numam-dpdk/lib/librte_vhost/vhost_rxtx.c
Ilya Maximets 7fd5dde987 vhost: make buffer vector for scatter Rx local
Array of buf_vector's is just an array for temporary storing information
about available descriptors. It used only locally in virtio_dev_merge_rx()
and there is no reason for that array to be shared.

Fix that by allocating local buf_vec inside virtio_dev_merge_rx().

Signed-off-by: Ilya Maximets <i.maximets@samsung.com>
Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Tested-by: Rich Lane <rich.lane@bigswitch.com>
Acked-by: Rich Lane <rich.lane@bigswitch.com>
2016-06-22 09:44:21 +02:00

955 lines
26 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <stdbool.h>
#include <linux/virtio_net.h>
#include <rte_mbuf.h>
#include <rte_memcpy.h>
#include <rte_ether.h>
#include <rte_ip.h>
#include <rte_virtio_net.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_sctp.h>
#include <rte_arp.h>
#include "vhost-net.h"
#define MAX_PKT_BURST 32
#define VHOST_LOG_PAGE 4096
static inline void __attribute__((always_inline))
vhost_log_page(uint8_t *log_base, uint64_t page)
{
log_base[page / 8] |= 1 << (page % 8);
}
static inline void __attribute__((always_inline))
vhost_log_write(struct virtio_net *dev, uint64_t addr, uint64_t len)
{
uint64_t page;
if (likely(((dev->features & (1ULL << VHOST_F_LOG_ALL)) == 0) ||
!dev->log_base || !len))
return;
if (unlikely(dev->log_size <= ((addr + len - 1) / VHOST_LOG_PAGE / 8)))
return;
/* To make sure guest memory updates are committed before logging */
rte_smp_wmb();
page = addr / VHOST_LOG_PAGE;
while (page * VHOST_LOG_PAGE < addr + len) {
vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page);
page += 1;
}
}
static inline void __attribute__((always_inline))
vhost_log_used_vring(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t offset, uint64_t len)
{
vhost_log_write(dev, vq->log_guest_addr + offset, len);
}
static bool
is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t qp_nb)
{
return (is_tx ^ (idx & 1)) == 0 && idx < qp_nb * VIRTIO_QNUM;
}
static void
virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
{
if (m_buf->ol_flags & PKT_TX_L4_MASK) {
net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
switch (m_buf->ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_TCP_CKSUM:
net_hdr->csum_offset = (offsetof(struct tcp_hdr,
cksum));
break;
case PKT_TX_UDP_CKSUM:
net_hdr->csum_offset = (offsetof(struct udp_hdr,
dgram_cksum));
break;
case PKT_TX_SCTP_CKSUM:
net_hdr->csum_offset = (offsetof(struct sctp_hdr,
cksum));
break;
}
}
if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
if (m_buf->ol_flags & PKT_TX_IPV4)
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
else
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
net_hdr->gso_size = m_buf->tso_segsz;
net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
+ m_buf->l4_len;
}
}
static inline void
copy_virtio_net_hdr(struct virtio_net *dev, uint64_t desc_addr,
struct virtio_net_hdr_mrg_rxbuf hdr)
{
if (dev->vhost_hlen == sizeof(struct virtio_net_hdr_mrg_rxbuf))
*(struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)desc_addr = hdr;
else
*(struct virtio_net_hdr *)(uintptr_t)desc_addr = hdr.hdr;
}
static inline int __attribute__((always_inline))
copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf *m, uint16_t desc_idx, uint32_t *copied)
{
uint32_t desc_avail, desc_offset;
uint32_t mbuf_avail, mbuf_offset;
uint32_t cpy_len;
struct vring_desc *desc;
uint64_t desc_addr;
struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
desc = &vq->desc[desc_idx];
if (unlikely(desc->len < dev->vhost_hlen))
return -1;
desc_addr = gpa_to_vva(dev, desc->addr);
rte_prefetch0((void *)(uintptr_t)desc_addr);
virtio_enqueue_offload(m, &virtio_hdr.hdr);
copy_virtio_net_hdr(dev, desc_addr, virtio_hdr);
vhost_log_write(dev, desc->addr, dev->vhost_hlen);
PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
desc_offset = dev->vhost_hlen;
desc_avail = desc->len - dev->vhost_hlen;
*copied = rte_pktmbuf_pkt_len(m);
mbuf_avail = rte_pktmbuf_data_len(m);
mbuf_offset = 0;
while (mbuf_avail != 0 || m->next != NULL) {
/* done with current mbuf, fetch next */
if (mbuf_avail == 0) {
m = m->next;
mbuf_offset = 0;
mbuf_avail = rte_pktmbuf_data_len(m);
}
/* done with current desc buf, fetch next */
if (desc_avail == 0) {
if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
/* Room in vring buffer is not enough */
return -1;
}
if (unlikely(desc->next >= vq->size))
return -1;
desc = &vq->desc[desc->next];
desc_addr = gpa_to_vva(dev, desc->addr);
desc_offset = 0;
desc_avail = desc->len;
}
cpy_len = RTE_MIN(desc_avail, mbuf_avail);
rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
cpy_len);
vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
cpy_len, 0);
mbuf_avail -= cpy_len;
mbuf_offset += cpy_len;
desc_avail -= cpy_len;
desc_offset += cpy_len;
}
return 0;
}
/*
* As many data cores may want to access available buffers
* they need to be reserved.
*/
static inline uint32_t
reserve_avail_buf(struct vhost_virtqueue *vq, uint32_t count,
uint16_t *start, uint16_t *end)
{
uint16_t res_start_idx;
uint16_t res_end_idx;
uint16_t avail_idx;
uint16_t free_entries;
int success;
count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
again:
res_start_idx = vq->last_used_idx_res;
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
free_entries = avail_idx - res_start_idx;
count = RTE_MIN(count, free_entries);
if (count == 0)
return 0;
res_end_idx = res_start_idx + count;
/*
* update vq->last_used_idx_res atomically; try again if failed.
*
* TODO: Allow to disable cmpset if no concurrency in application.
*/
success = rte_atomic16_cmpset(&vq->last_used_idx_res,
res_start_idx, res_end_idx);
if (unlikely(!success))
goto again;
*start = res_start_idx;
*end = res_end_idx;
return count;
}
/**
* This function adds buffers to the virtio devices RX virtqueue. Buffers can
* be received from the physical port or from another virtio device. A packet
* count is returned to indicate the number of packets that are succesfully
* added to the RX queue. This function works when the mbuf is scattered, but
* it doesn't support the mergeable feature.
*/
static inline uint32_t __attribute__((always_inline))
virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
struct rte_mbuf **pkts, uint32_t count)
{
struct vhost_virtqueue *vq;
uint16_t res_start_idx, res_end_idx;
uint16_t desc_indexes[MAX_PKT_BURST];
uint32_t i;
LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
dev->vid, __func__, queue_id);
return 0;
}
vq = dev->virtqueue[queue_id];
if (unlikely(vq->enabled == 0))
return 0;
count = reserve_avail_buf(vq, count, &res_start_idx, &res_end_idx);
if (count == 0)
return 0;
LOG_DEBUG(VHOST_DATA, "(%d) res_start_idx %d | res_end_idx Index %d\n",
dev->vid, res_start_idx, res_end_idx);
/* Retrieve all of the desc indexes first to avoid caching issues. */
rte_prefetch0(&vq->avail->ring[res_start_idx & (vq->size - 1)]);
for (i = 0; i < count; i++) {
desc_indexes[i] = vq->avail->ring[(res_start_idx + i) &
(vq->size - 1)];
}
rte_prefetch0(&vq->desc[desc_indexes[0]]);
for (i = 0; i < count; i++) {
uint16_t desc_idx = desc_indexes[i];
uint16_t used_idx = (res_start_idx + i) & (vq->size - 1);
uint32_t copied;
int err;
err = copy_mbuf_to_desc(dev, vq, pkts[i], desc_idx, &copied);
vq->used->ring[used_idx].id = desc_idx;
if (unlikely(err))
vq->used->ring[used_idx].len = dev->vhost_hlen;
else
vq->used->ring[used_idx].len = copied + dev->vhost_hlen;
vhost_log_used_vring(dev, vq,
offsetof(struct vring_used, ring[used_idx]),
sizeof(vq->used->ring[used_idx]));
if (i + 1 < count)
rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
}
rte_smp_wmb();
/* Wait until it's our turn to add our buffer to the used ring. */
while (unlikely(vq->last_used_idx != res_start_idx))
rte_pause();
*(volatile uint16_t *)&vq->used->idx += count;
vq->last_used_idx = res_end_idx;
vhost_log_used_vring(dev, vq,
offsetof(struct vring_used, idx),
sizeof(vq->used->idx));
/* flush used->idx update before we read avail->flags. */
rte_mb();
/* Kick the guest if necessary. */
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
&& (vq->callfd >= 0))
eventfd_write(vq->callfd, (eventfd_t)1);
return count;
}
static inline int
fill_vec_buf(struct vhost_virtqueue *vq, uint32_t avail_idx,
uint32_t *allocated, uint32_t *vec_idx,
struct buf_vector *buf_vec)
{
uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
uint32_t vec_id = *vec_idx;
uint32_t len = *allocated;
while (1) {
if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
return -1;
len += vq->desc[idx].len;
buf_vec[vec_id].buf_addr = vq->desc[idx].addr;
buf_vec[vec_id].buf_len = vq->desc[idx].len;
buf_vec[vec_id].desc_idx = idx;
vec_id++;
if ((vq->desc[idx].flags & VRING_DESC_F_NEXT) == 0)
break;
idx = vq->desc[idx].next;
}
*allocated = len;
*vec_idx = vec_id;
return 0;
}
/*
* As many data cores may want to access available buffers concurrently,
* they need to be reserved.
*
* Returns -1 on fail, 0 on success
*/
static inline int
reserve_avail_buf_mergeable(struct vhost_virtqueue *vq, uint32_t size,
uint16_t *start, uint16_t *end,
struct buf_vector *buf_vec)
{
uint16_t res_start_idx;
uint16_t res_cur_idx;
uint16_t avail_idx;
uint32_t allocated;
uint32_t vec_idx;
uint16_t tries;
again:
res_start_idx = vq->last_used_idx_res;
res_cur_idx = res_start_idx;
allocated = 0;
vec_idx = 0;
tries = 0;
while (1) {
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
if (unlikely(res_cur_idx == avail_idx))
return -1;
if (unlikely(fill_vec_buf(vq, res_cur_idx, &allocated,
&vec_idx, buf_vec) < 0))
return -1;
res_cur_idx++;
tries++;
if (allocated >= size)
break;
/*
* if we tried all available ring items, and still
* can't get enough buf, it means something abnormal
* happened.
*/
if (unlikely(tries >= vq->size))
return -1;
}
/*
* update vq->last_used_idx_res atomically.
* retry again if failed.
*/
if (rte_atomic16_cmpset(&vq->last_used_idx_res,
res_start_idx, res_cur_idx) == 0)
goto again;
*start = res_start_idx;
*end = res_cur_idx;
return 0;
}
static inline uint32_t __attribute__((always_inline))
copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint16_t res_start_idx, uint16_t res_end_idx,
struct rte_mbuf *m, struct buf_vector *buf_vec)
{
struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
uint32_t vec_idx = 0;
uint16_t cur_idx = res_start_idx;
uint64_t desc_addr;
uint32_t mbuf_offset, mbuf_avail;
uint32_t desc_offset, desc_avail;
uint32_t cpy_len;
uint16_t desc_idx, used_idx;
if (unlikely(m == NULL))
return 0;
LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
dev->vid, cur_idx, res_end_idx);
if (buf_vec[vec_idx].buf_len < dev->vhost_hlen)
return -1;
desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
rte_prefetch0((void *)(uintptr_t)desc_addr);
virtio_hdr.num_buffers = res_end_idx - res_start_idx;
LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
dev->vid, virtio_hdr.num_buffers);
virtio_enqueue_offload(m, &virtio_hdr.hdr);
copy_virtio_net_hdr(dev, desc_addr, virtio_hdr);
vhost_log_write(dev, buf_vec[vec_idx].buf_addr, dev->vhost_hlen);
PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
desc_avail = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
desc_offset = dev->vhost_hlen;
mbuf_avail = rte_pktmbuf_data_len(m);
mbuf_offset = 0;
while (mbuf_avail != 0 || m->next != NULL) {
/* done with current desc buf, get the next one */
if (desc_avail == 0) {
desc_idx = buf_vec[vec_idx].desc_idx;
if (!(vq->desc[desc_idx].flags & VRING_DESC_F_NEXT)) {
/* Update used ring with desc information */
used_idx = cur_idx++ & (vq->size - 1);
vq->used->ring[used_idx].id = desc_idx;
vq->used->ring[used_idx].len = desc_offset;
vhost_log_used_vring(dev, vq,
offsetof(struct vring_used,
ring[used_idx]),
sizeof(vq->used->ring[used_idx]));
}
vec_idx++;
desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
/* Prefetch buffer address. */
rte_prefetch0((void *)(uintptr_t)desc_addr);
desc_offset = 0;
desc_avail = buf_vec[vec_idx].buf_len;
}
/* done with current mbuf, get the next one */
if (mbuf_avail == 0) {
m = m->next;
mbuf_offset = 0;
mbuf_avail = rte_pktmbuf_data_len(m);
}
cpy_len = RTE_MIN(desc_avail, mbuf_avail);
rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
cpy_len);
vhost_log_write(dev, buf_vec[vec_idx].buf_addr + desc_offset,
cpy_len);
PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
cpy_len, 0);
mbuf_avail -= cpy_len;
mbuf_offset += cpy_len;
desc_avail -= cpy_len;
desc_offset += cpy_len;
}
used_idx = cur_idx & (vq->size - 1);
vq->used->ring[used_idx].id = buf_vec[vec_idx].desc_idx;
vq->used->ring[used_idx].len = desc_offset;
vhost_log_used_vring(dev, vq,
offsetof(struct vring_used, ring[used_idx]),
sizeof(vq->used->ring[used_idx]));
return res_end_idx - res_start_idx;
}
static inline uint32_t __attribute__((always_inline))
virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
struct rte_mbuf **pkts, uint32_t count)
{
struct vhost_virtqueue *vq;
uint32_t pkt_idx = 0, nr_used = 0;
uint16_t start, end;
struct buf_vector buf_vec[BUF_VECTOR_MAX];
LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
dev->vid, __func__, queue_id);
return 0;
}
vq = dev->virtqueue[queue_id];
if (unlikely(vq->enabled == 0))
return 0;
count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
if (count == 0)
return 0;
for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
if (unlikely(reserve_avail_buf_mergeable(vq, pkt_len, &start,
&end, buf_vec) < 0)) {
LOG_DEBUG(VHOST_DATA,
"(%d) failed to get enough desc from vring\n",
dev->vid);
break;
}
nr_used = copy_mbuf_to_desc_mergeable(dev, vq, start, end,
pkts[pkt_idx], buf_vec);
rte_smp_wmb();
/*
* Wait until it's our turn to add our buffer
* to the used ring.
*/
while (unlikely(vq->last_used_idx != start))
rte_pause();
*(volatile uint16_t *)&vq->used->idx += nr_used;
vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
sizeof(vq->used->idx));
vq->last_used_idx = end;
}
if (likely(pkt_idx)) {
/* flush used->idx update before we read avail->flags. */
rte_mb();
/* Kick the guest if necessary. */
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
&& (vq->callfd >= 0))
eventfd_write(vq->callfd, (eventfd_t)1);
}
return pkt_idx;
}
uint16_t
rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
struct rte_mbuf **pkts, uint16_t count)
{
struct virtio_net *dev = get_device(vid);
if (!dev)
return 0;
if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
return virtio_dev_merge_rx(dev, queue_id, pkts, count);
else
return virtio_dev_rx(dev, queue_id, pkts, count);
}
static void
parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
{
struct ipv4_hdr *ipv4_hdr;
struct ipv6_hdr *ipv6_hdr;
void *l3_hdr = NULL;
struct ether_hdr *eth_hdr;
uint16_t ethertype;
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
m->l2_len = sizeof(struct ether_hdr);
ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
if (ethertype == ETHER_TYPE_VLAN) {
struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
m->l2_len += sizeof(struct vlan_hdr);
ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
}
l3_hdr = (char *)eth_hdr + m->l2_len;
switch (ethertype) {
case ETHER_TYPE_IPv4:
ipv4_hdr = (struct ipv4_hdr *)l3_hdr;
*l4_proto = ipv4_hdr->next_proto_id;
m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
*l4_hdr = (char *)l3_hdr + m->l3_len;
m->ol_flags |= PKT_TX_IPV4;
break;
case ETHER_TYPE_IPv6:
ipv6_hdr = (struct ipv6_hdr *)l3_hdr;
*l4_proto = ipv6_hdr->proto;
m->l3_len = sizeof(struct ipv6_hdr);
*l4_hdr = (char *)l3_hdr + m->l3_len;
m->ol_flags |= PKT_TX_IPV6;
break;
default:
m->l3_len = 0;
*l4_proto = 0;
break;
}
}
static inline void __attribute__((always_inline))
vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
{
uint16_t l4_proto = 0;
void *l4_hdr = NULL;
struct tcp_hdr *tcp_hdr = NULL;
parse_ethernet(m, &l4_proto, &l4_hdr);
if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
if (hdr->csum_start == (m->l2_len + m->l3_len)) {
switch (hdr->csum_offset) {
case (offsetof(struct tcp_hdr, cksum)):
if (l4_proto == IPPROTO_TCP)
m->ol_flags |= PKT_TX_TCP_CKSUM;
break;
case (offsetof(struct udp_hdr, dgram_cksum)):
if (l4_proto == IPPROTO_UDP)
m->ol_flags |= PKT_TX_UDP_CKSUM;
break;
case (offsetof(struct sctp_hdr, cksum)):
if (l4_proto == IPPROTO_SCTP)
m->ol_flags |= PKT_TX_SCTP_CKSUM;
break;
default:
break;
}
}
}
if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
case VIRTIO_NET_HDR_GSO_TCPV4:
case VIRTIO_NET_HDR_GSO_TCPV6:
tcp_hdr = (struct tcp_hdr *)l4_hdr;
m->ol_flags |= PKT_TX_TCP_SEG;
m->tso_segsz = hdr->gso_size;
m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
break;
default:
RTE_LOG(WARNING, VHOST_DATA,
"unsupported gso type %u.\n", hdr->gso_type);
break;
}
}
}
#define RARP_PKT_SIZE 64
static int
make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
{
struct ether_hdr *eth_hdr;
struct arp_hdr *rarp;
if (rarp_mbuf->buf_len < 64) {
RTE_LOG(WARNING, VHOST_DATA,
"failed to make RARP; mbuf size too small %u (< %d)\n",
rarp_mbuf->buf_len, RARP_PKT_SIZE);
return -1;
}
/* Ethernet header. */
eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
ether_addr_copy(mac, &eth_hdr->s_addr);
eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
/* RARP header. */
rarp = (struct arp_hdr *)(eth_hdr + 1);
rarp->arp_hrd = htons(ARP_HRD_ETHER);
rarp->arp_pro = htons(ETHER_TYPE_IPv4);
rarp->arp_hln = ETHER_ADDR_LEN;
rarp->arp_pln = 4;
rarp->arp_op = htons(ARP_OP_REVREQUEST);
ether_addr_copy(mac, &rarp->arp_data.arp_sha);
ether_addr_copy(mac, &rarp->arp_data.arp_tha);
memset(&rarp->arp_data.arp_sip, 0x00, 4);
memset(&rarp->arp_data.arp_tip, 0x00, 4);
rarp_mbuf->pkt_len = rarp_mbuf->data_len = RARP_PKT_SIZE;
return 0;
}
static inline int __attribute__((always_inline))
copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf *m, uint16_t desc_idx,
struct rte_mempool *mbuf_pool)
{
struct vring_desc *desc;
uint64_t desc_addr;
uint32_t desc_avail, desc_offset;
uint32_t mbuf_avail, mbuf_offset;
uint32_t cpy_len;
struct rte_mbuf *cur = m, *prev = m;
struct virtio_net_hdr *hdr;
/* A counter to avoid desc dead loop chain */
uint32_t nr_desc = 1;
desc = &vq->desc[desc_idx];
if (unlikely(desc->len < dev->vhost_hlen))
return -1;
desc_addr = gpa_to_vva(dev, desc->addr);
rte_prefetch0((void *)(uintptr_t)desc_addr);
/* Retrieve virtio net header */
hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
desc_avail = desc->len - dev->vhost_hlen;
desc_offset = dev->vhost_hlen;
mbuf_offset = 0;
mbuf_avail = m->buf_len - RTE_PKTMBUF_HEADROOM;
while (desc_avail != 0 || (desc->flags & VRING_DESC_F_NEXT) != 0) {
/* This desc reaches to its end, get the next one */
if (desc_avail == 0) {
if (unlikely(desc->next >= vq->size ||
++nr_desc >= vq->size))
return -1;
desc = &vq->desc[desc->next];
desc_addr = gpa_to_vva(dev, desc->addr);
rte_prefetch0((void *)(uintptr_t)desc_addr);
desc_offset = 0;
desc_avail = desc->len;
PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
}
/*
* This mbuf reaches to its end, get a new one
* to hold more data.
*/
if (mbuf_avail == 0) {
cur = rte_pktmbuf_alloc(mbuf_pool);
if (unlikely(cur == NULL)) {
RTE_LOG(ERR, VHOST_DATA, "Failed to "
"allocate memory for mbuf.\n");
return -1;
}
prev->next = cur;
prev->data_len = mbuf_offset;
m->nb_segs += 1;
m->pkt_len += mbuf_offset;
prev = cur;
mbuf_offset = 0;
mbuf_avail = cur->buf_len - RTE_PKTMBUF_HEADROOM;
}
cpy_len = RTE_MIN(desc_avail, mbuf_avail);
rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *, mbuf_offset),
(void *)((uintptr_t)(desc_addr + desc_offset)),
cpy_len);
mbuf_avail -= cpy_len;
mbuf_offset += cpy_len;
desc_avail -= cpy_len;
desc_offset += cpy_len;
}
prev->data_len = mbuf_offset;
m->pkt_len += mbuf_offset;
if (hdr->flags != 0 || hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE)
vhost_dequeue_offload(hdr, m);
return 0;
}
uint16_t
rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
{
struct virtio_net *dev;
struct rte_mbuf *rarp_mbuf = NULL;
struct vhost_virtqueue *vq;
uint32_t desc_indexes[MAX_PKT_BURST];
uint32_t used_idx;
uint32_t i = 0;
uint16_t free_entries;
uint16_t avail_idx;
dev = get_device(vid);
if (!dev)
return 0;
if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->virt_qp_nb))) {
RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
dev->vid, __func__, queue_id);
return 0;
}
vq = dev->virtqueue[queue_id];
if (unlikely(vq->enabled == 0))
return 0;
/*
* Construct a RARP broadcast packet, and inject it to the "pkts"
* array, to looks like that guest actually send such packet.
*
* Check user_send_rarp() for more information.
*/
if (unlikely(rte_atomic16_cmpset((volatile uint16_t *)
&dev->broadcast_rarp.cnt, 1, 0))) {
rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
if (rarp_mbuf == NULL) {
RTE_LOG(ERR, VHOST_DATA,
"Failed to allocate memory for mbuf.\n");
return 0;
}
if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
rte_pktmbuf_free(rarp_mbuf);
rarp_mbuf = NULL;
} else {
count -= 1;
}
}
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
free_entries = avail_idx - vq->last_used_idx;
if (free_entries == 0)
goto out;
LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
/* Prefetch available ring to retrieve head indexes. */
used_idx = vq->last_used_idx & (vq->size - 1);
rte_prefetch0(&vq->avail->ring[used_idx]);
count = RTE_MIN(count, MAX_PKT_BURST);
count = RTE_MIN(count, free_entries);
LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
dev->vid, count);
/* Retrieve all of the head indexes first to avoid caching issues. */
for (i = 0; i < count; i++) {
desc_indexes[i] = vq->avail->ring[(vq->last_used_idx + i) &
(vq->size - 1)];
}
/* Prefetch descriptor index. */
rte_prefetch0(&vq->desc[desc_indexes[0]]);
rte_prefetch0(&vq->used->ring[vq->last_used_idx & (vq->size - 1)]);
for (i = 0; i < count; i++) {
int err;
if (likely(i + 1 < count)) {
rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
rte_prefetch0(&vq->used->ring[(used_idx + 1) &
(vq->size - 1)]);
}
pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
if (unlikely(pkts[i] == NULL)) {
RTE_LOG(ERR, VHOST_DATA,
"Failed to allocate memory for mbuf.\n");
break;
}
err = copy_desc_to_mbuf(dev, vq, pkts[i], desc_indexes[i],
mbuf_pool);
if (unlikely(err)) {
rte_pktmbuf_free(pkts[i]);
break;
}
used_idx = vq->last_used_idx++ & (vq->size - 1);
vq->used->ring[used_idx].id = desc_indexes[i];
vq->used->ring[used_idx].len = 0;
vhost_log_used_vring(dev, vq,
offsetof(struct vring_used, ring[used_idx]),
sizeof(vq->used->ring[used_idx]));
}
rte_smp_wmb();
rte_smp_rmb();
vq->used->idx += i;
vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
sizeof(vq->used->idx));
/* Kick guest if required. */
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
&& (vq->callfd >= 0))
eventfd_write(vq->callfd, (eventfd_t)1);
out:
if (unlikely(rarp_mbuf != NULL)) {
/*
* Inject it to the head of "pkts" array, so that switch's mac
* learning table will get updated first.
*/
memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
pkts[0] = rarp_mbuf;
i += 1;
}
return i;
}