = evq->dp_rxq->dpq.queue_id;
sfc_warn(sa,
"restart RxQ %u because of exception on its EvQ %u",
rxq_sw_index, evq->evq_index);
sfc_rx_qstop(sa, rxq_sw_index);
rc = sfc_rx_qstart(sa, rxq_sw_index);
if (rc != 0)
sfc_err(sa, "cannot restart RxQ %u",
rxq_sw_index);
}
if (evq->dp_txq != NULL) {
unsigned int txq_sw_index;
txq_sw_index = evq->dp_txq->dpq.queue_id;
sfc_warn(sa,
"restart TxQ %u because of exception on its EvQ %u",
txq_sw_index, evq->evq_index);
sfc_tx_qstop(sa, txq_sw_index);
rc = sfc_tx_qstart(sa, txq_sw_index);
if (rc != 0)
sfc_err(sa, "cannot restart TxQ %u",
txq_sw_index);
}
if (evq->exception)
sfc_panic(sa, "unrecoverable exception on EvQ %u",
evq->evq_index);
sfc_adapter_unlock(sa);
}
/* Poll-mode driver does not re-prime the event queue for interrupts */
}
void
sfc_ev_mgmt_qpoll(struct sfc_adapter *sa)
{
if (rte_spinlock_trylock(&sa->mgmt_evq_lock)) {
if (sa->mgmt_evq_running)
sfc_ev_qpoll(sa->mgmt_evq);
rte_spinlock_unlock(&sa->mgmt_evq_lock);
}
}
int
sfc_ev_qprime(struct sfc_evq *evq)
{
SFC_ASSERT(evq->init_state == SFC_EVQ_STARTED);
return efx_ev_qprime(evq->common, evq->read_ptr);
}
/* Event queue HW index allocation scheme is described in sfc_ev.h. */
int
sfc_ev_qstart(struct sfc_evq *evq, unsigned int hw_index)
{
struct sfc_adapter *sa = evq->sa;
efsys_mem_t *esmp;
uint32_t evq_flags = sa->evq_flags;
unsigned int total_delay_us;
unsigned int delay_us;
int rc;
sfc_log_init(sa, "hw_index=%u", hw_index);
esmp = &evq->mem;
evq->evq_index = hw_index;
/* Clear all events */
(void)memset((void *)esmp->esm_base, 0xff, EFX_EVQ_SIZE(evq->entries));
if (sa->intr.lsc_intr && hw_index == sa->mgmt_evq_index)
evq_flags |= EFX_EVQ_FLAGS_NOTIFY_INTERRUPT;
else
evq_flags |= EFX_EVQ_FLAGS_NOTIFY_DISABLED;
/* Create the common code event queue */
rc = efx_ev_qcreate(sa->nic, hw_index, esmp, evq->entries,
0 /* unused on EF10 */, 0, evq_flags,
&evq->common);
if (rc != 0)
goto fail_ev_qcreate;
SFC_ASSERT(evq->dp_rxq == NULL || evq->dp_txq == NULL);
if (evq->dp_rxq != 0) {
if (strcmp(sa->dp_rx->dp.name, SFC_KVARG_DATAPATH_EFX) == 0)
evq->callbacks = &sfc_ev_callbacks_efx_rx;
else
evq->callbacks = &sfc_ev_callbacks_dp_rx;
} else if (evq->dp_txq != 0) {
if (strcmp(sa->dp_tx->dp.name, SFC_KVARG_DATAPATH_EFX) == 0)
evq->callbacks = &sfc_ev_callbacks_efx_tx;
else
evq->callbacks = &sfc_ev_callbacks_dp_tx;
} else {
evq->callbacks = &sfc_ev_callbacks;
}
evq->init_state = SFC_EVQ_STARTING;
/* Wait for the initialization event */
total_delay_us = 0;
delay_us = SFC_EVQ_INIT_BACKOFF_START_US;
do {
(void)sfc_ev_qpoll(evq);
/* Check to see if the initialization complete indication
* posted by the hardware.
*/
if (evq->init_state == SFC_EVQ_STARTED)
goto done;
/* Give event queue some time to init */
rte_delay_us(delay_us);
total_delay_us += delay_us;
/* Exponential backoff */
delay_us *= 2;
if (delay_us > SFC_EVQ_INIT_BACKOFF_MAX_US)
delay_us = SFC_EVQ_INIT_BACKOFF_MAX_US;
} while (total_delay_us < SFC_EVQ_INIT_TIMEOUT_US);
rc = ETIMEDOUT;
goto fail_timedout;
done:
return 0;
fail_timedout:
evq->init_state = SFC_EVQ_INITIALIZED;
efx_ev_qdestroy(evq->common);
fail_ev_qcreate:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_ev_qstop(struct sfc_evq *evq)
{
if (evq == NULL)
return;
sfc_log_init(evq->sa, "hw_index=%u", evq->evq_index);
if (evq->init_state != SFC_EVQ_STARTED)
return;
evq->init_state = SFC_EVQ_INITIALIZED;
evq->callbacks = NULL;
evq->read_ptr = 0;
evq->exception = B_FALSE;
efx_ev_qdestroy(evq->common);
evq->evq_index = 0;
}
static void
sfc_ev_mgmt_periodic_qpoll(void *arg)
{
struct sfc_adapter *sa = arg;
int rc;
sfc_ev_mgmt_qpoll(sa);
rc = rte_eal_alarm_set(SFC_MGMT_EV_QPOLL_PERIOD_US,
sfc_ev_mgmt_periodic_qpoll, sa);
if (rc == -ENOTSUP) {
sfc_warn(sa, "alarms are not supported");
sfc_warn(sa, "management EVQ must be polled indirectly using no-wait link status update");
} else if (rc != 0) {
sfc_err(sa,
"cannot rearm management EVQ polling alarm (rc=%d)",
rc);
}
}
static void
sfc_ev_mgmt_periodic_qpoll_start(struct sfc_adapter *sa)
{
sfc_ev_mgmt_periodic_qpoll(sa);
}
static void
sfc_ev_mgmt_periodic_qpoll_stop(struct sfc_adapter *sa)
{
rte_eal_alarm_cancel(sfc_ev_mgmt_periodic_qpoll, sa);
}
int
sfc_ev_start(struct sfc_adapter *sa)
{
int rc;
sfc_log_init(sa, "entry");
rc = efx_ev_init(sa->nic);
if (rc != 0)
goto fail_ev_init;
/* Start management EVQ used for global events */
/*
* Management event queue start polls the queue, but it cannot
* interfere with other polling contexts since mgmt_evq_running
* is false yet.
*/
rc = sfc_ev_qstart(sa->mgmt_evq, sa->mgmt_evq_index);
if (rc != 0)
goto fail_mgmt_evq_start;
rte_spinlock_lock(&sa->mgmt_evq_lock);
sa->mgmt_evq_running = true;
rte_spinlock_unlock(&sa->mgmt_evq_lock);
if (sa->intr.lsc_intr) {
rc = sfc_ev_qprime(sa->mgmt_evq);
if (rc != 0)
goto fail_mgmt_evq_prime;
}
/*
* Start management EVQ polling. If interrupts are disabled
* (not used), it is required to process link status change
* and other device level events to avoid unrecoverable
* error because the event queue overflow.
*/
sfc_ev_mgmt_periodic_qpoll_start(sa);
/*
* Rx/Tx event queues are started/stopped when corresponding
* Rx/Tx queue is started/stopped.
*/
return 0;
fail_mgmt_evq_prime:
sfc_ev_qstop(sa->mgmt_evq);
fail_mgmt_evq_start:
efx_ev_fini(sa->nic);
fail_ev_init:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_ev_stop(struct sfc_adapter *sa)
{
sfc_log_init(sa, "entry");
sfc_ev_mgmt_periodic_qpoll_stop(sa);
rte_spinlock_lock(&sa->mgmt_evq_lock);
sa->mgmt_evq_running = false;
rte_spinlock_unlock(&sa->mgmt_evq_lock);
sfc_ev_qstop(sa->mgmt_evq);
efx_ev_fini(sa->nic);
}
int
sfc_ev_qinit(struct sfc_adapter *sa,
enum sfc_evq_type type, unsigned int type_index,
unsigned int entries, int socket_id, struct sfc_evq **evqp)
{
struct sfc_evq *evq;
int rc;
sfc_log_init(sa, "type=%s type_index=%u",
sfc_evq_type2str(type), type_index);
SFC_ASSERT(rte_is_power_of_2(entries));
rc = ENOMEM;
evq = rte_zmalloc_socket("sfc-evq", sizeof(*evq), RTE_CACHE_LINE_SIZE,
socket_id);
if (evq == NULL)
goto fail_evq_alloc;
evq->sa = sa;
evq->type = type;
evq->entries = entries;
/* Allocate DMA space */
rc = sfc_dma_alloc(sa, sfc_evq_type2str(type), type_index,
EFX_EVQ_SIZE(evq->entries), socket_id, &evq->mem);
if (rc != 0)
goto fail_dma_alloc;
evq->init_state = SFC_EVQ_INITIALIZED;
sa->evq_count++;
*evqp = evq;
return 0;
fail_dma_alloc:
rte_free(evq);
fail_evq_alloc:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_ev_qfini(struct sfc_evq *evq)
{
struct sfc_adapter *sa = evq->sa;
SFC_ASSERT(evq->init_state == SFC_EVQ_INITIALIZED);
sfc_dma_free(sa, &evq->mem);
rte_free(evq);
SFC_ASSERT(sa->evq_count > 0);
sa->evq_count--;
}
static int
sfc_kvarg_perf_profile_handler(__rte_unused const char *key,
const char *value_str, void *opaque)
{
uint32_t *value = opaque;
if (strcasecmp(value_str, SFC_KVARG_PERF_PROFILE_THROUGHPUT) == 0)
*value = EFX_EVQ_FLAGS_TYPE_THROUGHPUT;
else if (strcasecmp(value_str, SFC_KVARG_PERF_PROFILE_LOW_LATENCY) == 0)
*value = EFX_EVQ_FLAGS_TYPE_LOW_LATENCY;
else if (strcasecmp(value_str, SFC_KVARG_PERF_PROFILE_AUTO) == 0)
*value = EFX_EVQ_FLAGS_TYPE_AUTO;
else
return -EINVAL;
return 0;
}
int
sfc_ev_attach(struct sfc_adapter *sa)
{
int rc;
sfc_log_init(sa, "entry");
sa->evq_flags = EFX_EVQ_FLAGS_TYPE_THROUGHPUT;
rc = sfc_kvargs_process(sa, SFC_KVARG_PERF_PROFILE,
sfc_kvarg_perf_profile_handler,
&sa->evq_flags);
if (rc != 0) {
sfc_err(sa, "invalid %s parameter value",
SFC_KVARG_PERF_PROFILE);
goto fail_kvarg_perf_profile;
}
sa->mgmt_evq_index = 0;
rte_spinlock_init(&sa->mgmt_evq_lock);
rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_MGMT, 0, SFC_MGMT_EVQ_ENTRIES,
sa->socket_id, &sa->mgmt_evq);
if (rc != 0)
goto fail_mgmt_evq_init;
/*
* Rx/Tx event queues are created/destroyed when corresponding
* Rx/Tx queue is created/destroyed.
*/
return 0;
fail_mgmt_evq_init:
fail_kvarg_perf_profile:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_ev_detach(struct sfc_adapter *sa)
{
sfc_log_init(sa, "entry");
sfc_ev_qfini(sa->mgmt_evq);
if (sa->evq_count != 0)
sfc_err(sa, "%u EvQs are not destroyed before detach",
sa->evq_count);
}