a0147be547
Xilinx acquired Solarflare in 2019. Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com> Acked-by: James Fox <jamesfox@xilinx.com>
1126 lines
24 KiB
C
1126 lines
24 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright(c) 2019-2020 Xilinx, Inc.
|
|
* Copyright(c) 2009-2019 Solarflare Communications Inc.
|
|
*/
|
|
|
|
#include "efx.h"
|
|
#include "efx_impl.h"
|
|
|
|
#if EFSYS_OPT_BOOTCFG
|
|
|
|
/*
|
|
* Maximum size of BOOTCFG block across all nics as understood by SFCgPXE.
|
|
* NOTE: This is larger than the Medford per-PF bootcfg sector.
|
|
*/
|
|
#define BOOTCFG_MAX_SIZE 0x1000
|
|
|
|
/* Medford per-PF bootcfg sector */
|
|
#define BOOTCFG_PER_PF 0x800
|
|
#define BOOTCFG_PF_COUNT 16
|
|
|
|
#define DHCP_OPT_HAS_VALUE(opt) \
|
|
(((opt) > EFX_DHCP_PAD) && ((opt) < EFX_DHCP_END))
|
|
|
|
#define DHCP_MAX_VALUE 255
|
|
|
|
#define DHCP_ENCAPSULATOR(encap_opt) ((encap_opt) >> 8)
|
|
#define DHCP_ENCAPSULATED(encap_opt) ((encap_opt) & 0xff)
|
|
#define DHCP_IS_ENCAP_OPT(opt) DHCP_OPT_HAS_VALUE(DHCP_ENCAPSULATOR(opt))
|
|
|
|
typedef struct efx_dhcp_tag_hdr_s {
|
|
uint8_t tag;
|
|
uint8_t length;
|
|
} efx_dhcp_tag_hdr_t;
|
|
|
|
/*
|
|
* Length calculations for tags with value field. PAD and END
|
|
* have a fixed length of 1, with no length or value field.
|
|
*/
|
|
#define DHCP_FULL_TAG_LENGTH(hdr) \
|
|
(sizeof (efx_dhcp_tag_hdr_t) + (hdr)->length)
|
|
|
|
#define DHCP_NEXT_TAG(hdr) \
|
|
((efx_dhcp_tag_hdr_t *)(((uint8_t *)(hdr)) + \
|
|
DHCP_FULL_TAG_LENGTH((hdr))))
|
|
|
|
#define DHCP_CALC_TAG_LENGTH(payload_len) \
|
|
((payload_len) + sizeof (efx_dhcp_tag_hdr_t))
|
|
|
|
|
|
/* Report the layout of bootcfg sectors in NVRAM partition. */
|
|
__checkReturn efx_rc_t
|
|
efx_bootcfg_sector_info(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t pf,
|
|
__out_opt uint32_t *sector_countp,
|
|
__out size_t *offsetp,
|
|
__out size_t *max_sizep)
|
|
{
|
|
uint32_t count;
|
|
size_t max_size;
|
|
size_t offset;
|
|
int rc;
|
|
|
|
switch (enp->en_family) {
|
|
#if EFSYS_OPT_SIENA
|
|
case EFX_FAMILY_SIENA:
|
|
max_size = BOOTCFG_MAX_SIZE;
|
|
offset = 0;
|
|
count = 1;
|
|
break;
|
|
#endif /* EFSYS_OPT_SIENA */
|
|
|
|
#if EFSYS_OPT_HUNTINGTON
|
|
case EFX_FAMILY_HUNTINGTON:
|
|
max_size = BOOTCFG_MAX_SIZE;
|
|
offset = 0;
|
|
count = 1;
|
|
break;
|
|
#endif /* EFSYS_OPT_HUNTINGTON */
|
|
|
|
#if EFSYS_OPT_MEDFORD
|
|
case EFX_FAMILY_MEDFORD: {
|
|
/* Shared partition (array indexed by PF) */
|
|
max_size = BOOTCFG_PER_PF;
|
|
count = BOOTCFG_PF_COUNT;
|
|
if (pf >= count) {
|
|
rc = EINVAL;
|
|
goto fail2;
|
|
}
|
|
offset = max_size * pf;
|
|
break;
|
|
}
|
|
#endif /* EFSYS_OPT_MEDFORD */
|
|
|
|
#if EFSYS_OPT_MEDFORD2
|
|
case EFX_FAMILY_MEDFORD2: {
|
|
/* Shared partition (array indexed by PF) */
|
|
max_size = BOOTCFG_PER_PF;
|
|
count = BOOTCFG_PF_COUNT;
|
|
if (pf >= count) {
|
|
rc = EINVAL;
|
|
goto fail3;
|
|
}
|
|
offset = max_size * pf;
|
|
break;
|
|
}
|
|
#endif /* EFSYS_OPT_MEDFORD2 */
|
|
|
|
default:
|
|
EFSYS_ASSERT(0);
|
|
rc = ENOTSUP;
|
|
goto fail1;
|
|
}
|
|
EFSYS_ASSERT3U(max_size, <=, BOOTCFG_MAX_SIZE);
|
|
|
|
if (sector_countp != NULL)
|
|
*sector_countp = count;
|
|
*offsetp = offset;
|
|
*max_sizep = max_size;
|
|
|
|
return (0);
|
|
|
|
#if EFSYS_OPT_MEDFORD2
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
#endif
|
|
#if EFSYS_OPT_MEDFORD
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
#endif
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
return (rc);
|
|
}
|
|
|
|
|
|
__checkReturn uint8_t
|
|
efx_dhcp_csum(
|
|
__in_bcount(size) uint8_t const *data,
|
|
__in size_t size)
|
|
{
|
|
unsigned int pos;
|
|
uint8_t checksum = 0;
|
|
|
|
for (pos = 0; pos < size; pos++)
|
|
checksum += data[pos];
|
|
return (checksum);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_dhcp_verify(
|
|
__in_bcount(size) uint8_t const *data,
|
|
__in size_t size,
|
|
__out_opt size_t *usedp)
|
|
{
|
|
size_t offset = 0;
|
|
size_t used = 0;
|
|
efx_rc_t rc;
|
|
|
|
/* Start parsing tags immediately after the checksum */
|
|
for (offset = 1; offset < size; ) {
|
|
uint8_t tag;
|
|
uint8_t length;
|
|
|
|
/* Consume tag */
|
|
tag = data[offset];
|
|
if (tag == EFX_DHCP_END) {
|
|
offset++;
|
|
used = offset;
|
|
break;
|
|
}
|
|
if (tag == EFX_DHCP_PAD) {
|
|
offset++;
|
|
continue;
|
|
}
|
|
|
|
/* Consume length */
|
|
if (offset + 1 >= size) {
|
|
rc = ENOSPC;
|
|
goto fail1;
|
|
}
|
|
length = data[offset + 1];
|
|
|
|
/* Consume *length */
|
|
if (offset + 1 + length >= size) {
|
|
rc = ENOSPC;
|
|
goto fail2;
|
|
}
|
|
|
|
offset += 2 + length;
|
|
used = offset;
|
|
}
|
|
|
|
/* Checksum the entire sector, including bytes after any EFX_DHCP_END */
|
|
if (efx_dhcp_csum(data, size) != 0) {
|
|
rc = EINVAL;
|
|
goto fail3;
|
|
}
|
|
|
|
if (usedp != NULL)
|
|
*usedp = used;
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* Walk the entire tag set looking for option. The sought option may be
|
|
* encapsulated. ENOENT indicates the walk completed without finding the
|
|
* option. If we run out of buffer during the walk the function will return
|
|
* ENOSPC.
|
|
*/
|
|
static efx_rc_t
|
|
efx_dhcp_walk_tags(
|
|
__deref_inout uint8_t **tagpp,
|
|
__inout size_t *buffer_sizep,
|
|
__in uint16_t opt)
|
|
{
|
|
efx_rc_t rc = 0;
|
|
boolean_t is_encap = B_FALSE;
|
|
|
|
if (DHCP_IS_ENCAP_OPT(opt)) {
|
|
/*
|
|
* Look for the encapsulator and, if found, limit ourselves
|
|
* to its payload. If it's not found then the entire tag
|
|
* cannot be found, so the encapsulated opt search is
|
|
* skipped.
|
|
*/
|
|
rc = efx_dhcp_walk_tags(tagpp, buffer_sizep,
|
|
DHCP_ENCAPSULATOR(opt));
|
|
if (rc == 0) {
|
|
*buffer_sizep = ((efx_dhcp_tag_hdr_t *)*tagpp)->length;
|
|
(*tagpp) += sizeof (efx_dhcp_tag_hdr_t);
|
|
}
|
|
opt = DHCP_ENCAPSULATED(opt);
|
|
is_encap = B_TRUE;
|
|
}
|
|
|
|
EFSYS_ASSERT(!DHCP_IS_ENCAP_OPT(opt));
|
|
|
|
while (rc == 0) {
|
|
size_t size;
|
|
|
|
if (*buffer_sizep == 0) {
|
|
rc = ENOSPC;
|
|
goto fail1;
|
|
}
|
|
|
|
if (DHCP_ENCAPSULATED(**tagpp) == opt)
|
|
break;
|
|
|
|
if ((**tagpp) == EFX_DHCP_END) {
|
|
rc = ENOENT;
|
|
break;
|
|
} else if ((**tagpp) == EFX_DHCP_PAD) {
|
|
size = 1;
|
|
} else {
|
|
if (*buffer_sizep < sizeof (efx_dhcp_tag_hdr_t)) {
|
|
rc = ENOSPC;
|
|
goto fail2;
|
|
}
|
|
|
|
size =
|
|
DHCP_FULL_TAG_LENGTH((efx_dhcp_tag_hdr_t *)*tagpp);
|
|
}
|
|
|
|
if (size > *buffer_sizep) {
|
|
rc = ENOSPC;
|
|
goto fail3;
|
|
}
|
|
|
|
(*tagpp) += size;
|
|
(*buffer_sizep) -= size;
|
|
|
|
if ((*buffer_sizep == 0) && is_encap) {
|
|
/* Search within encapulator tag finished */
|
|
rc = ENOENT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns 0 if found otherwise ENOENT indicating search finished
|
|
* correctly
|
|
*/
|
|
return (rc);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* Locate value buffer for option in the given buffer.
|
|
* Returns 0 if found, ENOENT indicating search finished
|
|
* correctly, otherwise search failed before completion.
|
|
*/
|
|
__checkReturn efx_rc_t
|
|
efx_dhcp_find_tag(
|
|
__in_bcount(buffer_length) uint8_t *bufferp,
|
|
__in size_t buffer_length,
|
|
__in uint16_t opt,
|
|
__deref_out uint8_t **valuepp,
|
|
__out size_t *value_lengthp)
|
|
{
|
|
efx_rc_t rc;
|
|
uint8_t *tagp = bufferp;
|
|
size_t len = buffer_length;
|
|
|
|
rc = efx_dhcp_walk_tags(&tagp, &len, opt);
|
|
if (rc == 0) {
|
|
efx_dhcp_tag_hdr_t *hdrp;
|
|
|
|
hdrp = (efx_dhcp_tag_hdr_t *)tagp;
|
|
*valuepp = (uint8_t *)(&hdrp[1]);
|
|
*value_lengthp = hdrp->length;
|
|
} else if (rc != ENOENT) {
|
|
goto fail1;
|
|
}
|
|
|
|
return (rc);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* Locate the end tag in the given buffer.
|
|
* Returns 0 if found, ENOENT indicating search finished
|
|
* correctly but end tag was not found; otherwise search
|
|
* failed before completion.
|
|
*/
|
|
__checkReturn efx_rc_t
|
|
efx_dhcp_find_end(
|
|
__in_bcount(buffer_length) uint8_t *bufferp,
|
|
__in size_t buffer_length,
|
|
__deref_out uint8_t **endpp)
|
|
{
|
|
efx_rc_t rc;
|
|
uint8_t *endp = bufferp;
|
|
size_t len = buffer_length;
|
|
|
|
rc = efx_dhcp_walk_tags(&endp, &len, EFX_DHCP_END);
|
|
if (rc == 0)
|
|
*endpp = endp;
|
|
else if (rc != ENOENT)
|
|
goto fail1;
|
|
|
|
return (rc);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
/*
|
|
* Delete the given tag from anywhere in the buffer. Copes with
|
|
* encapsulated tags, and updates or deletes the encapsulating opt as
|
|
* necessary.
|
|
*/
|
|
__checkReturn efx_rc_t
|
|
efx_dhcp_delete_tag(
|
|
__inout_bcount(buffer_length) uint8_t *bufferp,
|
|
__in size_t buffer_length,
|
|
__in uint16_t opt)
|
|
{
|
|
efx_rc_t rc;
|
|
efx_dhcp_tag_hdr_t *hdrp;
|
|
size_t len;
|
|
uint8_t *startp;
|
|
uint8_t *endp;
|
|
|
|
len = buffer_length;
|
|
startp = bufferp;
|
|
|
|
if (!DHCP_OPT_HAS_VALUE(DHCP_ENCAPSULATED(opt))) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
rc = efx_dhcp_walk_tags(&startp, &len, opt);
|
|
if (rc != 0)
|
|
goto fail1;
|
|
|
|
hdrp = (efx_dhcp_tag_hdr_t *)startp;
|
|
|
|
if (DHCP_IS_ENCAP_OPT(opt)) {
|
|
uint8_t tag_length = DHCP_FULL_TAG_LENGTH(hdrp);
|
|
uint8_t *encapp = bufferp;
|
|
efx_dhcp_tag_hdr_t *encap_hdrp;
|
|
|
|
len = buffer_length;
|
|
rc = efx_dhcp_walk_tags(&encapp, &len,
|
|
DHCP_ENCAPSULATOR(opt));
|
|
if (rc != 0)
|
|
goto fail2;
|
|
|
|
encap_hdrp = (efx_dhcp_tag_hdr_t *)encapp;
|
|
if (encap_hdrp->length > tag_length) {
|
|
encap_hdrp->length = (uint8_t)(
|
|
(size_t)encap_hdrp->length - tag_length);
|
|
} else {
|
|
/* delete the encapsulating tag */
|
|
hdrp = encap_hdrp;
|
|
}
|
|
}
|
|
|
|
startp = (uint8_t *)hdrp;
|
|
endp = (uint8_t *)DHCP_NEXT_TAG(hdrp);
|
|
|
|
if (startp < bufferp) {
|
|
rc = EINVAL;
|
|
goto fail3;
|
|
}
|
|
|
|
if (endp > &bufferp[buffer_length]) {
|
|
rc = EINVAL;
|
|
goto fail4;
|
|
}
|
|
|
|
memmove(startp, endp,
|
|
buffer_length - (endp - bufferp));
|
|
|
|
return (0);
|
|
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* Write the tag header into write_pointp and optionally copies the payload
|
|
* into the space following.
|
|
*/
|
|
static void
|
|
efx_dhcp_write_tag(
|
|
__in uint8_t *write_pointp,
|
|
__in uint16_t opt,
|
|
__in_bcount_opt(value_length)
|
|
uint8_t *valuep,
|
|
__in size_t value_length)
|
|
{
|
|
efx_dhcp_tag_hdr_t *hdrp = (efx_dhcp_tag_hdr_t *)write_pointp;
|
|
hdrp->tag = DHCP_ENCAPSULATED(opt);
|
|
hdrp->length = (uint8_t)value_length;
|
|
if ((value_length > 0) && (valuep != NULL))
|
|
memcpy(&hdrp[1], valuep, value_length);
|
|
}
|
|
|
|
/*
|
|
* Add the given tag to the end of the buffer. Copes with creating an
|
|
* encapsulated tag, and updates or creates the encapsulating opt as
|
|
* necessary.
|
|
*/
|
|
__checkReturn efx_rc_t
|
|
efx_dhcp_add_tag(
|
|
__inout_bcount(buffer_length) uint8_t *bufferp,
|
|
__in size_t buffer_length,
|
|
__in uint16_t opt,
|
|
__in_bcount_opt(value_length) uint8_t *valuep,
|
|
__in size_t value_length)
|
|
{
|
|
efx_rc_t rc;
|
|
efx_dhcp_tag_hdr_t *encap_hdrp = NULL;
|
|
uint8_t *insert_pointp = NULL;
|
|
uint8_t *endp;
|
|
size_t available_space;
|
|
size_t added_length;
|
|
size_t search_size;
|
|
uint8_t *searchp;
|
|
|
|
if (!DHCP_OPT_HAS_VALUE(DHCP_ENCAPSULATED(opt))) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
if (value_length > DHCP_MAX_VALUE) {
|
|
rc = EINVAL;
|
|
goto fail2;
|
|
}
|
|
|
|
if ((value_length > 0) && (valuep == NULL)) {
|
|
rc = EINVAL;
|
|
goto fail3;
|
|
}
|
|
|
|
endp = bufferp;
|
|
available_space = buffer_length;
|
|
rc = efx_dhcp_walk_tags(&endp, &available_space, EFX_DHCP_END);
|
|
if (rc != 0)
|
|
goto fail4;
|
|
|
|
searchp = bufferp;
|
|
search_size = buffer_length;
|
|
if (DHCP_IS_ENCAP_OPT(opt)) {
|
|
rc = efx_dhcp_walk_tags(&searchp, &search_size,
|
|
DHCP_ENCAPSULATOR(opt));
|
|
if (rc == 0) {
|
|
encap_hdrp = (efx_dhcp_tag_hdr_t *)searchp;
|
|
|
|
/* Check encapsulated tag is not present */
|
|
search_size = encap_hdrp->length;
|
|
rc = efx_dhcp_walk_tags(&searchp, &search_size,
|
|
opt);
|
|
if (rc != ENOENT) {
|
|
rc = EINVAL;
|
|
goto fail5;
|
|
}
|
|
|
|
/* Check encapsulator will not overflow */
|
|
if (((size_t)encap_hdrp->length +
|
|
DHCP_CALC_TAG_LENGTH(value_length)) >
|
|
DHCP_MAX_VALUE) {
|
|
rc = E2BIG;
|
|
goto fail6;
|
|
}
|
|
|
|
/* Insert at start of existing encapsulator */
|
|
insert_pointp = (uint8_t *)&encap_hdrp[1];
|
|
opt = DHCP_ENCAPSULATED(opt);
|
|
} else if (rc == ENOENT) {
|
|
encap_hdrp = NULL;
|
|
} else {
|
|
goto fail7;
|
|
}
|
|
} else {
|
|
/* Check unencapsulated tag is not present */
|
|
rc = efx_dhcp_walk_tags(&searchp, &search_size,
|
|
opt);
|
|
if (rc != ENOENT) {
|
|
rc = EINVAL;
|
|
goto fail8;
|
|
}
|
|
}
|
|
|
|
if (insert_pointp == NULL) {
|
|
/* Insert at end of existing tags */
|
|
insert_pointp = endp;
|
|
}
|
|
|
|
/* Includes the new encapsulator tag hdr if required */
|
|
added_length = DHCP_CALC_TAG_LENGTH(value_length) +
|
|
(DHCP_IS_ENCAP_OPT(opt) ? sizeof (efx_dhcp_tag_hdr_t) : 0);
|
|
|
|
if (available_space <= added_length) {
|
|
rc = ENOMEM;
|
|
goto fail9;
|
|
}
|
|
|
|
memmove(insert_pointp + added_length, insert_pointp,
|
|
available_space - added_length);
|
|
|
|
if (DHCP_IS_ENCAP_OPT(opt)) {
|
|
/* Create new encapsulator header */
|
|
added_length -= sizeof (efx_dhcp_tag_hdr_t);
|
|
efx_dhcp_write_tag(insert_pointp,
|
|
DHCP_ENCAPSULATOR(opt), NULL, added_length);
|
|
insert_pointp += sizeof (efx_dhcp_tag_hdr_t);
|
|
} else if (encap_hdrp)
|
|
/* Modify existing encapsulator header */
|
|
encap_hdrp->length +=
|
|
((uint8_t)DHCP_CALC_TAG_LENGTH(value_length));
|
|
|
|
efx_dhcp_write_tag(insert_pointp, opt, valuep, value_length);
|
|
|
|
return (0);
|
|
|
|
fail9:
|
|
EFSYS_PROBE(fail9);
|
|
fail8:
|
|
EFSYS_PROBE(fail8);
|
|
fail7:
|
|
EFSYS_PROBE(fail7);
|
|
fail6:
|
|
EFSYS_PROBE(fail6);
|
|
fail5:
|
|
EFSYS_PROBE(fail5);
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* Update an existing tag to the new value. Copes with encapsulated
|
|
* tags, and updates the encapsulating opt as necessary.
|
|
*/
|
|
__checkReturn efx_rc_t
|
|
efx_dhcp_update_tag(
|
|
__inout_bcount(buffer_length) uint8_t *bufferp,
|
|
__in size_t buffer_length,
|
|
__in uint16_t opt,
|
|
__in uint8_t *value_locationp,
|
|
__in_bcount_opt(value_length) uint8_t *valuep,
|
|
__in size_t value_length)
|
|
{
|
|
efx_rc_t rc;
|
|
uint8_t *write_pointp = value_locationp - sizeof (efx_dhcp_tag_hdr_t);
|
|
efx_dhcp_tag_hdr_t *hdrp = (efx_dhcp_tag_hdr_t *)write_pointp;
|
|
efx_dhcp_tag_hdr_t *encap_hdrp = NULL;
|
|
size_t old_length;
|
|
|
|
if (!DHCP_OPT_HAS_VALUE(DHCP_ENCAPSULATED(opt))) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
if (value_length > DHCP_MAX_VALUE) {
|
|
rc = EINVAL;
|
|
goto fail2;
|
|
}
|
|
|
|
if ((value_length > 0) && (valuep == NULL)) {
|
|
rc = EINVAL;
|
|
goto fail3;
|
|
}
|
|
|
|
old_length = hdrp->length;
|
|
|
|
if (old_length < value_length) {
|
|
uint8_t *endp = bufferp;
|
|
size_t available_space = buffer_length;
|
|
|
|
rc = efx_dhcp_walk_tags(&endp, &available_space,
|
|
EFX_DHCP_END);
|
|
if (rc != 0)
|
|
goto fail4;
|
|
|
|
if (available_space < (value_length - old_length)) {
|
|
rc = EINVAL;
|
|
goto fail5;
|
|
}
|
|
}
|
|
|
|
if (DHCP_IS_ENCAP_OPT(opt)) {
|
|
uint8_t *encapp = bufferp;
|
|
size_t following_encap = buffer_length;
|
|
size_t new_length;
|
|
|
|
rc = efx_dhcp_walk_tags(&encapp, &following_encap,
|
|
DHCP_ENCAPSULATOR(opt));
|
|
if (rc != 0)
|
|
goto fail6;
|
|
|
|
encap_hdrp = (efx_dhcp_tag_hdr_t *)encapp;
|
|
|
|
new_length = ((size_t)encap_hdrp->length +
|
|
value_length - old_length);
|
|
/* Check encapsulator will not overflow */
|
|
if (new_length > DHCP_MAX_VALUE) {
|
|
rc = E2BIG;
|
|
goto fail7;
|
|
}
|
|
|
|
encap_hdrp->length = (uint8_t)new_length;
|
|
}
|
|
|
|
/*
|
|
* Move the following data up/down to accomodate the new payload
|
|
* length.
|
|
*/
|
|
if (old_length != value_length) {
|
|
uint8_t *destp = (uint8_t *)DHCP_NEXT_TAG(hdrp) +
|
|
value_length - old_length;
|
|
size_t count = &bufferp[buffer_length] -
|
|
(uint8_t *)DHCP_NEXT_TAG(hdrp);
|
|
|
|
memmove(destp, DHCP_NEXT_TAG(hdrp), count);
|
|
}
|
|
|
|
EFSYS_ASSERT(hdrp->tag == DHCP_ENCAPSULATED(opt));
|
|
efx_dhcp_write_tag(write_pointp, opt, valuep, value_length);
|
|
|
|
return (0);
|
|
|
|
fail7:
|
|
EFSYS_PROBE(fail7);
|
|
fail6:
|
|
EFSYS_PROBE(fail6);
|
|
fail5:
|
|
EFSYS_PROBE(fail5);
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
/*
|
|
* Copy bootcfg sector data to a target buffer which may differ in size.
|
|
* Optionally corrects format errors in source buffer.
|
|
*/
|
|
efx_rc_t
|
|
efx_bootcfg_copy_sector(
|
|
__in efx_nic_t *enp,
|
|
__inout_bcount(sector_length)
|
|
uint8_t *sector,
|
|
__in size_t sector_length,
|
|
__out_bcount(data_size) uint8_t *data,
|
|
__in size_t data_size,
|
|
__in boolean_t handle_format_errors)
|
|
{
|
|
_NOTE(ARGUNUSED(enp))
|
|
|
|
size_t used_bytes;
|
|
efx_rc_t rc;
|
|
|
|
/* Minimum buffer is checksum byte and EFX_DHCP_END terminator */
|
|
if (data_size < 2) {
|
|
rc = ENOSPC;
|
|
goto fail1;
|
|
}
|
|
|
|
/* Verify that the area is correctly formatted and checksummed */
|
|
rc = efx_dhcp_verify(sector, sector_length,
|
|
&used_bytes);
|
|
|
|
if (!handle_format_errors) {
|
|
if (rc != 0)
|
|
goto fail2;
|
|
|
|
if ((used_bytes < 2) ||
|
|
(sector[used_bytes - 1] != EFX_DHCP_END)) {
|
|
/* Block too short, or EFX_DHCP_END missing */
|
|
rc = ENOENT;
|
|
goto fail3;
|
|
}
|
|
}
|
|
|
|
/* Synthesize empty format on verification failure */
|
|
if (rc != 0 || used_bytes == 0) {
|
|
sector[0] = 0;
|
|
sector[1] = EFX_DHCP_END;
|
|
used_bytes = 2;
|
|
}
|
|
EFSYS_ASSERT(used_bytes >= 2); /* checksum and EFX_DHCP_END */
|
|
EFSYS_ASSERT(used_bytes <= sector_length);
|
|
EFSYS_ASSERT(sector_length >= 2);
|
|
|
|
/*
|
|
* Legacy bootcfg sectors don't terminate with an EFX_DHCP_END
|
|
* character. Modify the returned payload so it does.
|
|
* Reinitialise the sector if there isn't room for the character.
|
|
*/
|
|
if (sector[used_bytes - 1] != EFX_DHCP_END) {
|
|
if (used_bytes >= sector_length) {
|
|
sector[0] = 0;
|
|
used_bytes = 1;
|
|
}
|
|
sector[used_bytes] = EFX_DHCP_END;
|
|
++used_bytes;
|
|
}
|
|
|
|
/*
|
|
* Verify that the target buffer is large enough for the
|
|
* entire used bootcfg area, then copy into the target buffer.
|
|
*/
|
|
if (used_bytes > data_size) {
|
|
rc = ENOSPC;
|
|
goto fail4;
|
|
}
|
|
|
|
data[0] = 0; /* checksum, updated below */
|
|
|
|
/* Copy all after the checksum to the target buffer */
|
|
memcpy(data + 1, sector + 1, used_bytes - 1);
|
|
|
|
/* Zero out the unused portion of the target buffer */
|
|
if (used_bytes < data_size)
|
|
(void) memset(data + used_bytes, 0, data_size - used_bytes);
|
|
|
|
/*
|
|
* The checksum includes trailing data after any EFX_DHCP_END
|
|
* character, which we've just modified (by truncation or appending
|
|
* EFX_DHCP_END).
|
|
*/
|
|
data[0] -= efx_dhcp_csum(data, data_size);
|
|
|
|
return (0);
|
|
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
efx_rc_t
|
|
efx_bootcfg_read(
|
|
__in efx_nic_t *enp,
|
|
__out_bcount(size) uint8_t *data,
|
|
__in size_t size)
|
|
{
|
|
uint8_t *payload = NULL;
|
|
size_t used_bytes;
|
|
size_t partn_length;
|
|
size_t sector_length;
|
|
size_t sector_offset;
|
|
efx_rc_t rc;
|
|
uint32_t sector_number;
|
|
|
|
/* Minimum buffer is checksum byte and EFX_DHCP_END terminator */
|
|
if (size < 2) {
|
|
rc = ENOSPC;
|
|
goto fail1;
|
|
}
|
|
|
|
#if EFX_OPTS_EF10()
|
|
sector_number = enp->en_nic_cfg.enc_pf;
|
|
#else
|
|
sector_number = 0;
|
|
#endif
|
|
rc = efx_nvram_size(enp, EFX_NVRAM_BOOTROM_CFG, &partn_length);
|
|
if (rc != 0)
|
|
goto fail2;
|
|
|
|
/* The bootcfg sector may be stored in a (larger) shared partition */
|
|
rc = efx_bootcfg_sector_info(enp, sector_number,
|
|
NULL, §or_offset, §or_length);
|
|
if (rc != 0)
|
|
goto fail3;
|
|
|
|
if (sector_length < 2) {
|
|
rc = EINVAL;
|
|
goto fail4;
|
|
}
|
|
|
|
if (sector_length > BOOTCFG_MAX_SIZE)
|
|
sector_length = BOOTCFG_MAX_SIZE;
|
|
|
|
if (sector_offset + sector_length > partn_length) {
|
|
/* Partition is too small */
|
|
rc = EFBIG;
|
|
goto fail5;
|
|
}
|
|
|
|
/*
|
|
* We need to read the entire BOOTCFG sector to ensure we read all
|
|
* tags, because legacy bootcfg sectors are not guaranteed to end
|
|
* with an EFX_DHCP_END character. If the user hasn't supplied a
|
|
* sufficiently large buffer then use our own buffer.
|
|
*/
|
|
if (sector_length > size) {
|
|
EFSYS_KMEM_ALLOC(enp->en_esip, sector_length, payload);
|
|
if (payload == NULL) {
|
|
rc = ENOMEM;
|
|
goto fail6;
|
|
}
|
|
} else
|
|
payload = (uint8_t *)data;
|
|
|
|
if ((rc = efx_nvram_rw_start(enp, EFX_NVRAM_BOOTROM_CFG, NULL)) != 0)
|
|
goto fail7;
|
|
|
|
if ((rc = efx_nvram_read_chunk(enp, EFX_NVRAM_BOOTROM_CFG,
|
|
sector_offset, (caddr_t)payload, sector_length)) != 0) {
|
|
(void) efx_nvram_rw_finish(enp, EFX_NVRAM_BOOTROM_CFG, NULL);
|
|
goto fail8;
|
|
}
|
|
|
|
if ((rc = efx_nvram_rw_finish(enp, EFX_NVRAM_BOOTROM_CFG, NULL)) != 0)
|
|
goto fail9;
|
|
|
|
/* Verify that the area is correctly formatted and checksummed */
|
|
rc = efx_dhcp_verify(payload, sector_length,
|
|
&used_bytes);
|
|
if (rc != 0 || used_bytes == 0) {
|
|
payload[0] = 0;
|
|
payload[1] = EFX_DHCP_END;
|
|
used_bytes = 2;
|
|
}
|
|
|
|
EFSYS_ASSERT(used_bytes >= 2); /* checksum and EFX_DHCP_END */
|
|
EFSYS_ASSERT(used_bytes <= sector_length);
|
|
|
|
/*
|
|
* Legacy bootcfg sectors don't terminate with an EFX_DHCP_END
|
|
* character. Modify the returned payload so it does.
|
|
* BOOTCFG_MAX_SIZE is by definition large enough for any valid
|
|
* (per-port) bootcfg sector, so reinitialise the sector if there
|
|
* isn't room for the character.
|
|
*/
|
|
if (payload[used_bytes - 1] != EFX_DHCP_END) {
|
|
if (used_bytes >= sector_length)
|
|
used_bytes = 1;
|
|
|
|
payload[used_bytes] = EFX_DHCP_END;
|
|
++used_bytes;
|
|
}
|
|
|
|
/*
|
|
* Verify that the user supplied buffer is large enough for the
|
|
* entire used bootcfg area, then copy into the user supplied buffer.
|
|
*/
|
|
if (used_bytes > size) {
|
|
rc = ENOSPC;
|
|
goto fail10;
|
|
}
|
|
|
|
data[0] = 0; /* checksum, updated below */
|
|
|
|
if (sector_length > size) {
|
|
/* Copy all after the checksum to the target buffer */
|
|
memcpy(data + 1, payload + 1, used_bytes - 1);
|
|
EFSYS_KMEM_FREE(enp->en_esip, sector_length, payload);
|
|
}
|
|
|
|
/* Zero out the unused portion of the user buffer */
|
|
if (used_bytes < size)
|
|
(void) memset(data + used_bytes, 0, size - used_bytes);
|
|
|
|
/*
|
|
* The checksum includes trailing data after any EFX_DHCP_END character,
|
|
* which we've just modified (by truncation or appending EFX_DHCP_END).
|
|
*/
|
|
data[0] -= efx_dhcp_csum(data, size);
|
|
|
|
return (0);
|
|
|
|
fail10:
|
|
EFSYS_PROBE(fail10);
|
|
fail9:
|
|
EFSYS_PROBE(fail9);
|
|
fail8:
|
|
EFSYS_PROBE(fail8);
|
|
fail7:
|
|
EFSYS_PROBE(fail7);
|
|
if (sector_length > size)
|
|
EFSYS_KMEM_FREE(enp->en_esip, sector_length, payload);
|
|
fail6:
|
|
EFSYS_PROBE(fail6);
|
|
fail5:
|
|
EFSYS_PROBE(fail5);
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
efx_rc_t
|
|
efx_bootcfg_write(
|
|
__in efx_nic_t *enp,
|
|
__in_bcount(size) uint8_t *data,
|
|
__in size_t size)
|
|
{
|
|
uint8_t *partn_data;
|
|
uint8_t checksum;
|
|
size_t partn_length;
|
|
size_t sector_length;
|
|
size_t sector_offset;
|
|
size_t used_bytes;
|
|
efx_rc_t rc;
|
|
uint32_t sector_number;
|
|
|
|
#if EFX_OPTS_EF10()
|
|
sector_number = enp->en_nic_cfg.enc_pf;
|
|
#else
|
|
sector_number = 0;
|
|
#endif
|
|
|
|
rc = efx_nvram_size(enp, EFX_NVRAM_BOOTROM_CFG, &partn_length);
|
|
if (rc != 0)
|
|
goto fail1;
|
|
|
|
/* The bootcfg sector may be stored in a (larger) shared partition */
|
|
rc = efx_bootcfg_sector_info(enp, sector_number,
|
|
NULL, §or_offset, §or_length);
|
|
if (rc != 0)
|
|
goto fail2;
|
|
|
|
if (sector_length > BOOTCFG_MAX_SIZE)
|
|
sector_length = BOOTCFG_MAX_SIZE;
|
|
|
|
if (sector_offset + sector_length > partn_length) {
|
|
/* Partition is too small */
|
|
rc = EFBIG;
|
|
goto fail3;
|
|
}
|
|
|
|
if ((rc = efx_dhcp_verify(data, size, &used_bytes)) != 0)
|
|
goto fail4;
|
|
|
|
/*
|
|
* The caller *must* terminate their block with a EFX_DHCP_END
|
|
* character
|
|
*/
|
|
if ((used_bytes < 2) || ((uint8_t)data[used_bytes - 1] !=
|
|
EFX_DHCP_END)) {
|
|
/* Block too short or EFX_DHCP_END missing */
|
|
rc = ENOENT;
|
|
goto fail5;
|
|
}
|
|
|
|
/* Check that the hardware has support for this much data */
|
|
if (used_bytes > MIN(sector_length, BOOTCFG_MAX_SIZE)) {
|
|
rc = ENOSPC;
|
|
goto fail6;
|
|
}
|
|
|
|
/*
|
|
* If the BOOTCFG sector is stored in a shared partition, then we must
|
|
* read the whole partition and insert the updated bootcfg sector at the
|
|
* correct offset.
|
|
*/
|
|
EFSYS_KMEM_ALLOC(enp->en_esip, partn_length, partn_data);
|
|
if (partn_data == NULL) {
|
|
rc = ENOMEM;
|
|
goto fail7;
|
|
}
|
|
|
|
rc = efx_nvram_rw_start(enp, EFX_NVRAM_BOOTROM_CFG, NULL);
|
|
if (rc != 0)
|
|
goto fail8;
|
|
|
|
/* Read the entire partition */
|
|
rc = efx_nvram_read_chunk(enp, EFX_NVRAM_BOOTROM_CFG, 0,
|
|
(caddr_t)partn_data, partn_length);
|
|
if (rc != 0)
|
|
goto fail9;
|
|
|
|
/*
|
|
* Insert the BOOTCFG sector into the partition, Zero out all data
|
|
* after the EFX_DHCP_END tag, and adjust the checksum.
|
|
*/
|
|
(void) memset(partn_data + sector_offset, 0x0, sector_length);
|
|
(void) memcpy(partn_data + sector_offset, data, used_bytes);
|
|
|
|
checksum = efx_dhcp_csum(data, used_bytes);
|
|
partn_data[sector_offset] -= checksum;
|
|
|
|
if ((rc = efx_nvram_erase(enp, EFX_NVRAM_BOOTROM_CFG)) != 0)
|
|
goto fail10;
|
|
|
|
if ((rc = efx_nvram_write_chunk(enp, EFX_NVRAM_BOOTROM_CFG,
|
|
0, (caddr_t)partn_data, partn_length)) != 0)
|
|
goto fail11;
|
|
|
|
if ((rc = efx_nvram_rw_finish(enp, EFX_NVRAM_BOOTROM_CFG, NULL)) != 0)
|
|
goto fail12;
|
|
|
|
EFSYS_KMEM_FREE(enp->en_esip, partn_length, partn_data);
|
|
|
|
return (0);
|
|
|
|
fail12:
|
|
EFSYS_PROBE(fail12);
|
|
fail11:
|
|
EFSYS_PROBE(fail11);
|
|
fail10:
|
|
EFSYS_PROBE(fail10);
|
|
fail9:
|
|
EFSYS_PROBE(fail9);
|
|
|
|
(void) efx_nvram_rw_finish(enp, EFX_NVRAM_BOOTROM_CFG, NULL);
|
|
fail8:
|
|
EFSYS_PROBE(fail8);
|
|
|
|
EFSYS_KMEM_FREE(enp->en_esip, partn_length, partn_data);
|
|
fail7:
|
|
EFSYS_PROBE(fail7);
|
|
fail6:
|
|
EFSYS_PROBE(fail6);
|
|
fail5:
|
|
EFSYS_PROBE(fail5);
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#endif /* EFSYS_OPT_BOOTCFG */
|