numam-dpdk/drivers/common/iavf/virtchnl.h
Ting Xu cfacca202f common/iavf: fix order of protocol header types
The new virtchnl protocol header types for IPv4 and IPv6 fragment are
not added in order, which will break ABI. Move them to the end of the
list.

Fixes: e6a42fd915 ("common/iavf: add protocol header for IP fragment")
Cc: stable@dpdk.org

Signed-off-by: Ting Xu <ting.xu@intel.com>
Acked-by: Qi Zhang <qi.z.zhang@intel.com>
2021-04-30 15:11:13 +02:00

2204 lines
73 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2001-2021 Intel Corporation
*/
#ifndef _VIRTCHNL_H_
#define _VIRTCHNL_H_
/* Description:
* This header file describes the Virtual Function (VF) - Physical Function
* (PF) communication protocol used by the drivers for all devices starting
* from our 40G product line
*
* Admin queue buffer usage:
* desc->opcode is always aqc_opc_send_msg_to_pf
* flags, retval, datalen, and data addr are all used normally.
* The Firmware copies the cookie fields when sending messages between the
* PF and VF, but uses all other fields internally. Due to this limitation,
* we must send all messages as "indirect", i.e. using an external buffer.
*
* All the VSI indexes are relative to the VF. Each VF can have maximum of
* three VSIs. All the queue indexes are relative to the VSI. Each VF can
* have a maximum of sixteen queues for all of its VSIs.
*
* The PF is required to return a status code in v_retval for all messages
* except RESET_VF, which does not require any response. The returned value
* is of virtchnl_status_code type, defined in the shared type.h.
*
* In general, VF driver initialization should roughly follow the order of
* these opcodes. The VF driver must first validate the API version of the
* PF driver, then request a reset, then get resources, then configure
* queues and interrupts. After these operations are complete, the VF
* driver may start its queues, optionally add MAC and VLAN filters, and
* process traffic.
*/
/* START GENERIC DEFINES
* Need to ensure the following enums and defines hold the same meaning and
* value in current and future projects
*/
/* Error Codes */
enum virtchnl_status_code {
VIRTCHNL_STATUS_SUCCESS = 0,
VIRTCHNL_STATUS_ERR_PARAM = -5,
VIRTCHNL_STATUS_ERR_NO_MEMORY = -18,
VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH = -38,
VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR = -39,
VIRTCHNL_STATUS_ERR_INVALID_VF_ID = -40,
VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR = -53,
VIRTCHNL_STATUS_ERR_NOT_SUPPORTED = -64,
};
/* Backward compatibility */
#define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
#define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
#define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT 0x0
#define VIRTCHNL_LINK_SPEED_100MB_SHIFT 0x1
#define VIRTCHNL_LINK_SPEED_1000MB_SHIFT 0x2
#define VIRTCHNL_LINK_SPEED_10GB_SHIFT 0x3
#define VIRTCHNL_LINK_SPEED_40GB_SHIFT 0x4
#define VIRTCHNL_LINK_SPEED_20GB_SHIFT 0x5
#define VIRTCHNL_LINK_SPEED_25GB_SHIFT 0x6
#define VIRTCHNL_LINK_SPEED_5GB_SHIFT 0x7
enum virtchnl_link_speed {
VIRTCHNL_LINK_SPEED_UNKNOWN = 0,
VIRTCHNL_LINK_SPEED_100MB = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
VIRTCHNL_LINK_SPEED_1GB = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
VIRTCHNL_LINK_SPEED_10GB = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
VIRTCHNL_LINK_SPEED_40GB = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
VIRTCHNL_LINK_SPEED_20GB = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
VIRTCHNL_LINK_SPEED_25GB = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
VIRTCHNL_LINK_SPEED_2_5GB = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
VIRTCHNL_LINK_SPEED_5GB = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
};
/* for hsplit_0 field of Rx HMC context */
/* deprecated with IAVF 1.0 */
enum virtchnl_rx_hsplit {
VIRTCHNL_RX_HSPLIT_NO_SPLIT = 0,
VIRTCHNL_RX_HSPLIT_SPLIT_L2 = 1,
VIRTCHNL_RX_HSPLIT_SPLIT_IP = 2,
VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
VIRTCHNL_RX_HSPLIT_SPLIT_SCTP = 8,
};
#define VIRTCHNL_ETH_LENGTH_OF_ADDRESS 6
/* END GENERIC DEFINES */
/* Opcodes for VF-PF communication. These are placed in the v_opcode field
* of the virtchnl_msg structure.
*/
enum virtchnl_ops {
/* The PF sends status change events to VFs using
* the VIRTCHNL_OP_EVENT opcode.
* VFs send requests to the PF using the other ops.
* Use of "advanced opcode" features must be negotiated as part of capabilities
* exchange and are not considered part of base mode feature set.
*/
VIRTCHNL_OP_UNKNOWN = 0,
VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
VIRTCHNL_OP_RESET_VF = 2,
VIRTCHNL_OP_GET_VF_RESOURCES = 3,
VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
VIRTCHNL_OP_ENABLE_QUEUES = 8,
VIRTCHNL_OP_DISABLE_QUEUES = 9,
VIRTCHNL_OP_ADD_ETH_ADDR = 10,
VIRTCHNL_OP_DEL_ETH_ADDR = 11,
VIRTCHNL_OP_ADD_VLAN = 12,
VIRTCHNL_OP_DEL_VLAN = 13,
VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
VIRTCHNL_OP_GET_STATS = 15,
VIRTCHNL_OP_RSVD = 16,
VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
/* opcode 19 is reserved */
/* opcodes 20, 21, and 22 are reserved */
VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
VIRTCHNL_OP_SET_RSS_HENA = 26,
VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
VIRTCHNL_OP_REQUEST_QUEUES = 29,
VIRTCHNL_OP_ENABLE_CHANNELS = 30,
VIRTCHNL_OP_DISABLE_CHANNELS = 31,
VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
/* opcodes 34, 35, 36, and 37 are reserved */
VIRTCHNL_OP_DCF_VLAN_OFFLOAD = 38,
VIRTCHNL_OP_DCF_CMD_DESC = 39,
VIRTCHNL_OP_DCF_CMD_BUFF = 40,
VIRTCHNL_OP_DCF_DISABLE = 41,
VIRTCHNL_OP_DCF_GET_VSI_MAP = 42,
VIRTCHNL_OP_DCF_GET_PKG_INFO = 43,
VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44,
VIRTCHNL_OP_ADD_RSS_CFG = 45,
VIRTCHNL_OP_DEL_RSS_CFG = 46,
VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
VIRTCHNL_OP_QUERY_FDIR_FILTER = 49,
VIRTCHNL_OP_GET_MAX_RSS_QREGION = 50,
VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
VIRTCHNL_OP_ADD_VLAN_V2 = 52,
VIRTCHNL_OP_DEL_VLAN_V2 = 53,
VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 = 58,
VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 = 59,
VIRTCHNL_OP_ENABLE_QUEUES_V2 = 107,
VIRTCHNL_OP_DISABLE_QUEUES_V2 = 108,
VIRTCHNL_OP_MAP_QUEUE_VECTOR = 111,
VIRTCHNL_OP_MAX,
};
static inline const char *virtchnl_op_str(enum virtchnl_ops v_opcode)
{
switch (v_opcode) {
case VIRTCHNL_OP_UNKNOWN:
return "VIRTCHNL_OP_UNKNOWN";
case VIRTCHNL_OP_VERSION:
return "VIRTCHNL_OP_VERSION";
case VIRTCHNL_OP_RESET_VF:
return "VIRTCHNL_OP_RESET_VF";
case VIRTCHNL_OP_GET_VF_RESOURCES:
return "VIRTCHNL_OP_GET_VF_RESOURCES";
case VIRTCHNL_OP_CONFIG_TX_QUEUE:
return "VIRTCHNL_OP_CONFIG_TX_QUEUE";
case VIRTCHNL_OP_CONFIG_RX_QUEUE:
return "VIRTCHNL_OP_CONFIG_RX_QUEUE";
case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
return "VIRTCHNL_OP_CONFIG_VSI_QUEUES";
case VIRTCHNL_OP_CONFIG_IRQ_MAP:
return "VIRTCHNL_OP_CONFIG_IRQ_MAP";
case VIRTCHNL_OP_ENABLE_QUEUES:
return "VIRTCHNL_OP_ENABLE_QUEUES";
case VIRTCHNL_OP_DISABLE_QUEUES:
return "VIRTCHNL_OP_DISABLE_QUEUES";
case VIRTCHNL_OP_ADD_ETH_ADDR:
return "VIRTCHNL_OP_ADD_ETH_ADDR";
case VIRTCHNL_OP_DEL_ETH_ADDR:
return "VIRTCHNL_OP_DEL_ETH_ADDR";
case VIRTCHNL_OP_ADD_VLAN:
return "VIRTCHNL_OP_ADD_VLAN";
case VIRTCHNL_OP_DEL_VLAN:
return "VIRTCHNL_OP_DEL_VLAN";
case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
return "VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE";
case VIRTCHNL_OP_GET_STATS:
return "VIRTCHNL_OP_GET_STATS";
case VIRTCHNL_OP_RSVD:
return "VIRTCHNL_OP_RSVD";
case VIRTCHNL_OP_EVENT:
return "VIRTCHNL_OP_EVENT";
case VIRTCHNL_OP_CONFIG_RSS_KEY:
return "VIRTCHNL_OP_CONFIG_RSS_KEY";
case VIRTCHNL_OP_CONFIG_RSS_LUT:
return "VIRTCHNL_OP_CONFIG_RSS_LUT";
case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
return "VIRTCHNL_OP_GET_RSS_HENA_CAPS";
case VIRTCHNL_OP_SET_RSS_HENA:
return "VIRTCHNL_OP_SET_RSS_HENA";
case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING";
case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING";
case VIRTCHNL_OP_REQUEST_QUEUES:
return "VIRTCHNL_OP_REQUEST_QUEUES";
case VIRTCHNL_OP_ENABLE_CHANNELS:
return "VIRTCHNL_OP_ENABLE_CHANNELS";
case VIRTCHNL_OP_DISABLE_CHANNELS:
return "VIRTCHNL_OP_DISABLE_CHANNELS";
case VIRTCHNL_OP_ADD_CLOUD_FILTER:
return "VIRTCHNL_OP_ADD_CLOUD_FILTER";
case VIRTCHNL_OP_DEL_CLOUD_FILTER:
return "VIRTCHNL_OP_DEL_CLOUD_FILTER";
case VIRTCHNL_OP_DCF_CMD_DESC:
return "VIRTCHNL_OP_DCF_CMD_DESC";
case VIRTCHNL_OP_DCF_CMD_BUFF:
return "VIRTCHHNL_OP_DCF_CMD_BUFF";
case VIRTCHNL_OP_DCF_DISABLE:
return "VIRTCHNL_OP_DCF_DISABLE";
case VIRTCHNL_OP_DCF_GET_VSI_MAP:
return "VIRTCHNL_OP_DCF_GET_VSI_MAP";
case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
return "VIRTCHNL_OP_GET_SUPPORTED_RXDIDS";
case VIRTCHNL_OP_ADD_RSS_CFG:
return "VIRTCHNL_OP_ADD_RSS_CFG";
case VIRTCHNL_OP_DEL_RSS_CFG:
return "VIRTCHNL_OP_DEL_RSS_CFG";
case VIRTCHNL_OP_ADD_FDIR_FILTER:
return "VIRTCHNL_OP_ADD_FDIR_FILTER";
case VIRTCHNL_OP_DEL_FDIR_FILTER:
return "VIRTCHNL_OP_DEL_FDIR_FILTER";
case VIRTCHNL_OP_QUERY_FDIR_FILTER:
return "VIRTCHNL_OP_QUERY_FDIR_FILTER";
case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
return "VIRTCHNL_OP_GET_MAX_RSS_QREGION";
case VIRTCHNL_OP_ENABLE_QUEUES_V2:
return "VIRTCHNL_OP_ENABLE_QUEUES_V2";
case VIRTCHNL_OP_DISABLE_QUEUES_V2:
return "VIRTCHNL_OP_DISABLE_QUEUES_V2";
case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
return "VIRTCHNL_OP_MAP_QUEUE_VECTOR";
case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
return "VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS";
case VIRTCHNL_OP_ADD_VLAN_V2:
return "VIRTCHNL_OP_ADD_VLAN_V2";
case VIRTCHNL_OP_DEL_VLAN_V2:
return "VIRTCHNL_OP_DEL_VLAN_V2";
case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2";
case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2";
case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
return "VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2";
case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
return "VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2";
case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
return "VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2";
case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
return "VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2";
case VIRTCHNL_OP_MAX:
return "VIRTCHNL_OP_MAX";
default:
return "Unsupported (update virtchnl.h)";
}
}
/* These macros are used to generate compilation errors if a structure/union
* is not exactly the correct length. It gives a divide by zero error if the
* structure/union is not of the correct size, otherwise it creates an enum
* that is never used.
*/
#define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
#define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
/* Virtual channel message descriptor. This overlays the admin queue
* descriptor. All other data is passed in external buffers.
*/
struct virtchnl_msg {
u8 pad[8]; /* AQ flags/opcode/len/retval fields */
/* avoid confusion with desc->opcode */
enum virtchnl_ops v_opcode;
/* ditto for desc->retval */
enum virtchnl_status_code v_retval;
u32 vfid; /* used by PF when sending to VF */
};
VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg);
/* Message descriptions and data structures. */
/* VIRTCHNL_OP_VERSION
* VF posts its version number to the PF. PF responds with its version number
* in the same format, along with a return code.
* Reply from PF has its major/minor versions also in param0 and param1.
* If there is a major version mismatch, then the VF cannot operate.
* If there is a minor version mismatch, then the VF can operate but should
* add a warning to the system log.
*
* This enum element MUST always be specified as == 1, regardless of other
* changes in the API. The PF must always respond to this message without
* error regardless of version mismatch.
*/
#define VIRTCHNL_VERSION_MAJOR 1
#define VIRTCHNL_VERSION_MINOR 1
#define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS 0
struct virtchnl_version_info {
u32 major;
u32 minor;
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
#define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
#define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
/* VIRTCHNL_OP_RESET_VF
* VF sends this request to PF with no parameters
* PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
* until reset completion is indicated. The admin queue must be reinitialized
* after this operation.
*
* When reset is complete, PF must ensure that all queues in all VSIs associated
* with the VF are stopped, all queue configurations in the HMC are set to 0,
* and all MAC and VLAN filters (except the default MAC address) on all VSIs
* are cleared.
*/
/* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
* vsi_type should always be 6 for backward compatibility. Add other fields
* as needed.
*/
enum virtchnl_vsi_type {
VIRTCHNL_VSI_TYPE_INVALID = 0,
VIRTCHNL_VSI_SRIOV = 6,
};
/* VIRTCHNL_OP_GET_VF_RESOURCES
* Version 1.0 VF sends this request to PF with no parameters
* Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
* PF responds with an indirect message containing
* virtchnl_vf_resource and one or more
* virtchnl_vsi_resource structures.
*/
struct virtchnl_vsi_resource {
u16 vsi_id;
u16 num_queue_pairs;
/* see enum virtchnl_vsi_type */
s32 vsi_type;
u16 qset_handle;
u8 default_mac_addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
/* VF capability flags
* VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
* TX/RX Checksum offloading and TSO for non-tunnelled packets.
*/
#define VIRTCHNL_VF_OFFLOAD_L2 BIT(0)
#define VIRTCHNL_VF_OFFLOAD_IWARP BIT(1)
#define VIRTCHNL_VF_OFFLOAD_RSVD BIT(2)
#define VIRTCHNL_VF_OFFLOAD_RSS_AQ BIT(3)
#define VIRTCHNL_VF_OFFLOAD_RSS_REG BIT(4)
#define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR BIT(5)
#define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES BIT(6)
/* used to negotiate communicating link speeds in Mbps */
#define VIRTCHNL_VF_CAP_ADV_LINK_SPEED BIT(7)
/* BIT(8) is reserved */
#define VIRTCHNL_VF_LARGE_NUM_QPAIRS BIT(9)
#define VIRTCHNL_VF_OFFLOAD_CRC BIT(10)
#define VIRTCHNL_VF_OFFLOAD_VLAN_V2 BIT(15)
#define VIRTCHNL_VF_OFFLOAD_VLAN BIT(16)
#define VIRTCHNL_VF_OFFLOAD_RX_POLLING BIT(17)
#define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2 BIT(18)
#define VIRTCHNL_VF_OFFLOAD_RSS_PF BIT(19)
#define VIRTCHNL_VF_OFFLOAD_ENCAP BIT(20)
#define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM BIT(21)
#define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM BIT(22)
#define VIRTCHNL_VF_OFFLOAD_ADQ BIT(23)
#define VIRTCHNL_VF_OFFLOAD_ADQ_V2 BIT(24)
#define VIRTCHNL_VF_OFFLOAD_USO BIT(25)
#define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC BIT(26)
#define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF BIT(27)
#define VIRTCHNL_VF_OFFLOAD_FDIR_PF BIT(28)
#define VIRTCHNL_VF_CAP_DCF BIT(30)
/* BIT(31) is reserved */
#define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
VIRTCHNL_VF_OFFLOAD_VLAN | \
VIRTCHNL_VF_OFFLOAD_RSS_PF)
struct virtchnl_vf_resource {
u16 num_vsis;
u16 num_queue_pairs;
u16 max_vectors;
u16 max_mtu;
u32 vf_cap_flags;
u32 rss_key_size;
u32 rss_lut_size;
struct virtchnl_vsi_resource vsi_res[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
/* VIRTCHNL_OP_CONFIG_TX_QUEUE
* VF sends this message to set up parameters for one TX queue.
* External data buffer contains one instance of virtchnl_txq_info.
* PF configures requested queue and returns a status code.
*/
/* Tx queue config info */
struct virtchnl_txq_info {
u16 vsi_id;
u16 queue_id;
u16 ring_len; /* number of descriptors, multiple of 8 */
u16 headwb_enabled; /* deprecated with AVF 1.0 */
u64 dma_ring_addr;
u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
};
VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
/* RX descriptor IDs (range from 0 to 63) */
enum virtchnl_rx_desc_ids {
VIRTCHNL_RXDID_0_16B_BASE = 0,
/* 32B_BASE and FLEX_SPLITQ share desc ids as default descriptors
* because they can be differentiated based on queue model; e.g. single
* queue model can only use 32B_BASE and split queue model can only use
* FLEX_SPLITQ. Having these as 1 allows them to be used as default
* descriptors without negotiation.
*/
VIRTCHNL_RXDID_1_32B_BASE = 1,
VIRTCHNL_RXDID_1_FLEX_SPLITQ = 1,
VIRTCHNL_RXDID_2_FLEX_SQ_NIC = 2,
VIRTCHNL_RXDID_3_FLEX_SQ_SW = 3,
VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB = 4,
VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL = 5,
VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2 = 6,
VIRTCHNL_RXDID_7_HW_RSVD = 7,
/* 9 through 15 are reserved */
VIRTCHNL_RXDID_16_COMMS_GENERIC = 16,
VIRTCHNL_RXDID_17_COMMS_AUX_VLAN = 17,
VIRTCHNL_RXDID_18_COMMS_AUX_IPV4 = 18,
VIRTCHNL_RXDID_19_COMMS_AUX_IPV6 = 19,
VIRTCHNL_RXDID_20_COMMS_AUX_FLOW = 20,
VIRTCHNL_RXDID_21_COMMS_AUX_TCP = 21,
/* 22 through 63 are reserved */
};
/* RX descriptor ID bitmasks */
enum virtchnl_rx_desc_id_bitmasks {
VIRTCHNL_RXDID_0_16B_BASE_M = BIT(VIRTCHNL_RXDID_0_16B_BASE),
VIRTCHNL_RXDID_1_32B_BASE_M = BIT(VIRTCHNL_RXDID_1_32B_BASE),
VIRTCHNL_RXDID_1_FLEX_SPLITQ_M = BIT(VIRTCHNL_RXDID_1_FLEX_SPLITQ),
VIRTCHNL_RXDID_2_FLEX_SQ_NIC_M = BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC),
VIRTCHNL_RXDID_3_FLEX_SQ_SW_M = BIT(VIRTCHNL_RXDID_3_FLEX_SQ_SW),
VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB_M = BIT(VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB),
VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL_M = BIT(VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL),
VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2_M = BIT(VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2),
VIRTCHNL_RXDID_7_HW_RSVD_M = BIT(VIRTCHNL_RXDID_7_HW_RSVD),
/* 9 through 15 are reserved */
VIRTCHNL_RXDID_16_COMMS_GENERIC_M = BIT(VIRTCHNL_RXDID_16_COMMS_GENERIC),
VIRTCHNL_RXDID_17_COMMS_AUX_VLAN_M = BIT(VIRTCHNL_RXDID_17_COMMS_AUX_VLAN),
VIRTCHNL_RXDID_18_COMMS_AUX_IPV4_M = BIT(VIRTCHNL_RXDID_18_COMMS_AUX_IPV4),
VIRTCHNL_RXDID_19_COMMS_AUX_IPV6_M = BIT(VIRTCHNL_RXDID_19_COMMS_AUX_IPV6),
VIRTCHNL_RXDID_20_COMMS_AUX_FLOW_M = BIT(VIRTCHNL_RXDID_20_COMMS_AUX_FLOW),
VIRTCHNL_RXDID_21_COMMS_AUX_TCP_M = BIT(VIRTCHNL_RXDID_21_COMMS_AUX_TCP),
/* 22 through 63 are reserved */
};
/* VIRTCHNL_OP_CONFIG_RX_QUEUE
* VF sends this message to set up parameters for one RX queue.
* External data buffer contains one instance of virtchnl_rxq_info.
* PF configures requested queue and returns a status code. The
* crc_disable flag disables CRC stripping on the VF. Setting
* the crc_disable flag to 1 will disable CRC stripping for each
* queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC
* offload must have been set prior to sending this info or the PF
* will ignore the request. This flag should be set the same for
* all of the queues for a VF.
*/
/* Rx queue config info */
struct virtchnl_rxq_info {
u16 vsi_id;
u16 queue_id;
u32 ring_len; /* number of descriptors, multiple of 32 */
u16 hdr_size;
u16 splithdr_enabled; /* deprecated with AVF 1.0 */
u32 databuffer_size;
u32 max_pkt_size;
u8 crc_disable;
/* see enum virtchnl_rx_desc_ids;
* only used when VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC is supported. Note
* that when the offload is not supported, the descriptor format aligns
* with VIRTCHNL_RXDID_1_32B_BASE.
*/
u8 rxdid;
u8 pad1[2];
u64 dma_ring_addr;
/* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */
s32 rx_split_pos;
u32 pad2;
};
VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
/* VIRTCHNL_OP_CONFIG_VSI_QUEUES
* VF sends this message to set parameters for active TX and RX queues
* associated with the specified VSI.
* PF configures queues and returns status.
* If the number of queues specified is greater than the number of queues
* associated with the VSI, an error is returned and no queues are configured.
* NOTE: The VF is not required to configure all queues in a single request.
* It may send multiple messages. PF drivers must correctly handle all VF
* requests.
*/
struct virtchnl_queue_pair_info {
/* NOTE: vsi_id and queue_id should be identical for both queues. */
struct virtchnl_txq_info txq;
struct virtchnl_rxq_info rxq;
};
VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
struct virtchnl_vsi_queue_config_info {
u16 vsi_id;
u16 num_queue_pairs;
u32 pad;
struct virtchnl_queue_pair_info qpair[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
/* VIRTCHNL_OP_REQUEST_QUEUES
* VF sends this message to request the PF to allocate additional queues to
* this VF. Each VF gets a guaranteed number of queues on init but asking for
* additional queues must be negotiated. This is a best effort request as it
* is possible the PF does not have enough queues left to support the request.
* If the PF cannot support the number requested it will respond with the
* maximum number it is able to support. If the request is successful, PF will
* then reset the VF to institute required changes.
*/
/* VF resource request */
struct virtchnl_vf_res_request {
u16 num_queue_pairs;
};
/* VIRTCHNL_OP_CONFIG_IRQ_MAP
* VF uses this message to map vectors to queues.
* The rxq_map and txq_map fields are bitmaps used to indicate which queues
* are to be associated with the specified vector.
* The "other" causes are always mapped to vector 0. The VF may not request
* that vector 0 be used for traffic.
* PF configures interrupt mapping and returns status.
* NOTE: due to hardware requirements, all active queues (both TX and RX)
* should be mapped to interrupts, even if the driver intends to operate
* only in polling mode. In this case the interrupt may be disabled, but
* the ITR timer will still run to trigger writebacks.
*/
struct virtchnl_vector_map {
u16 vsi_id;
u16 vector_id;
u16 rxq_map;
u16 txq_map;
u16 rxitr_idx;
u16 txitr_idx;
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
struct virtchnl_irq_map_info {
u16 num_vectors;
struct virtchnl_vector_map vecmap[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
/* VIRTCHNL_OP_ENABLE_QUEUES
* VIRTCHNL_OP_DISABLE_QUEUES
* VF sends these message to enable or disable TX/RX queue pairs.
* The queues fields are bitmaps indicating which queues to act upon.
* (Currently, we only support 16 queues per VF, but we make the field
* u32 to allow for expansion.)
* PF performs requested action and returns status.
* NOTE: The VF is not required to enable/disable all queues in a single
* request. It may send multiple messages.
* PF drivers must correctly handle all VF requests.
*/
struct virtchnl_queue_select {
u16 vsi_id;
u16 pad;
u32 rx_queues;
u32 tx_queues;
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
/* VIRTCHNL_OP_GET_MAX_RSS_QREGION
*
* if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
* then this op must be supported.
*
* VF sends this message in order to query the max RSS queue region
* size supported by PF, when VIRTCHNL_VF_LARGE_NUM_QPAIRS is enabled.
* This information should be used when configuring the RSS LUT and/or
* configuring queue region based filters.
*
* The maximum RSS queue region is 2^qregion_width. So, a qregion_width
* of 6 would inform the VF that the PF supports a maximum RSS queue region
* of 64.
*
* A queue region represents a range of queues that can be used to configure
* a RSS LUT. For example, if a VF is given 64 queues, but only a max queue
* region size of 16 (i.e. 2^qregion_width = 16) then it will only be able
* to configure the RSS LUT with queue indices from 0 to 15. However, other
* filters can be used to direct packets to queues >15 via specifying a queue
* base/offset and queue region width.
*/
struct virtchnl_max_rss_qregion {
u16 vport_id;
u16 qregion_width;
u8 pad[4];
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_max_rss_qregion);
/* VIRTCHNL_OP_ADD_ETH_ADDR
* VF sends this message in order to add one or more unicast or multicast
* address filters for the specified VSI.
* PF adds the filters and returns status.
*/
/* VIRTCHNL_OP_DEL_ETH_ADDR
* VF sends this message in order to remove one or more unicast or multicast
* filters for the specified VSI.
* PF removes the filters and returns status.
*/
/* VIRTCHNL_ETHER_ADDR_LEGACY
* Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
* bytes. Moving forward all VF drivers should not set type to
* VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
* behavior. The control plane function (i.e. PF) can use a best effort method
* of tracking the primary/device unicast in this case, but there is no
* guarantee and functionality depends on the implementation of the PF.
*/
/* VIRTCHNL_ETHER_ADDR_PRIMARY
* All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
* primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
* VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
* function (i.e. PF) to accurately track and use this MAC address for
* displaying on the host and for VM/function reset.
*/
/* VIRTCHNL_ETHER_ADDR_EXTRA
* All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
* unicast and/or multicast filters that are being added/deleted via
* VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
*/
struct virtchnl_ether_addr {
u8 addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
u8 type;
#define VIRTCHNL_ETHER_ADDR_LEGACY 0
#define VIRTCHNL_ETHER_ADDR_PRIMARY 1
#define VIRTCHNL_ETHER_ADDR_EXTRA 2
#define VIRTCHNL_ETHER_ADDR_TYPE_MASK 3 /* first two bits of type are valid */
u8 pad;
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
struct virtchnl_ether_addr_list {
u16 vsi_id;
u16 num_elements;
struct virtchnl_ether_addr list[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
/* VIRTCHNL_OP_ADD_VLAN
* VF sends this message to add one or more VLAN tag filters for receives.
* PF adds the filters and returns status.
* If a port VLAN is configured by the PF, this operation will return an
* error to the VF.
*/
/* VIRTCHNL_OP_DEL_VLAN
* VF sends this message to remove one or more VLAN tag filters for receives.
* PF removes the filters and returns status.
* If a port VLAN is configured by the PF, this operation will return an
* error to the VF.
*/
struct virtchnl_vlan_filter_list {
u16 vsi_id;
u16 num_elements;
u16 vlan_id[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
/* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
* structures and opcodes.
*
* VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
* populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
*
* VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
* VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
* VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
*
* VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
* by the PF concurrently. For example, if the PF can support
* VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
* would OR the following bits:
*
* VIRTHCNL_VLAN_ETHERTYPE_8100 |
* VIRTCHNL_VLAN_ETHERTYPE_88A8 |
* VIRTCHNL_VLAN_ETHERTYPE_AND;
*
* The VF would interpret this as VLAN filtering can be supported on both 0x8100
* and 0x88A8 VLAN ethertypes.
*
* VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
* by the PF concurrently. For example if the PF can support
* VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
* offload it would OR the following bits:
*
* VIRTCHNL_VLAN_ETHERTYPE_8100 |
* VIRTCHNL_VLAN_ETHERTYPE_88A8 |
* VIRTCHNL_VLAN_ETHERTYPE_XOR;
*
* The VF would interpret this as VLAN stripping can be supported on either
* 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
* the previously set value.
*
* VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
* strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
*
* VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
* offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
*
* VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
* offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
*
* VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
* VLAN filtering if the underlying PF supports it.
*
* VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
* certain VLAN capability can be toggled. For example if the underlying PF/CP
* allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
* set this bit along with the supported ethertypes.
*/
enum virtchnl_vlan_support {
VIRTCHNL_VLAN_UNSUPPORTED = 0,
VIRTCHNL_VLAN_ETHERTYPE_8100 = 0x00000001,
VIRTCHNL_VLAN_ETHERTYPE_88A8 = 0x00000002,
VIRTCHNL_VLAN_ETHERTYPE_9100 = 0x00000004,
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 = 0x00000100,
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 = 0x00000200,
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 = 0x00000400,
VIRTCHNL_VLAN_PRIO = 0x01000000,
VIRTCHNL_VLAN_FILTER_MASK = 0x10000000,
VIRTCHNL_VLAN_ETHERTYPE_AND = 0x20000000,
VIRTCHNL_VLAN_ETHERTYPE_XOR = 0x40000000,
VIRTCHNL_VLAN_TOGGLE = 0x80000000
};
/* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
* for filtering, insertion, and stripping capabilities.
*
* If only outer capabilities are supported (for filtering, insertion, and/or
* stripping) then this refers to the outer most or single VLAN from the VF's
* perspective.
*
* If only inner capabilities are supported (for filtering, insertion, and/or
* stripping) then this refers to the outer most or single VLAN from the VF's
* perspective. Functionally this is the same as if only outer capabilities are
* supported. The VF driver is just forced to use the inner fields when
* adding/deleting filters and enabling/disabling offloads (if supported).
*
* If both outer and inner capabilities are supported (for filtering, insertion,
* and/or stripping) then outer refers to the outer most or single VLAN and
* inner refers to the second VLAN, if it exists, in the packet.
*
* There is no support for tunneled VLAN offloads, so outer or inner are never
* referring to a tunneled packet from the VF's perspective.
*/
struct virtchnl_vlan_supported_caps {
u32 outer;
u32 inner;
};
/* The PF populates these fields based on the supported VLAN filtering. If a
* field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
* reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
* the unsupported fields.
*
* Also, a VF is only allowed to toggle its VLAN filtering setting if the
* VIRTCHNL_VLAN_TOGGLE bit is set.
*
* The ethertype(s) specified in the ethertype_init field are the ethertypes
* enabled for VLAN filtering. VLAN filtering in this case refers to the outer
* most VLAN from the VF's perspective. If both inner and outer filtering are
* allowed then ethertype_init only refers to the outer most VLAN as only
* VLAN ethertype supported for inner VLAN filtering is
* VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
* when both inner and outer filtering are allowed.
*
* The max_filters field tells the VF how many VLAN filters it's allowed to have
* at any one time. If it exceeds this amount and tries to add another filter,
* then the request will be rejected by the PF. To prevent failures, the VF
* should keep track of how many VLAN filters it has added and not attempt to
* add more than max_filters.
*/
struct virtchnl_vlan_filtering_caps {
struct virtchnl_vlan_supported_caps filtering_support;
u32 ethertype_init;
u16 max_filters;
u8 pad[2];
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
/* This enum is used for the virtchnl_vlan_offload_caps structure to specify
* if the PF supports a different ethertype for stripping and insertion.
*
* VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
* for stripping affect the ethertype(s) specified for insertion and visa versa
* as well. If the VF tries to configure VLAN stripping via
* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
* that will be the ethertype for both stripping and insertion.
*
* VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
* stripping do not affect the ethertype(s) specified for insertion and visa
* versa.
*/
enum virtchnl_vlan_ethertype_match {
VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
};
/* The PF populates these fields based on the supported VLAN offloads. If a
* field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
* reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
* VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
*
* Also, a VF is only allowed to toggle its VLAN offload setting if the
* VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
*
* The VF driver needs to be aware of how the tags are stripped by hardware and
* inserted by the VF driver based on the level of offload support. The PF will
* populate these fields based on where the VLAN tags are expected to be
* offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
* interpret these fields. See the definition of the
* VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
* enumeration.
*/
struct virtchnl_vlan_offload_caps {
struct virtchnl_vlan_supported_caps stripping_support;
struct virtchnl_vlan_supported_caps insertion_support;
u32 ethertype_init;
u8 ethertype_match;
u8 pad[3];
};
VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
/* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
* VF sends this message to determine its VLAN capabilities.
*
* PF will mark which capabilities it supports based on hardware support and
* current configuration. For example, if a port VLAN is configured the PF will
* not allow outer VLAN filtering, stripping, or insertion to be configured so
* it will block these features from the VF.
*
* The VF will need to cross reference its capabilities with the PFs
* capabilities in the response message from the PF to determine the VLAN
* support.
*/
struct virtchnl_vlan_caps {
struct virtchnl_vlan_filtering_caps filtering;
struct virtchnl_vlan_offload_caps offloads;
};
VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
struct virtchnl_vlan {
u16 tci; /* tci[15:13] = PCP and tci[11:0] = VID */
u16 tci_mask; /* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
* filtering caps
*/
u16 tpid; /* 0x8100, 0x88a8, etc. and only type(s) set in
* filtering caps. Note that tpid here does not refer to
* VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
* actual 2-byte VLAN TPID
*/
u8 pad[2];
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
struct virtchnl_vlan_filter {
struct virtchnl_vlan inner;
struct virtchnl_vlan outer;
u8 pad[16];
};
VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
/* VIRTCHNL_OP_ADD_VLAN_V2
* VIRTCHNL_OP_DEL_VLAN_V2
*
* VF sends these messages to add/del one or more VLAN tag filters for Rx
* traffic.
*
* The PF attempts to add the filters and returns status.
*
* The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
* supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
*/
struct virtchnl_vlan_filter_list_v2 {
u16 vport_id;
u16 num_elements;
u8 pad[4];
struct virtchnl_vlan_filter filters[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2);
/* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
* VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
* VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
* VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
*
* VF sends this message to enable or disable VLAN stripping or insertion. It
* also needs to specify an ethertype. The VF knows which VLAN ethertypes are
* allowed and whether or not it's allowed to enable/disable the specific
* offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
* parse the virtchnl_vlan_caps.offloads fields to determine which offload
* messages are allowed.
*
* For example, if the PF populates the virtchnl_vlan_caps.offloads in the
* following manner the VF will be allowed to enable and/or disable 0x8100 inner
* VLAN insertion and/or stripping via the opcodes listed above. Inner in this
* case means the outer most or single VLAN from the VF's perspective. This is
* because no outer offloads are supported. See the comments above the
* virtchnl_vlan_supported_caps structure for more details.
*
* virtchnl_vlan_caps.offloads.stripping_support.inner =
* VIRTCHNL_VLAN_TOGGLE |
* VIRTCHNL_VLAN_ETHERTYPE_8100;
*
* virtchnl_vlan_caps.offloads.insertion_support.inner =
* VIRTCHNL_VLAN_TOGGLE |
* VIRTCHNL_VLAN_ETHERTYPE_8100;
*
* In order to enable inner (again note that in this case inner is the outer
* most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
* VLANs, the VF would populate the virtchnl_vlan_setting structure in the
* following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
*
* virtchnl_vlan_setting.inner_ethertype_setting =
* VIRTCHNL_VLAN_ETHERTYPE_8100;
*
* virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
* initialization.
*
* The reason that VLAN TPID(s) are not being used for the
* outer_ethertype_setting and inner_ethertype_setting fields is because it's
* possible a device could support VLAN insertion and/or stripping offload on
* multiple ethertypes concurrently, so this method allows a VF to request
* multiple ethertypes in one message using the virtchnl_vlan_support
* enumeration.
*
* For example, if the PF populates the virtchnl_vlan_caps.offloads in the
* following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
* VLAN insertion and stripping simultaneously. The
* virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
* populated based on what the PF can support.
*
* virtchnl_vlan_caps.offloads.stripping_support.outer =
* VIRTCHNL_VLAN_TOGGLE |
* VIRTCHNL_VLAN_ETHERTYPE_8100 |
* VIRTCHNL_VLAN_ETHERTYPE_88A8 |
* VIRTCHNL_VLAN_ETHERTYPE_AND;
*
* virtchnl_vlan_caps.offloads.insertion_support.outer =
* VIRTCHNL_VLAN_TOGGLE |
* VIRTCHNL_VLAN_ETHERTYPE_8100 |
* VIRTCHNL_VLAN_ETHERTYPE_88A8 |
* VIRTCHNL_VLAN_ETHERTYPE_AND;
*
* In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
* would populate the virthcnl_vlan_offload_structure in the following manner
* and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
*
* virtchnl_vlan_setting.outer_ethertype_setting =
* VIRTHCNL_VLAN_ETHERTYPE_8100 |
* VIRTHCNL_VLAN_ETHERTYPE_88A8;
*
* virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
* initialization.
*
* There is also the case where a PF and the underlying hardware can support
* VLAN offloads on multiple ethertypes, but not concurrently. For example, if
* the PF populates the virtchnl_vlan_caps.offloads in the following manner the
* VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
* offloads. The ethertypes must match for stripping and insertion.
*
* virtchnl_vlan_caps.offloads.stripping_support.outer =
* VIRTCHNL_VLAN_TOGGLE |
* VIRTCHNL_VLAN_ETHERTYPE_8100 |
* VIRTCHNL_VLAN_ETHERTYPE_88A8 |
* VIRTCHNL_VLAN_ETHERTYPE_XOR;
*
* virtchnl_vlan_caps.offloads.insertion_support.outer =
* VIRTCHNL_VLAN_TOGGLE |
* VIRTCHNL_VLAN_ETHERTYPE_8100 |
* VIRTCHNL_VLAN_ETHERTYPE_88A8 |
* VIRTCHNL_VLAN_ETHERTYPE_XOR;
*
* virtchnl_vlan_caps.offloads.ethertype_match =
* VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
*
* In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
* populate the virtchnl_vlan_setting structure in the following manner and send
* the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
* ethertype for VLAN insertion if it's enabled. So, for completeness, a
* VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
*
* virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
*
* virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
* initialization.
*
* VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2
* VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2
*
* VF sends this message to enable or disable VLAN filtering. It also needs to
* specify an ethertype. The VF knows which VLAN ethertypes are allowed and
* whether or not it's allowed to enable/disable filtering via the
* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
* parse the virtchnl_vlan_caps.filtering fields to determine which, if any,
* filtering messages are allowed.
*
* For example, if the PF populates the virtchnl_vlan_caps.filtering in the
* following manner the VF will be allowed to enable/disable 0x8100 and 0x88a8
* outer VLAN filtering together. Note, that the VIRTCHNL_VLAN_ETHERTYPE_AND
* means that all filtering ethertypes will to be enabled and disabled together
* regardless of the request from the VF. This means that the underlying
* hardware only supports VLAN filtering for all VLAN the specified ethertypes
* or none of them.
*
* virtchnl_vlan_caps.filtering.filtering_support.outer =
* VIRTCHNL_VLAN_TOGGLE |
* VIRTCHNL_VLAN_ETHERTYPE_8100 |
* VIRTHCNL_VLAN_ETHERTYPE_88A8 |
* VIRTCHNL_VLAN_ETHERTYPE_9100 |
* VIRTCHNL_VLAN_ETHERTYPE_AND;
*
* In order to enable outer VLAN filtering for 0x88a8 and 0x8100 VLANs (0x9100
* VLANs aren't supported by the VF driver), the VF would populate the
* virtchnl_vlan_setting structure in the following manner and send the
* VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2. The same message format would be used
* to disable outer VLAN filtering for 0x88a8 and 0x8100 VLANs, but the
* VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 opcode is used.
*
* virtchnl_vlan_setting.outer_ethertype_setting =
* VIRTCHNL_VLAN_ETHERTYPE_8100 |
* VIRTCHNL_VLAN_ETHERTYPE_88A8;
*
*/
struct virtchnl_vlan_setting {
u32 outer_ethertype_setting;
u32 inner_ethertype_setting;
u16 vport_id;
u8 pad[6];
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
/* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
* VF sends VSI id and flags.
* PF returns status code in retval.
* Note: we assume that broadcast accept mode is always enabled.
*/
struct virtchnl_promisc_info {
u16 vsi_id;
u16 flags;
};
VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
#define FLAG_VF_UNICAST_PROMISC 0x00000001
#define FLAG_VF_MULTICAST_PROMISC 0x00000002
/* VIRTCHNL_OP_GET_STATS
* VF sends this message to request stats for the selected VSI. VF uses
* the virtchnl_queue_select struct to specify the VSI. The queue_id
* field is ignored by the PF.
*
* PF replies with struct virtchnl_eth_stats in an external buffer.
*/
struct virtchnl_eth_stats {
u64 rx_bytes; /* received bytes */
u64 rx_unicast; /* received unicast pkts */
u64 rx_multicast; /* received multicast pkts */
u64 rx_broadcast; /* received broadcast pkts */
u64 rx_discards;
u64 rx_unknown_protocol;
u64 tx_bytes; /* transmitted bytes */
u64 tx_unicast; /* transmitted unicast pkts */
u64 tx_multicast; /* transmitted multicast pkts */
u64 tx_broadcast; /* transmitted broadcast pkts */
u64 tx_discards;
u64 tx_errors;
};
/* VIRTCHNL_OP_CONFIG_RSS_KEY
* VIRTCHNL_OP_CONFIG_RSS_LUT
* VF sends these messages to configure RSS. Only supported if both PF
* and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
* configuration negotiation. If this is the case, then the RSS fields in
* the VF resource struct are valid.
* Both the key and LUT are initialized to 0 by the PF, meaning that
* RSS is effectively disabled until set up by the VF.
*/
struct virtchnl_rss_key {
u16 vsi_id;
u16 key_len;
u8 key[1]; /* RSS hash key, packed bytes */
};
VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
struct virtchnl_rss_lut {
u16 vsi_id;
u16 lut_entries;
u8 lut[1]; /* RSS lookup table */
};
VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
/* VIRTCHNL_OP_GET_RSS_HENA_CAPS
* VIRTCHNL_OP_SET_RSS_HENA
* VF sends these messages to get and set the hash filter enable bits for RSS.
* By default, the PF sets these to all possible traffic types that the
* hardware supports. The VF can query this value if it wants to change the
* traffic types that are hashed by the hardware.
*/
struct virtchnl_rss_hena {
u64 hena;
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
/* Type of RSS algorithm */
enum virtchnl_rss_algorithm {
VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC = 0,
VIRTCHNL_RSS_ALG_XOR_ASYMMETRIC = 1,
VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC = 2,
VIRTCHNL_RSS_ALG_XOR_SYMMETRIC = 3,
};
/* This is used by PF driver to enforce how many channels can be supported.
* When ADQ_V2 capability is negotiated, it will allow 16 channels otherwise
* PF driver will allow only max 4 channels
*/
#define VIRTCHNL_MAX_ADQ_CHANNELS 4
#define VIRTCHNL_MAX_ADQ_V2_CHANNELS 16
/* VIRTCHNL_OP_ENABLE_CHANNELS
* VIRTCHNL_OP_DISABLE_CHANNELS
* VF sends these messages to enable or disable channels based on
* the user specified queue count and queue offset for each traffic class.
* This struct encompasses all the information that the PF needs from
* VF to create a channel.
*/
struct virtchnl_channel_info {
u16 count; /* number of queues in a channel */
u16 offset; /* queues in a channel start from 'offset' */
u32 pad;
u64 max_tx_rate;
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
struct virtchnl_tc_info {
u32 num_tc;
u32 pad;
struct virtchnl_channel_info list[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info);
/* VIRTCHNL_ADD_CLOUD_FILTER
* VIRTCHNL_DEL_CLOUD_FILTER
* VF sends these messages to add or delete a cloud filter based on the
* user specified match and action filters. These structures encompass
* all the information that the PF needs from the VF to add/delete a
* cloud filter.
*/
struct virtchnl_l4_spec {
u8 src_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
u8 dst_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
/* vlan_prio is part of this 16 bit field even from OS perspective
* vlan_id:12 is actual vlan_id, then vlanid:bit14..12 is vlan_prio
* in future, when decided to offload vlan_prio, pass that information
* as part of the "vlan_id" field, Bit14..12
*/
__be16 vlan_id;
__be16 pad; /* reserved for future use */
__be32 src_ip[4];
__be32 dst_ip[4];
__be16 src_port;
__be16 dst_port;
};
VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
union virtchnl_flow_spec {
struct virtchnl_l4_spec tcp_spec;
u8 buffer[128]; /* reserved for future use */
};
VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
enum virtchnl_action {
/* action types */
VIRTCHNL_ACTION_DROP = 0,
VIRTCHNL_ACTION_TC_REDIRECT,
VIRTCHNL_ACTION_PASSTHRU,
VIRTCHNL_ACTION_QUEUE,
VIRTCHNL_ACTION_Q_REGION,
VIRTCHNL_ACTION_MARK,
VIRTCHNL_ACTION_COUNT,
};
enum virtchnl_flow_type {
/* flow types */
VIRTCHNL_TCP_V4_FLOW = 0,
VIRTCHNL_TCP_V6_FLOW,
VIRTCHNL_UDP_V4_FLOW,
VIRTCHNL_UDP_V6_FLOW,
};
struct virtchnl_filter {
union virtchnl_flow_spec data;
union virtchnl_flow_spec mask;
/* see enum virtchnl_flow_type */
s32 flow_type;
/* see enum virtchnl_action */
s32 action;
u32 action_meta;
u8 field_flags;
};
VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
/* VIRTCHNL_OP_DCF_GET_VSI_MAP
* VF sends this message to get VSI mapping table.
* PF responds with an indirect message containing VF's
* HW VSI IDs.
* The index of vf_vsi array is the logical VF ID, the
* value of vf_vsi array is the VF's HW VSI ID with its
* valid configuration.
*/
struct virtchnl_dcf_vsi_map {
u16 pf_vsi; /* PF's HW VSI ID */
u16 num_vfs; /* The actual number of VFs allocated */
#define VIRTCHNL_DCF_VF_VSI_ID_S 0
#define VIRTCHNL_DCF_VF_VSI_ID_M (0xFFF << VIRTCHNL_DCF_VF_VSI_ID_S)
#define VIRTCHNL_DCF_VF_VSI_VALID BIT(15)
u16 vf_vsi[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_dcf_vsi_map);
#define PKG_NAME_SIZE 32
#define DSN_SIZE 8
struct pkg_version {
u8 major;
u8 minor;
u8 update;
u8 draft;
};
VIRTCHNL_CHECK_STRUCT_LEN(4, pkg_version);
struct virtchnl_pkg_info {
struct pkg_version pkg_ver;
u32 track_id;
char pkg_name[PKG_NAME_SIZE];
u8 dsn[DSN_SIZE];
};
VIRTCHNL_CHECK_STRUCT_LEN(48, virtchnl_pkg_info);
/* VIRTCHNL_OP_DCF_VLAN_OFFLOAD
* DCF negotiates the VIRTCHNL_VF_OFFLOAD_VLAN_V2 capability firstly to get
* the double VLAN configuration, then DCF sends this message to configure the
* outer or inner VLAN offloads (insertion and strip) for the target VF.
*/
struct virtchnl_dcf_vlan_offload {
u16 vf_id;
u16 tpid;
u16 vlan_flags;
#define VIRTCHNL_DCF_VLAN_TYPE_S 0
#define VIRTCHNL_DCF_VLAN_TYPE_M \
(0x1 << VIRTCHNL_DCF_VLAN_TYPE_S)
#define VIRTCHNL_DCF_VLAN_TYPE_INNER 0x0
#define VIRTCHNL_DCF_VLAN_TYPE_OUTER 0x1
#define VIRTCHNL_DCF_VLAN_INSERT_MODE_S 1
#define VIRTCHNL_DCF_VLAN_INSERT_MODE_M \
(0x7 << VIRTCHNL_DCF_VLAN_INSERT_MODE_S)
#define VIRTCHNL_DCF_VLAN_INSERT_DISABLE 0x1
#define VIRTCHNL_DCF_VLAN_INSERT_PORT_BASED 0x2
#define VIRTCHNL_DCF_VLAN_INSERT_VIA_TX_DESC 0x3
#define VIRTCHNL_DCF_VLAN_STRIP_MODE_S 4
#define VIRTCHNL_DCF_VLAN_STRIP_MODE_M \
(0x7 << VIRTCHNL_DCF_VLAN_STRIP_MODE_S)
#define VIRTCHNL_DCF_VLAN_STRIP_DISABLE 0x1
#define VIRTCHNL_DCF_VLAN_STRIP_ONLY 0x2
#define VIRTCHNL_DCF_VLAN_STRIP_INTO_RX_DESC 0x3
u16 vlan_id;
u16 pad[4];
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_dcf_vlan_offload);
struct virtchnl_supported_rxdids {
/* see enum virtchnl_rx_desc_id_bitmasks */
u64 supported_rxdids;
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_supported_rxdids);
/* VIRTCHNL_OP_EVENT
* PF sends this message to inform the VF driver of events that may affect it.
* No direct response is expected from the VF, though it may generate other
* messages in response to this one.
*/
enum virtchnl_event_codes {
VIRTCHNL_EVENT_UNKNOWN = 0,
VIRTCHNL_EVENT_LINK_CHANGE,
VIRTCHNL_EVENT_RESET_IMPENDING,
VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
VIRTCHNL_EVENT_DCF_VSI_MAP_UPDATE,
};
#define PF_EVENT_SEVERITY_INFO 0
#define PF_EVENT_SEVERITY_ATTENTION 1
#define PF_EVENT_SEVERITY_ACTION_REQUIRED 2
#define PF_EVENT_SEVERITY_CERTAIN_DOOM 255
struct virtchnl_pf_event {
/* see enum virtchnl_event_codes */
s32 event;
union {
/* If the PF driver does not support the new speed reporting
* capabilities then use link_event else use link_event_adv to
* get the speed and link information. The ability to understand
* new speeds is indicated by setting the capability flag
* VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
* in virtchnl_vf_resource struct and can be used to determine
* which link event struct to use below.
*/
struct {
enum virtchnl_link_speed link_speed;
u8 link_status;
} link_event;
struct {
/* link_speed provided in Mbps */
u32 link_speed;
u8 link_status;
} link_event_adv;
struct {
u16 vf_id;
u16 vsi_id;
} vf_vsi_map;
} event_data;
int severity;
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
/* VF reset states - these are written into the RSTAT register:
* VFGEN_RSTAT on the VF
* When the PF initiates a reset, it writes 0
* When the reset is complete, it writes 1
* When the PF detects that the VF has recovered, it writes 2
* VF checks this register periodically to determine if a reset has occurred,
* then polls it to know when the reset is complete.
* If either the PF or VF reads the register while the hardware
* is in a reset state, it will return DEADBEEF, which, when masked
* will result in 3.
*/
enum virtchnl_vfr_states {
VIRTCHNL_VFR_INPROGRESS = 0,
VIRTCHNL_VFR_COMPLETED,
VIRTCHNL_VFR_VFACTIVE,
};
#define VIRTCHNL_MAX_NUM_PROTO_HDRS 32
#define PROTO_HDR_SHIFT 5
#define PROTO_HDR_FIELD_START(proto_hdr_type) \
(proto_hdr_type << PROTO_HDR_SHIFT)
#define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
/* VF use these macros to configure each protocol header.
* Specify which protocol headers and protocol header fields base on
* virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
* @param hdr: a struct of virtchnl_proto_hdr
* @param hdr_type: ETH/IPV4/TCP, etc
* @param field: SRC/DST/TEID/SPI, etc
*/
#define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
#define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
#define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
#define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr) ((hdr)->field_selector)
#define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
(VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
#define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
(VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
#define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
#define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
(((hdr)->type) >> PROTO_HDR_SHIFT)
#define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
((hdr)->type == ((val) >> PROTO_HDR_SHIFT))
#define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
(VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) && \
VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val))
/* Protocol header type within a packet segment. A segment consists of one or
* more protocol headers that make up a logical group of protocol headers. Each
* logical group of protocol headers encapsulates or is encapsulated using/by
* tunneling or encapsulation protocols for network virtualization.
*/
enum virtchnl_proto_hdr_type {
VIRTCHNL_PROTO_HDR_NONE,
VIRTCHNL_PROTO_HDR_ETH,
VIRTCHNL_PROTO_HDR_S_VLAN,
VIRTCHNL_PROTO_HDR_C_VLAN,
VIRTCHNL_PROTO_HDR_IPV4,
VIRTCHNL_PROTO_HDR_IPV6,
VIRTCHNL_PROTO_HDR_TCP,
VIRTCHNL_PROTO_HDR_UDP,
VIRTCHNL_PROTO_HDR_SCTP,
VIRTCHNL_PROTO_HDR_GTPU_IP,
VIRTCHNL_PROTO_HDR_GTPU_EH,
VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
VIRTCHNL_PROTO_HDR_PPPOE,
VIRTCHNL_PROTO_HDR_L2TPV3,
VIRTCHNL_PROTO_HDR_ESP,
VIRTCHNL_PROTO_HDR_AH,
VIRTCHNL_PROTO_HDR_PFCP,
VIRTCHNL_PROTO_HDR_GTPC,
VIRTCHNL_PROTO_HDR_ECPRI,
VIRTCHNL_PROTO_HDR_L2TPV2,
VIRTCHNL_PROTO_HDR_PPP,
/* IPv4 and IPv6 Fragment header types are only associated to
* VIRTCHNL_PROTO_HDR_IPV4 and VIRTCHNL_PROTO_HDR_IPV6 respectively,
* cannot be used independently.
*/
VIRTCHNL_PROTO_HDR_IPV4_FRAG,
VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG,
};
/* Protocol header field within a protocol header. */
enum virtchnl_proto_hdr_field {
/* ETHER */
VIRTCHNL_PROTO_HDR_ETH_SRC =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
VIRTCHNL_PROTO_HDR_ETH_DST,
VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
/* S-VLAN */
VIRTCHNL_PROTO_HDR_S_VLAN_ID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
/* C-VLAN */
VIRTCHNL_PROTO_HDR_C_VLAN_ID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
/* IPV4 */
VIRTCHNL_PROTO_HDR_IPV4_SRC =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
VIRTCHNL_PROTO_HDR_IPV4_DST,
VIRTCHNL_PROTO_HDR_IPV4_DSCP,
VIRTCHNL_PROTO_HDR_IPV4_TTL,
VIRTCHNL_PROTO_HDR_IPV4_PROT,
/* IPV6 */
VIRTCHNL_PROTO_HDR_IPV6_SRC =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
VIRTCHNL_PROTO_HDR_IPV6_DST,
VIRTCHNL_PROTO_HDR_IPV6_TC,
VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
VIRTCHNL_PROTO_HDR_IPV6_PROT,
/* IPV6 Prefix */
VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_SRC,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_DST,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_SRC,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_DST,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_SRC,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_DST,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_SRC,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_DST,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_SRC,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_DST,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_SRC,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_DST,
/* TCP */
VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
/* UDP */
VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
/* SCTP */
VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
/* GTPU_IP */
VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
/* GTPU_EH */
VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
/* PPPOE */
VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
/* L2TPV3 */
VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
/* ESP */
VIRTCHNL_PROTO_HDR_ESP_SPI =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
/* AH */
VIRTCHNL_PROTO_HDR_AH_SPI =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
/* PFCP */
VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
VIRTCHNL_PROTO_HDR_PFCP_SEID,
/* GTPC */
VIRTCHNL_PROTO_HDR_GTPC_TEID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPC),
/* ECPRI */
VIRTCHNL_PROTO_HDR_ECPRI_MSG_TYPE =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ECPRI),
VIRTCHNL_PROTO_HDR_ECPRI_PC_RTC_ID,
/* IPv4 Dummy Fragment */
VIRTCHNL_PROTO_HDR_IPV4_FRAG_PKID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4_FRAG),
/* IPv6 Extension Fragment */
VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG_PKID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG),
};
struct virtchnl_proto_hdr {
/* see enum virtchnl_proto_hdr_type */
s32 type;
u32 field_selector; /* a bit mask to select field for header type */
u8 buffer[64];
/**
* binary buffer in network order for specific header type.
* For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
* header is expected to be copied into the buffer.
*/
};
VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
struct virtchnl_proto_hdrs {
u8 tunnel_level;
/**
* specify where protocol header start from.
* 0 - from the outer layer
* 1 - from the first inner layer
* 2 - from the second inner layer
* ....
**/
int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */
struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
};
VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
struct virtchnl_rss_cfg {
struct virtchnl_proto_hdrs proto_hdrs; /* protocol headers */
/* see enum virtchnl_rss_algorithm; rss algorithm type */
s32 rss_algorithm;
u8 reserved[128]; /* reserve for future */
};
VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
/* action configuration for FDIR */
struct virtchnl_filter_action {
/* see enum virtchnl_action type */
s32 type;
union {
/* used for queue and qgroup action */
struct {
u16 index;
u8 region;
} queue;
/* used for count action */
struct {
/* share counter ID with other flow rules */
u8 shared;
u32 id; /* counter ID */
} count;
/* used for mark action */
u32 mark_id;
u8 reserve[32];
} act_conf;
};
VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
#define VIRTCHNL_MAX_NUM_ACTIONS 8
struct virtchnl_filter_action_set {
/* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
int count;
struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
};
VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
/* pattern and action for FDIR rule */
struct virtchnl_fdir_rule {
struct virtchnl_proto_hdrs proto_hdrs;
struct virtchnl_filter_action_set action_set;
};
VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
/* query information to retrieve fdir rule counters.
* PF will fill out this structure to reset counter.
*/
struct virtchnl_fdir_query_info {
u32 match_packets_valid:1;
u32 match_bytes_valid:1;
u32 reserved:30; /* Reserved, must be zero. */
u32 pad;
u64 matched_packets; /* Number of packets for this rule. */
u64 matched_bytes; /* Number of bytes through this rule. */
};
VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_fdir_query_info);
/* Status returned to VF after VF requests FDIR commands
* VIRTCHNL_FDIR_SUCCESS
* VF FDIR related request is successfully done by PF
* The request can be OP_ADD/DEL/QUERY_FDIR_FILTER.
*
* VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
* OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
*
* VIRTCHNL_FDIR_FAILURE_RULE_EXIST
* OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
*
* VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
* OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
*
* VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
* OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
*
* VIRTCHNL_FDIR_FAILURE_RULE_INVALID
* OP_ADD_FDIR_FILTER request is failed due to parameters validation
* or HW doesn't support.
*
* VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
* OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
* for programming.
*
* VIRTCHNL_FDIR_FAILURE_QUERY_INVALID
* OP_QUERY_FDIR_FILTER request is failed due to parameters validation,
* for example, VF query counter of a rule who has no counter action.
*/
enum virtchnl_fdir_prgm_status {
VIRTCHNL_FDIR_SUCCESS = 0,
VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
VIRTCHNL_FDIR_FAILURE_QUERY_INVALID,
};
/* VIRTCHNL_OP_ADD_FDIR_FILTER
* VF sends this request to PF by filling out vsi_id,
* validate_only and rule_cfg. PF will return flow_id
* if the request is successfully done and return add_status to VF.
*/
struct virtchnl_fdir_add {
u16 vsi_id; /* INPUT */
/*
* 1 for validating a fdir rule, 0 for creating a fdir rule.
* Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
*/
u16 validate_only; /* INPUT */
u32 flow_id; /* OUTPUT */
struct virtchnl_fdir_rule rule_cfg; /* INPUT */
/* see enum virtchnl_fdir_prgm_status; OUTPUT */
s32 status;
};
VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
/* VIRTCHNL_OP_DEL_FDIR_FILTER
* VF sends this request to PF by filling out vsi_id
* and flow_id. PF will return del_status to VF.
*/
struct virtchnl_fdir_del {
u16 vsi_id; /* INPUT */
u16 pad;
u32 flow_id; /* INPUT */
/* see enum virtchnl_fdir_prgm_status; OUTPUT */
s32 status;
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
/* VIRTCHNL_OP_QUERY_FDIR_FILTER
* VF sends this request to PF by filling out vsi_id,
* flow_id and reset_counter. PF will return query_info
* and query_status to VF.
*/
struct virtchnl_fdir_query {
u16 vsi_id; /* INPUT */
u16 pad1[3];
u32 flow_id; /* INPUT */
u32 reset_counter:1; /* INPUT */
struct virtchnl_fdir_query_info query_info; /* OUTPUT */
/* see enum virtchnl_fdir_prgm_status; OUTPUT */
s32 status;
u32 pad2;
};
VIRTCHNL_CHECK_STRUCT_LEN(48, virtchnl_fdir_query);
/* TX and RX queue types are valid in legacy as well as split queue models.
* With Split Queue model, 2 additional types are introduced - TX_COMPLETION
* and RX_BUFFER. In split queue model, RX corresponds to the queue where HW
* posts completions.
*/
enum virtchnl_queue_type {
VIRTCHNL_QUEUE_TYPE_TX = 0,
VIRTCHNL_QUEUE_TYPE_RX = 1,
VIRTCHNL_QUEUE_TYPE_TX_COMPLETION = 2,
VIRTCHNL_QUEUE_TYPE_RX_BUFFER = 3,
VIRTCHNL_QUEUE_TYPE_CONFIG_TX = 4,
VIRTCHNL_QUEUE_TYPE_CONFIG_RX = 5
};
/* structure to specify a chunk of contiguous queues */
struct virtchnl_queue_chunk {
/* see enum virtchnl_queue_type */
s32 type;
u16 start_queue_id;
u16 num_queues;
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_queue_chunk);
/* structure to specify several chunks of contiguous queues */
struct virtchnl_queue_chunks {
u16 num_chunks;
u16 rsvd;
struct virtchnl_queue_chunk chunks[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_chunks);
/* VIRTCHNL_OP_ENABLE_QUEUES_V2
* VIRTCHNL_OP_DISABLE_QUEUES_V2
* VIRTCHNL_OP_DEL_QUEUES
*
* If VIRTCHNL_CAP_EXT_FEATURES was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
* then all of these ops are available.
*
* If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
* then VIRTCHNL_OP_ENABLE_QUEUES_V2 and VIRTCHNL_OP_DISABLE_QUEUES_V2 are
* available.
*
* PF sends these messages to enable, disable or delete queues specified in
* chunks. PF sends virtchnl_del_ena_dis_queues struct to specify the queues
* to be enabled/disabled/deleted. Also applicable to single queue RX or
* TX. CP performs requested action and returns status.
*/
struct virtchnl_del_ena_dis_queues {
u16 vport_id;
u16 pad;
struct virtchnl_queue_chunks chunks;
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_del_ena_dis_queues);
/* Virtchannel interrupt throttling rate index */
enum virtchnl_itr_idx {
VIRTCHNL_ITR_IDX_0 = 0,
VIRTCHNL_ITR_IDX_1 = 1,
VIRTCHNL_ITR_IDX_NO_ITR = 3,
};
/* Queue to vector mapping */
struct virtchnl_queue_vector {
u16 queue_id;
u16 vector_id;
u8 pad[4];
/* see enum virtchnl_itr_idx */
s32 itr_idx;
/* see enum virtchnl_queue_type */
s32 queue_type;
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queue_vector);
/* VIRTCHNL_OP_MAP_QUEUE_VECTOR
* VIRTCHNL_OP_UNMAP_QUEUE_VECTOR
*
* If VIRTCHNL_CAP_EXT_FEATURES was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
* then all of these ops are available.
*
* If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
* then only VIRTCHNL_OP_MAP_QUEUE_VECTOR is available.
*
* PF sends this message to map or unmap queues to vectors and ITR index
* registers. External data buffer contains virtchnl_queue_vector_maps structure
* that contains num_qv_maps of virtchnl_queue_vector structures.
* CP maps the requested queue vector maps after validating the queue and vector
* ids and returns a status code.
*/
struct virtchnl_queue_vector_maps {
u16 vport_id;
u16 num_qv_maps;
u8 pad[4];
struct virtchnl_queue_vector qv_maps[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_queue_vector_maps);
/* Since VF messages are limited by u16 size, precalculate the maximum possible
* values of nested elements in virtchnl structures that virtual channel can
* possibly handle in a single message.
*/
enum virtchnl_vector_limits {
VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX =
((u16)(~0) - sizeof(struct virtchnl_vsi_queue_config_info)) /
sizeof(struct virtchnl_queue_pair_info),
VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX =
((u16)(~0) - sizeof(struct virtchnl_irq_map_info)) /
sizeof(struct virtchnl_vector_map),
VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX =
((u16)(~0) - sizeof(struct virtchnl_ether_addr_list)) /
sizeof(struct virtchnl_ether_addr),
VIRTCHNL_OP_ADD_DEL_VLAN_MAX =
((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list)) /
sizeof(u16),
VIRTCHNL_OP_ENABLE_CHANNELS_MAX =
((u16)(~0) - sizeof(struct virtchnl_tc_info)) /
sizeof(struct virtchnl_channel_info),
VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX =
((u16)(~0) - sizeof(struct virtchnl_del_ena_dis_queues)) /
sizeof(struct virtchnl_queue_chunk),
VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX =
((u16)(~0) - sizeof(struct virtchnl_queue_vector_maps)) /
sizeof(struct virtchnl_queue_vector),
VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX =
((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list_v2)) /
sizeof(struct virtchnl_vlan_filter),
};
/**
* virtchnl_vc_validate_vf_msg
* @ver: Virtchnl version info
* @v_opcode: Opcode for the message
* @msg: pointer to the msg buffer
* @msglen: msg length
*
* validate msg format against struct for each opcode
*/
static inline int
virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
u8 *msg, u16 msglen)
{
bool err_msg_format = false;
u32 valid_len = 0;
/* Validate message length. */
switch (v_opcode) {
case VIRTCHNL_OP_VERSION:
valid_len = sizeof(struct virtchnl_version_info);
break;
case VIRTCHNL_OP_RESET_VF:
break;
case VIRTCHNL_OP_GET_VF_RESOURCES:
if (VF_IS_V11(ver))
valid_len = sizeof(u32);
break;
case VIRTCHNL_OP_CONFIG_TX_QUEUE:
valid_len = sizeof(struct virtchnl_txq_info);
break;
case VIRTCHNL_OP_CONFIG_RX_QUEUE:
valid_len = sizeof(struct virtchnl_rxq_info);
break;
case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
if (msglen >= valid_len) {
struct virtchnl_vsi_queue_config_info *vqc =
(struct virtchnl_vsi_queue_config_info *)msg;
if (vqc->num_queue_pairs == 0 || vqc->num_queue_pairs >
VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX) {
err_msg_format = true;
break;
}
valid_len += (vqc->num_queue_pairs *
sizeof(struct
virtchnl_queue_pair_info));
}
break;
case VIRTCHNL_OP_CONFIG_IRQ_MAP:
valid_len = sizeof(struct virtchnl_irq_map_info);
if (msglen >= valid_len) {
struct virtchnl_irq_map_info *vimi =
(struct virtchnl_irq_map_info *)msg;
if (vimi->num_vectors == 0 || vimi->num_vectors >
VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX) {
err_msg_format = true;
break;
}
valid_len += (vimi->num_vectors *
sizeof(struct virtchnl_vector_map));
}
break;
case VIRTCHNL_OP_ENABLE_QUEUES:
case VIRTCHNL_OP_DISABLE_QUEUES:
valid_len = sizeof(struct virtchnl_queue_select);
break;
case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
break;
case VIRTCHNL_OP_ADD_ETH_ADDR:
case VIRTCHNL_OP_DEL_ETH_ADDR:
valid_len = sizeof(struct virtchnl_ether_addr_list);
if (msglen >= valid_len) {
struct virtchnl_ether_addr_list *veal =
(struct virtchnl_ether_addr_list *)msg;
if (veal->num_elements == 0 || veal->num_elements >
VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX) {
err_msg_format = true;
break;
}
valid_len += veal->num_elements *
sizeof(struct virtchnl_ether_addr);
}
break;
case VIRTCHNL_OP_ADD_VLAN:
case VIRTCHNL_OP_DEL_VLAN:
valid_len = sizeof(struct virtchnl_vlan_filter_list);
if (msglen >= valid_len) {
struct virtchnl_vlan_filter_list *vfl =
(struct virtchnl_vlan_filter_list *)msg;
if (vfl->num_elements == 0 || vfl->num_elements >
VIRTCHNL_OP_ADD_DEL_VLAN_MAX) {
err_msg_format = true;
break;
}
valid_len += vfl->num_elements * sizeof(u16);
}
break;
case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
valid_len = sizeof(struct virtchnl_promisc_info);
break;
case VIRTCHNL_OP_GET_STATS:
valid_len = sizeof(struct virtchnl_queue_select);
break;
case VIRTCHNL_OP_CONFIG_RSS_KEY:
valid_len = sizeof(struct virtchnl_rss_key);
if (msglen >= valid_len) {
struct virtchnl_rss_key *vrk =
(struct virtchnl_rss_key *)msg;
if (vrk->key_len == 0) {
/* zero length is allowed as input */
break;
}
valid_len += vrk->key_len - 1;
}
break;
case VIRTCHNL_OP_CONFIG_RSS_LUT:
valid_len = sizeof(struct virtchnl_rss_lut);
if (msglen >= valid_len) {
struct virtchnl_rss_lut *vrl =
(struct virtchnl_rss_lut *)msg;
if (vrl->lut_entries == 0) {
/* zero entries is allowed as input */
break;
}
valid_len += vrl->lut_entries - 1;
}
break;
case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
break;
case VIRTCHNL_OP_SET_RSS_HENA:
valid_len = sizeof(struct virtchnl_rss_hena);
break;
case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
break;
case VIRTCHNL_OP_REQUEST_QUEUES:
valid_len = sizeof(struct virtchnl_vf_res_request);
break;
case VIRTCHNL_OP_ENABLE_CHANNELS:
valid_len = sizeof(struct virtchnl_tc_info);
if (msglen >= valid_len) {
struct virtchnl_tc_info *vti =
(struct virtchnl_tc_info *)msg;
if (vti->num_tc == 0 || vti->num_tc >
VIRTCHNL_OP_ENABLE_CHANNELS_MAX) {
err_msg_format = true;
break;
}
valid_len += (vti->num_tc - 1) *
sizeof(struct virtchnl_channel_info);
}
break;
case VIRTCHNL_OP_DISABLE_CHANNELS:
break;
case VIRTCHNL_OP_ADD_CLOUD_FILTER:
case VIRTCHNL_OP_DEL_CLOUD_FILTER:
valid_len = sizeof(struct virtchnl_filter);
break;
case VIRTCHNL_OP_DCF_VLAN_OFFLOAD:
valid_len = sizeof(struct virtchnl_dcf_vlan_offload);
break;
case VIRTCHNL_OP_DCF_CMD_DESC:
case VIRTCHNL_OP_DCF_CMD_BUFF:
/* These two opcodes are specific to handle the AdminQ command,
* so the validation needs to be done in PF's context.
*/
valid_len = msglen;
break;
case VIRTCHNL_OP_DCF_DISABLE:
case VIRTCHNL_OP_DCF_GET_VSI_MAP:
case VIRTCHNL_OP_DCF_GET_PKG_INFO:
break;
case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
break;
case VIRTCHNL_OP_ADD_RSS_CFG:
case VIRTCHNL_OP_DEL_RSS_CFG:
valid_len = sizeof(struct virtchnl_rss_cfg);
break;
case VIRTCHNL_OP_ADD_FDIR_FILTER:
valid_len = sizeof(struct virtchnl_fdir_add);
break;
case VIRTCHNL_OP_DEL_FDIR_FILTER:
valid_len = sizeof(struct virtchnl_fdir_del);
break;
case VIRTCHNL_OP_QUERY_FDIR_FILTER:
valid_len = sizeof(struct virtchnl_fdir_query);
break;
case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
break;
case VIRTCHNL_OP_ADD_VLAN_V2:
case VIRTCHNL_OP_DEL_VLAN_V2:
valid_len = sizeof(struct virtchnl_vlan_filter_list_v2);
if (msglen >= valid_len) {
struct virtchnl_vlan_filter_list_v2 *vfl =
(struct virtchnl_vlan_filter_list_v2 *)msg;
if (vfl->num_elements == 0 || vfl->num_elements >
VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX) {
err_msg_format = true;
break;
}
valid_len += (vfl->num_elements - 1) *
sizeof(struct virtchnl_vlan_filter);
}
break;
case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
valid_len = sizeof(struct virtchnl_vlan_setting);
break;
case VIRTCHNL_OP_ENABLE_QUEUES_V2:
case VIRTCHNL_OP_DISABLE_QUEUES_V2:
valid_len = sizeof(struct virtchnl_del_ena_dis_queues);
if (msglen >= valid_len) {
struct virtchnl_del_ena_dis_queues *qs =
(struct virtchnl_del_ena_dis_queues *)msg;
if (qs->chunks.num_chunks == 0 ||
qs->chunks.num_chunks > VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX) {
err_msg_format = true;
break;
}
valid_len += (qs->chunks.num_chunks - 1) *
sizeof(struct virtchnl_queue_chunk);
}
break;
case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
valid_len = sizeof(struct virtchnl_queue_vector_maps);
if (msglen >= valid_len) {
struct virtchnl_queue_vector_maps *v_qp =
(struct virtchnl_queue_vector_maps *)msg;
if (v_qp->num_qv_maps == 0 ||
v_qp->num_qv_maps > VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX) {
err_msg_format = true;
break;
}
valid_len += (v_qp->num_qv_maps - 1) *
sizeof(struct virtchnl_queue_vector);
}
break;
/* These are always errors coming from the VF. */
case VIRTCHNL_OP_EVENT:
case VIRTCHNL_OP_UNKNOWN:
default:
return VIRTCHNL_STATUS_ERR_PARAM;
}
/* few more checks */
if (err_msg_format || valid_len != msglen)
return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
return 0;
}
#endif /* _VIRTCHNL_H_ */