b0a1502a27
rte_lcore_has_role() returns 0 if role of lcore matches requested role. The return value of the API is confusing, and this is a known problem with a deprecation notice announcing the change to more intuitive semantics: Commit064518f68d
("doc: announce EAL API change to lcore role function") Implement changes announced in the deprecation notice, and remove it. Also, fix usages of this API to reflect the change. Control thread patches expected new behavior and were broken before, now they are fixed as well. Fixes:d651ee4919
("eal: set affinity for control threads") Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Signed-off-by: Erik Gabriel Carrillo <erik.g.carrillo@intel.com> Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
618 lines
17 KiB
C
618 lines
17 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <assert.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_atomic.h>
|
|
#include <rte_common.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_spinlock.h>
|
|
#include <rte_random.h>
|
|
#include <rte_pause.h>
|
|
|
|
#include "rte_timer.h"
|
|
|
|
LIST_HEAD(rte_timer_list, rte_timer);
|
|
|
|
struct priv_timer {
|
|
struct rte_timer pending_head; /**< dummy timer instance to head up list */
|
|
rte_spinlock_t list_lock; /**< lock to protect list access */
|
|
|
|
/** per-core variable that true if a timer was updated on this
|
|
* core since last reset of the variable */
|
|
int updated;
|
|
|
|
/** track the current depth of the skiplist */
|
|
unsigned curr_skiplist_depth;
|
|
|
|
unsigned prev_lcore; /**< used for lcore round robin */
|
|
|
|
/** running timer on this lcore now */
|
|
struct rte_timer *running_tim;
|
|
|
|
#ifdef RTE_LIBRTE_TIMER_DEBUG
|
|
/** per-lcore statistics */
|
|
struct rte_timer_debug_stats stats;
|
|
#endif
|
|
} __rte_cache_aligned;
|
|
|
|
/** per-lcore private info for timers */
|
|
static struct priv_timer priv_timer[RTE_MAX_LCORE];
|
|
|
|
/* when debug is enabled, store some statistics */
|
|
#ifdef RTE_LIBRTE_TIMER_DEBUG
|
|
#define __TIMER_STAT_ADD(name, n) do { \
|
|
unsigned __lcore_id = rte_lcore_id(); \
|
|
if (__lcore_id < RTE_MAX_LCORE) \
|
|
priv_timer[__lcore_id].stats.name += (n); \
|
|
} while(0)
|
|
#else
|
|
#define __TIMER_STAT_ADD(name, n) do {} while(0)
|
|
#endif
|
|
|
|
/* Init the timer library. */
|
|
void
|
|
rte_timer_subsystem_init(void)
|
|
{
|
|
unsigned lcore_id;
|
|
|
|
/* since priv_timer is static, it's zeroed by default, so only init some
|
|
* fields.
|
|
*/
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id ++) {
|
|
rte_spinlock_init(&priv_timer[lcore_id].list_lock);
|
|
priv_timer[lcore_id].prev_lcore = lcore_id;
|
|
}
|
|
}
|
|
|
|
/* Initialize the timer handle tim for use */
|
|
void
|
|
rte_timer_init(struct rte_timer *tim)
|
|
{
|
|
union rte_timer_status status;
|
|
|
|
status.state = RTE_TIMER_STOP;
|
|
status.owner = RTE_TIMER_NO_OWNER;
|
|
tim->status.u32 = status.u32;
|
|
}
|
|
|
|
/*
|
|
* if timer is pending or stopped (or running on the same core than
|
|
* us), mark timer as configuring, and on success return the previous
|
|
* status of the timer
|
|
*/
|
|
static int
|
|
timer_set_config_state(struct rte_timer *tim,
|
|
union rte_timer_status *ret_prev_status)
|
|
{
|
|
union rte_timer_status prev_status, status;
|
|
int success = 0;
|
|
unsigned lcore_id;
|
|
|
|
lcore_id = rte_lcore_id();
|
|
|
|
/* wait that the timer is in correct status before update,
|
|
* and mark it as being configured */
|
|
while (success == 0) {
|
|
prev_status.u32 = tim->status.u32;
|
|
|
|
/* timer is running on another core
|
|
* or ready to run on local core, exit
|
|
*/
|
|
if (prev_status.state == RTE_TIMER_RUNNING &&
|
|
(prev_status.owner != (uint16_t)lcore_id ||
|
|
tim != priv_timer[lcore_id].running_tim))
|
|
return -1;
|
|
|
|
/* timer is being configured on another core */
|
|
if (prev_status.state == RTE_TIMER_CONFIG)
|
|
return -1;
|
|
|
|
/* here, we know that timer is stopped or pending,
|
|
* mark it atomically as being configured */
|
|
status.state = RTE_TIMER_CONFIG;
|
|
status.owner = (int16_t)lcore_id;
|
|
success = rte_atomic32_cmpset(&tim->status.u32,
|
|
prev_status.u32,
|
|
status.u32);
|
|
}
|
|
|
|
ret_prev_status->u32 = prev_status.u32;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* if timer is pending, mark timer as running
|
|
*/
|
|
static int
|
|
timer_set_running_state(struct rte_timer *tim)
|
|
{
|
|
union rte_timer_status prev_status, status;
|
|
unsigned lcore_id = rte_lcore_id();
|
|
int success = 0;
|
|
|
|
/* wait that the timer is in correct status before update,
|
|
* and mark it as running */
|
|
while (success == 0) {
|
|
prev_status.u32 = tim->status.u32;
|
|
|
|
/* timer is not pending anymore */
|
|
if (prev_status.state != RTE_TIMER_PENDING)
|
|
return -1;
|
|
|
|
/* here, we know that timer is stopped or pending,
|
|
* mark it atomically as being configured */
|
|
status.state = RTE_TIMER_RUNNING;
|
|
status.owner = (int16_t)lcore_id;
|
|
success = rte_atomic32_cmpset(&tim->status.u32,
|
|
prev_status.u32,
|
|
status.u32);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return a skiplist level for a new entry.
|
|
* This probabilistically gives a level with p=1/4 that an entry at level n
|
|
* will also appear at level n+1.
|
|
*/
|
|
static uint32_t
|
|
timer_get_skiplist_level(unsigned curr_depth)
|
|
{
|
|
#ifdef RTE_LIBRTE_TIMER_DEBUG
|
|
static uint32_t i, count = 0;
|
|
static uint32_t levels[MAX_SKIPLIST_DEPTH] = {0};
|
|
#endif
|
|
|
|
/* probability value is 1/4, i.e. all at level 0, 1 in 4 is at level 1,
|
|
* 1 in 16 at level 2, 1 in 64 at level 3, etc. Calculated using lowest
|
|
* bit position of a (pseudo)random number.
|
|
*/
|
|
uint32_t rand = rte_rand() & (UINT32_MAX - 1);
|
|
uint32_t level = rand == 0 ? MAX_SKIPLIST_DEPTH : (rte_bsf32(rand)-1) / 2;
|
|
|
|
/* limit the levels used to one above our current level, so we don't,
|
|
* for instance, have a level 0 and a level 7 without anything between
|
|
*/
|
|
if (level > curr_depth)
|
|
level = curr_depth;
|
|
if (level >= MAX_SKIPLIST_DEPTH)
|
|
level = MAX_SKIPLIST_DEPTH-1;
|
|
#ifdef RTE_LIBRTE_TIMER_DEBUG
|
|
count ++;
|
|
levels[level]++;
|
|
if (count % 10000 == 0)
|
|
for (i = 0; i < MAX_SKIPLIST_DEPTH; i++)
|
|
printf("Level %u: %u\n", (unsigned)i, (unsigned)levels[i]);
|
|
#endif
|
|
return level;
|
|
}
|
|
|
|
/*
|
|
* For a given time value, get the entries at each level which
|
|
* are <= that time value.
|
|
*/
|
|
static void
|
|
timer_get_prev_entries(uint64_t time_val, unsigned tim_lcore,
|
|
struct rte_timer **prev)
|
|
{
|
|
unsigned lvl = priv_timer[tim_lcore].curr_skiplist_depth;
|
|
prev[lvl] = &priv_timer[tim_lcore].pending_head;
|
|
while(lvl != 0) {
|
|
lvl--;
|
|
prev[lvl] = prev[lvl+1];
|
|
while (prev[lvl]->sl_next[lvl] &&
|
|
prev[lvl]->sl_next[lvl]->expire <= time_val)
|
|
prev[lvl] = prev[lvl]->sl_next[lvl];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Given a timer node in the skiplist, find the previous entries for it at
|
|
* all skiplist levels.
|
|
*/
|
|
static void
|
|
timer_get_prev_entries_for_node(struct rte_timer *tim, unsigned tim_lcore,
|
|
struct rte_timer **prev)
|
|
{
|
|
int i;
|
|
/* to get a specific entry in the list, look for just lower than the time
|
|
* values, and then increment on each level individually if necessary
|
|
*/
|
|
timer_get_prev_entries(tim->expire - 1, tim_lcore, prev);
|
|
for (i = priv_timer[tim_lcore].curr_skiplist_depth - 1; i >= 0; i--) {
|
|
while (prev[i]->sl_next[i] != NULL &&
|
|
prev[i]->sl_next[i] != tim &&
|
|
prev[i]->sl_next[i]->expire <= tim->expire)
|
|
prev[i] = prev[i]->sl_next[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* add in list, lock if needed
|
|
* timer must be in config state
|
|
* timer must not be in a list
|
|
*/
|
|
static void
|
|
timer_add(struct rte_timer *tim, unsigned tim_lcore, int local_is_locked)
|
|
{
|
|
unsigned lcore_id = rte_lcore_id();
|
|
unsigned lvl;
|
|
struct rte_timer *prev[MAX_SKIPLIST_DEPTH+1];
|
|
|
|
/* if timer needs to be scheduled on another core, we need to
|
|
* lock the list; if it is on local core, we need to lock if
|
|
* we are not called from rte_timer_manage() */
|
|
if (tim_lcore != lcore_id || !local_is_locked)
|
|
rte_spinlock_lock(&priv_timer[tim_lcore].list_lock);
|
|
|
|
/* find where exactly this element goes in the list of elements
|
|
* for each depth. */
|
|
timer_get_prev_entries(tim->expire, tim_lcore, prev);
|
|
|
|
/* now assign it a new level and add at that level */
|
|
const unsigned tim_level = timer_get_skiplist_level(
|
|
priv_timer[tim_lcore].curr_skiplist_depth);
|
|
if (tim_level == priv_timer[tim_lcore].curr_skiplist_depth)
|
|
priv_timer[tim_lcore].curr_skiplist_depth++;
|
|
|
|
lvl = tim_level;
|
|
while (lvl > 0) {
|
|
tim->sl_next[lvl] = prev[lvl]->sl_next[lvl];
|
|
prev[lvl]->sl_next[lvl] = tim;
|
|
lvl--;
|
|
}
|
|
tim->sl_next[0] = prev[0]->sl_next[0];
|
|
prev[0]->sl_next[0] = tim;
|
|
|
|
/* save the lowest list entry into the expire field of the dummy hdr
|
|
* NOTE: this is not atomic on 32-bit*/
|
|
priv_timer[tim_lcore].pending_head.expire = priv_timer[tim_lcore].\
|
|
pending_head.sl_next[0]->expire;
|
|
|
|
if (tim_lcore != lcore_id || !local_is_locked)
|
|
rte_spinlock_unlock(&priv_timer[tim_lcore].list_lock);
|
|
}
|
|
|
|
/*
|
|
* del from list, lock if needed
|
|
* timer must be in config state
|
|
* timer must be in a list
|
|
*/
|
|
static void
|
|
timer_del(struct rte_timer *tim, union rte_timer_status prev_status,
|
|
int local_is_locked)
|
|
{
|
|
unsigned lcore_id = rte_lcore_id();
|
|
unsigned prev_owner = prev_status.owner;
|
|
int i;
|
|
struct rte_timer *prev[MAX_SKIPLIST_DEPTH+1];
|
|
|
|
/* if timer needs is pending another core, we need to lock the
|
|
* list; if it is on local core, we need to lock if we are not
|
|
* called from rte_timer_manage() */
|
|
if (prev_owner != lcore_id || !local_is_locked)
|
|
rte_spinlock_lock(&priv_timer[prev_owner].list_lock);
|
|
|
|
/* save the lowest list entry into the expire field of the dummy hdr.
|
|
* NOTE: this is not atomic on 32-bit */
|
|
if (tim == priv_timer[prev_owner].pending_head.sl_next[0])
|
|
priv_timer[prev_owner].pending_head.expire =
|
|
((tim->sl_next[0] == NULL) ? 0 : tim->sl_next[0]->expire);
|
|
|
|
/* adjust pointers from previous entries to point past this */
|
|
timer_get_prev_entries_for_node(tim, prev_owner, prev);
|
|
for (i = priv_timer[prev_owner].curr_skiplist_depth - 1; i >= 0; i--) {
|
|
if (prev[i]->sl_next[i] == tim)
|
|
prev[i]->sl_next[i] = tim->sl_next[i];
|
|
}
|
|
|
|
/* in case we deleted last entry at a level, adjust down max level */
|
|
for (i = priv_timer[prev_owner].curr_skiplist_depth - 1; i >= 0; i--)
|
|
if (priv_timer[prev_owner].pending_head.sl_next[i] == NULL)
|
|
priv_timer[prev_owner].curr_skiplist_depth --;
|
|
else
|
|
break;
|
|
|
|
if (prev_owner != lcore_id || !local_is_locked)
|
|
rte_spinlock_unlock(&priv_timer[prev_owner].list_lock);
|
|
}
|
|
|
|
/* Reset and start the timer associated with the timer handle (private func) */
|
|
static int
|
|
__rte_timer_reset(struct rte_timer *tim, uint64_t expire,
|
|
uint64_t period, unsigned tim_lcore,
|
|
rte_timer_cb_t fct, void *arg,
|
|
int local_is_locked)
|
|
{
|
|
union rte_timer_status prev_status, status;
|
|
int ret;
|
|
unsigned lcore_id = rte_lcore_id();
|
|
|
|
/* round robin for tim_lcore */
|
|
if (tim_lcore == (unsigned)LCORE_ID_ANY) {
|
|
if (lcore_id < RTE_MAX_LCORE) {
|
|
/* EAL thread with valid lcore_id */
|
|
tim_lcore = rte_get_next_lcore(
|
|
priv_timer[lcore_id].prev_lcore,
|
|
0, 1);
|
|
priv_timer[lcore_id].prev_lcore = tim_lcore;
|
|
} else
|
|
/* non-EAL thread do not run rte_timer_manage(),
|
|
* so schedule the timer on the first enabled lcore. */
|
|
tim_lcore = rte_get_next_lcore(LCORE_ID_ANY, 0, 1);
|
|
}
|
|
|
|
/* wait that the timer is in correct status before update,
|
|
* and mark it as being configured */
|
|
ret = timer_set_config_state(tim, &prev_status);
|
|
if (ret < 0)
|
|
return -1;
|
|
|
|
__TIMER_STAT_ADD(reset, 1);
|
|
if (prev_status.state == RTE_TIMER_RUNNING &&
|
|
lcore_id < RTE_MAX_LCORE) {
|
|
priv_timer[lcore_id].updated = 1;
|
|
}
|
|
|
|
/* remove it from list */
|
|
if (prev_status.state == RTE_TIMER_PENDING) {
|
|
timer_del(tim, prev_status, local_is_locked);
|
|
__TIMER_STAT_ADD(pending, -1);
|
|
}
|
|
|
|
tim->period = period;
|
|
tim->expire = expire;
|
|
tim->f = fct;
|
|
tim->arg = arg;
|
|
|
|
__TIMER_STAT_ADD(pending, 1);
|
|
timer_add(tim, tim_lcore, local_is_locked);
|
|
|
|
/* update state: as we are in CONFIG state, only us can modify
|
|
* the state so we don't need to use cmpset() here */
|
|
rte_wmb();
|
|
status.state = RTE_TIMER_PENDING;
|
|
status.owner = (int16_t)tim_lcore;
|
|
tim->status.u32 = status.u32;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Reset and start the timer associated with the timer handle tim */
|
|
int
|
|
rte_timer_reset(struct rte_timer *tim, uint64_t ticks,
|
|
enum rte_timer_type type, unsigned tim_lcore,
|
|
rte_timer_cb_t fct, void *arg)
|
|
{
|
|
uint64_t cur_time = rte_get_timer_cycles();
|
|
uint64_t period;
|
|
|
|
if (unlikely((tim_lcore != (unsigned)LCORE_ID_ANY) &&
|
|
!(rte_lcore_is_enabled(tim_lcore) ||
|
|
rte_lcore_has_role(tim_lcore, ROLE_SERVICE))))
|
|
return -1;
|
|
|
|
if (type == PERIODICAL)
|
|
period = ticks;
|
|
else
|
|
period = 0;
|
|
|
|
return __rte_timer_reset(tim, cur_time + ticks, period, tim_lcore,
|
|
fct, arg, 0);
|
|
}
|
|
|
|
/* loop until rte_timer_reset() succeed */
|
|
void
|
|
rte_timer_reset_sync(struct rte_timer *tim, uint64_t ticks,
|
|
enum rte_timer_type type, unsigned tim_lcore,
|
|
rte_timer_cb_t fct, void *arg)
|
|
{
|
|
while (rte_timer_reset(tim, ticks, type, tim_lcore,
|
|
fct, arg) != 0)
|
|
rte_pause();
|
|
}
|
|
|
|
/* Stop the timer associated with the timer handle tim */
|
|
int
|
|
rte_timer_stop(struct rte_timer *tim)
|
|
{
|
|
union rte_timer_status prev_status, status;
|
|
unsigned lcore_id = rte_lcore_id();
|
|
int ret;
|
|
|
|
/* wait that the timer is in correct status before update,
|
|
* and mark it as being configured */
|
|
ret = timer_set_config_state(tim, &prev_status);
|
|
if (ret < 0)
|
|
return -1;
|
|
|
|
__TIMER_STAT_ADD(stop, 1);
|
|
if (prev_status.state == RTE_TIMER_RUNNING &&
|
|
lcore_id < RTE_MAX_LCORE) {
|
|
priv_timer[lcore_id].updated = 1;
|
|
}
|
|
|
|
/* remove it from list */
|
|
if (prev_status.state == RTE_TIMER_PENDING) {
|
|
timer_del(tim, prev_status, 0);
|
|
__TIMER_STAT_ADD(pending, -1);
|
|
}
|
|
|
|
/* mark timer as stopped */
|
|
rte_wmb();
|
|
status.state = RTE_TIMER_STOP;
|
|
status.owner = RTE_TIMER_NO_OWNER;
|
|
tim->status.u32 = status.u32;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* loop until rte_timer_stop() succeed */
|
|
void
|
|
rte_timer_stop_sync(struct rte_timer *tim)
|
|
{
|
|
while (rte_timer_stop(tim) != 0)
|
|
rte_pause();
|
|
}
|
|
|
|
/* Test the PENDING status of the timer handle tim */
|
|
int
|
|
rte_timer_pending(struct rte_timer *tim)
|
|
{
|
|
return tim->status.state == RTE_TIMER_PENDING;
|
|
}
|
|
|
|
/* must be called periodically, run all timer that expired */
|
|
void rte_timer_manage(void)
|
|
{
|
|
union rte_timer_status status;
|
|
struct rte_timer *tim, *next_tim;
|
|
struct rte_timer *run_first_tim, **pprev;
|
|
unsigned lcore_id = rte_lcore_id();
|
|
struct rte_timer *prev[MAX_SKIPLIST_DEPTH + 1];
|
|
uint64_t cur_time;
|
|
int i, ret;
|
|
|
|
/* timer manager only runs on EAL thread with valid lcore_id */
|
|
assert(lcore_id < RTE_MAX_LCORE);
|
|
|
|
__TIMER_STAT_ADD(manage, 1);
|
|
/* optimize for the case where per-cpu list is empty */
|
|
if (priv_timer[lcore_id].pending_head.sl_next[0] == NULL)
|
|
return;
|
|
cur_time = rte_get_timer_cycles();
|
|
|
|
#ifdef RTE_ARCH_64
|
|
/* on 64-bit the value cached in the pending_head.expired will be
|
|
* updated atomically, so we can consult that for a quick check here
|
|
* outside the lock */
|
|
if (likely(priv_timer[lcore_id].pending_head.expire > cur_time))
|
|
return;
|
|
#endif
|
|
|
|
/* browse ordered list, add expired timers in 'expired' list */
|
|
rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
|
|
|
|
/* if nothing to do just unlock and return */
|
|
if (priv_timer[lcore_id].pending_head.sl_next[0] == NULL ||
|
|
priv_timer[lcore_id].pending_head.sl_next[0]->expire > cur_time) {
|
|
rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
|
|
return;
|
|
}
|
|
|
|
/* save start of list of expired timers */
|
|
tim = priv_timer[lcore_id].pending_head.sl_next[0];
|
|
|
|
/* break the existing list at current time point */
|
|
timer_get_prev_entries(cur_time, lcore_id, prev);
|
|
for (i = priv_timer[lcore_id].curr_skiplist_depth -1; i >= 0; i--) {
|
|
if (prev[i] == &priv_timer[lcore_id].pending_head)
|
|
continue;
|
|
priv_timer[lcore_id].pending_head.sl_next[i] =
|
|
prev[i]->sl_next[i];
|
|
if (prev[i]->sl_next[i] == NULL)
|
|
priv_timer[lcore_id].curr_skiplist_depth--;
|
|
prev[i] ->sl_next[i] = NULL;
|
|
}
|
|
|
|
/* transition run-list from PENDING to RUNNING */
|
|
run_first_tim = tim;
|
|
pprev = &run_first_tim;
|
|
|
|
for ( ; tim != NULL; tim = next_tim) {
|
|
next_tim = tim->sl_next[0];
|
|
|
|
ret = timer_set_running_state(tim);
|
|
if (likely(ret == 0)) {
|
|
pprev = &tim->sl_next[0];
|
|
} else {
|
|
/* another core is trying to re-config this one,
|
|
* remove it from local expired list
|
|
*/
|
|
*pprev = next_tim;
|
|
}
|
|
}
|
|
|
|
/* update the next to expire timer value */
|
|
priv_timer[lcore_id].pending_head.expire =
|
|
(priv_timer[lcore_id].pending_head.sl_next[0] == NULL) ? 0 :
|
|
priv_timer[lcore_id].pending_head.sl_next[0]->expire;
|
|
|
|
rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
|
|
|
|
/* now scan expired list and call callbacks */
|
|
for (tim = run_first_tim; tim != NULL; tim = next_tim) {
|
|
next_tim = tim->sl_next[0];
|
|
priv_timer[lcore_id].updated = 0;
|
|
priv_timer[lcore_id].running_tim = tim;
|
|
|
|
/* execute callback function with list unlocked */
|
|
tim->f(tim, tim->arg);
|
|
|
|
__TIMER_STAT_ADD(pending, -1);
|
|
/* the timer was stopped or reloaded by the callback
|
|
* function, we have nothing to do here */
|
|
if (priv_timer[lcore_id].updated == 1)
|
|
continue;
|
|
|
|
if (tim->period == 0) {
|
|
/* remove from done list and mark timer as stopped */
|
|
status.state = RTE_TIMER_STOP;
|
|
status.owner = RTE_TIMER_NO_OWNER;
|
|
rte_wmb();
|
|
tim->status.u32 = status.u32;
|
|
}
|
|
else {
|
|
/* keep it in list and mark timer as pending */
|
|
rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
|
|
status.state = RTE_TIMER_PENDING;
|
|
__TIMER_STAT_ADD(pending, 1);
|
|
status.owner = (int16_t)lcore_id;
|
|
rte_wmb();
|
|
tim->status.u32 = status.u32;
|
|
__rte_timer_reset(tim, tim->expire + tim->period,
|
|
tim->period, lcore_id, tim->f, tim->arg, 1);
|
|
rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
|
|
}
|
|
}
|
|
priv_timer[lcore_id].running_tim = NULL;
|
|
}
|
|
|
|
/* dump statistics about timers */
|
|
void rte_timer_dump_stats(FILE *f)
|
|
{
|
|
#ifdef RTE_LIBRTE_TIMER_DEBUG
|
|
struct rte_timer_debug_stats sum;
|
|
unsigned lcore_id;
|
|
|
|
memset(&sum, 0, sizeof(sum));
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
sum.reset += priv_timer[lcore_id].stats.reset;
|
|
sum.stop += priv_timer[lcore_id].stats.stop;
|
|
sum.manage += priv_timer[lcore_id].stats.manage;
|
|
sum.pending += priv_timer[lcore_id].stats.pending;
|
|
}
|
|
fprintf(f, "Timer statistics:\n");
|
|
fprintf(f, " reset = %"PRIu64"\n", sum.reset);
|
|
fprintf(f, " stop = %"PRIu64"\n", sum.stop);
|
|
fprintf(f, " manage = %"PRIu64"\n", sum.manage);
|
|
fprintf(f, " pending = %"PRIu64"\n", sum.pending);
|
|
#else
|
|
fprintf(f, "No timer statistics, RTE_LIBRTE_TIMER_DEBUG is disabled\n");
|
|
#endif
|
|
}
|