a0147be547
Xilinx acquired Solarflare in 2019. Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com> Acked-by: James Fox <jamesfox@xilinx.com>
1155 lines
28 KiB
C
1155 lines
28 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright(c) 2019-2020 Xilinx, Inc.
|
|
* Copyright(c) 2007-2019 Solarflare Communications Inc.
|
|
*/
|
|
|
|
#include "efx.h"
|
|
#include "efx_impl.h"
|
|
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_family(
|
|
__in uint16_t venid,
|
|
__in uint16_t devid,
|
|
__out efx_family_t *efp,
|
|
__out unsigned int *membarp)
|
|
{
|
|
if (venid == EFX_PCI_VENID_SFC) {
|
|
switch (devid) {
|
|
#if EFSYS_OPT_SIENA
|
|
case EFX_PCI_DEVID_SIENA_F1_UNINIT:
|
|
/*
|
|
* Hardware default for PF0 of uninitialised Siena.
|
|
* manftest must be able to cope with this device id.
|
|
*/
|
|
case EFX_PCI_DEVID_BETHPAGE:
|
|
case EFX_PCI_DEVID_SIENA:
|
|
*efp = EFX_FAMILY_SIENA;
|
|
*membarp = EFX_MEM_BAR_SIENA;
|
|
return (0);
|
|
#endif /* EFSYS_OPT_SIENA */
|
|
|
|
#if EFSYS_OPT_HUNTINGTON
|
|
case EFX_PCI_DEVID_HUNTINGTON_PF_UNINIT:
|
|
/*
|
|
* Hardware default for PF0 of uninitialised Huntington.
|
|
* manftest must be able to cope with this device id.
|
|
*/
|
|
case EFX_PCI_DEVID_FARMINGDALE:
|
|
case EFX_PCI_DEVID_GREENPORT:
|
|
*efp = EFX_FAMILY_HUNTINGTON;
|
|
*membarp = EFX_MEM_BAR_HUNTINGTON_PF;
|
|
return (0);
|
|
|
|
case EFX_PCI_DEVID_FARMINGDALE_VF:
|
|
case EFX_PCI_DEVID_GREENPORT_VF:
|
|
*efp = EFX_FAMILY_HUNTINGTON;
|
|
*membarp = EFX_MEM_BAR_HUNTINGTON_VF;
|
|
return (0);
|
|
#endif /* EFSYS_OPT_HUNTINGTON */
|
|
|
|
#if EFSYS_OPT_MEDFORD
|
|
case EFX_PCI_DEVID_MEDFORD_PF_UNINIT:
|
|
/*
|
|
* Hardware default for PF0 of uninitialised Medford.
|
|
* manftest must be able to cope with this device id.
|
|
*/
|
|
case EFX_PCI_DEVID_MEDFORD:
|
|
*efp = EFX_FAMILY_MEDFORD;
|
|
*membarp = EFX_MEM_BAR_MEDFORD_PF;
|
|
return (0);
|
|
|
|
case EFX_PCI_DEVID_MEDFORD_VF:
|
|
*efp = EFX_FAMILY_MEDFORD;
|
|
*membarp = EFX_MEM_BAR_MEDFORD_VF;
|
|
return (0);
|
|
#endif /* EFSYS_OPT_MEDFORD */
|
|
|
|
#if EFSYS_OPT_MEDFORD2
|
|
case EFX_PCI_DEVID_MEDFORD2_PF_UNINIT:
|
|
/*
|
|
* Hardware default for PF0 of uninitialised Medford2.
|
|
* manftest must be able to cope with this device id.
|
|
*/
|
|
case EFX_PCI_DEVID_MEDFORD2:
|
|
case EFX_PCI_DEVID_MEDFORD2_VF:
|
|
*efp = EFX_FAMILY_MEDFORD2;
|
|
*membarp = EFX_MEM_BAR_MEDFORD2;
|
|
return (0);
|
|
#endif /* EFSYS_OPT_MEDFORD2 */
|
|
|
|
case EFX_PCI_DEVID_FALCON: /* Obsolete, not supported */
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
*efp = EFX_FAMILY_INVALID;
|
|
return (ENOTSUP);
|
|
}
|
|
|
|
|
|
#if EFSYS_OPT_SIENA
|
|
|
|
static const efx_nic_ops_t __efx_nic_siena_ops = {
|
|
siena_nic_probe, /* eno_probe */
|
|
NULL, /* eno_board_cfg */
|
|
NULL, /* eno_set_drv_limits */
|
|
siena_nic_reset, /* eno_reset */
|
|
siena_nic_init, /* eno_init */
|
|
NULL, /* eno_get_vi_pool */
|
|
NULL, /* eno_get_bar_region */
|
|
NULL, /* eno_hw_unavailable */
|
|
NULL, /* eno_set_hw_unavailable */
|
|
#if EFSYS_OPT_DIAG
|
|
siena_nic_register_test, /* eno_register_test */
|
|
#endif /* EFSYS_OPT_DIAG */
|
|
siena_nic_fini, /* eno_fini */
|
|
siena_nic_unprobe, /* eno_unprobe */
|
|
};
|
|
|
|
#endif /* EFSYS_OPT_SIENA */
|
|
|
|
#if EFSYS_OPT_HUNTINGTON
|
|
|
|
static const efx_nic_ops_t __efx_nic_hunt_ops = {
|
|
ef10_nic_probe, /* eno_probe */
|
|
hunt_board_cfg, /* eno_board_cfg */
|
|
ef10_nic_set_drv_limits, /* eno_set_drv_limits */
|
|
ef10_nic_reset, /* eno_reset */
|
|
ef10_nic_init, /* eno_init */
|
|
ef10_nic_get_vi_pool, /* eno_get_vi_pool */
|
|
ef10_nic_get_bar_region, /* eno_get_bar_region */
|
|
ef10_nic_hw_unavailable, /* eno_hw_unavailable */
|
|
ef10_nic_set_hw_unavailable, /* eno_set_hw_unavailable */
|
|
#if EFSYS_OPT_DIAG
|
|
ef10_nic_register_test, /* eno_register_test */
|
|
#endif /* EFSYS_OPT_DIAG */
|
|
ef10_nic_fini, /* eno_fini */
|
|
ef10_nic_unprobe, /* eno_unprobe */
|
|
};
|
|
|
|
#endif /* EFSYS_OPT_HUNTINGTON */
|
|
|
|
#if EFSYS_OPT_MEDFORD
|
|
|
|
static const efx_nic_ops_t __efx_nic_medford_ops = {
|
|
ef10_nic_probe, /* eno_probe */
|
|
medford_board_cfg, /* eno_board_cfg */
|
|
ef10_nic_set_drv_limits, /* eno_set_drv_limits */
|
|
ef10_nic_reset, /* eno_reset */
|
|
ef10_nic_init, /* eno_init */
|
|
ef10_nic_get_vi_pool, /* eno_get_vi_pool */
|
|
ef10_nic_get_bar_region, /* eno_get_bar_region */
|
|
ef10_nic_hw_unavailable, /* eno_hw_unavailable */
|
|
ef10_nic_set_hw_unavailable, /* eno_set_hw_unavailable */
|
|
#if EFSYS_OPT_DIAG
|
|
ef10_nic_register_test, /* eno_register_test */
|
|
#endif /* EFSYS_OPT_DIAG */
|
|
ef10_nic_fini, /* eno_fini */
|
|
ef10_nic_unprobe, /* eno_unprobe */
|
|
};
|
|
|
|
#endif /* EFSYS_OPT_MEDFORD */
|
|
|
|
#if EFSYS_OPT_MEDFORD2
|
|
|
|
static const efx_nic_ops_t __efx_nic_medford2_ops = {
|
|
ef10_nic_probe, /* eno_probe */
|
|
medford2_board_cfg, /* eno_board_cfg */
|
|
ef10_nic_set_drv_limits, /* eno_set_drv_limits */
|
|
ef10_nic_reset, /* eno_reset */
|
|
ef10_nic_init, /* eno_init */
|
|
ef10_nic_get_vi_pool, /* eno_get_vi_pool */
|
|
ef10_nic_get_bar_region, /* eno_get_bar_region */
|
|
ef10_nic_hw_unavailable, /* eno_hw_unavailable */
|
|
ef10_nic_set_hw_unavailable, /* eno_set_hw_unavailable */
|
|
#if EFSYS_OPT_DIAG
|
|
ef10_nic_register_test, /* eno_register_test */
|
|
#endif /* EFSYS_OPT_DIAG */
|
|
ef10_nic_fini, /* eno_fini */
|
|
ef10_nic_unprobe, /* eno_unprobe */
|
|
};
|
|
|
|
#endif /* EFSYS_OPT_MEDFORD2 */
|
|
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_create(
|
|
__in efx_family_t family,
|
|
__in efsys_identifier_t *esip,
|
|
__in efsys_bar_t *esbp,
|
|
__in efsys_lock_t *eslp,
|
|
__deref_out efx_nic_t **enpp)
|
|
{
|
|
efx_nic_t *enp;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(family, >, EFX_FAMILY_INVALID);
|
|
EFSYS_ASSERT3U(family, <, EFX_FAMILY_NTYPES);
|
|
|
|
/* Allocate a NIC object */
|
|
EFSYS_KMEM_ALLOC(esip, sizeof (efx_nic_t), enp);
|
|
|
|
if (enp == NULL) {
|
|
rc = ENOMEM;
|
|
goto fail1;
|
|
}
|
|
|
|
enp->en_magic = EFX_NIC_MAGIC;
|
|
|
|
switch (family) {
|
|
#if EFSYS_OPT_SIENA
|
|
case EFX_FAMILY_SIENA:
|
|
enp->en_enop = &__efx_nic_siena_ops;
|
|
enp->en_features =
|
|
EFX_FEATURE_IPV6 |
|
|
EFX_FEATURE_LFSR_HASH_INSERT |
|
|
EFX_FEATURE_LINK_EVENTS |
|
|
EFX_FEATURE_PERIODIC_MAC_STATS |
|
|
EFX_FEATURE_MCDI |
|
|
EFX_FEATURE_LOOKAHEAD_SPLIT |
|
|
EFX_FEATURE_MAC_HEADER_FILTERS |
|
|
EFX_FEATURE_TX_SRC_FILTERS;
|
|
break;
|
|
#endif /* EFSYS_OPT_SIENA */
|
|
|
|
#if EFSYS_OPT_HUNTINGTON
|
|
case EFX_FAMILY_HUNTINGTON:
|
|
enp->en_enop = &__efx_nic_hunt_ops;
|
|
enp->en_features =
|
|
EFX_FEATURE_IPV6 |
|
|
EFX_FEATURE_LINK_EVENTS |
|
|
EFX_FEATURE_PERIODIC_MAC_STATS |
|
|
EFX_FEATURE_MCDI |
|
|
EFX_FEATURE_MAC_HEADER_FILTERS |
|
|
EFX_FEATURE_MCDI_DMA |
|
|
EFX_FEATURE_PIO_BUFFERS |
|
|
EFX_FEATURE_FW_ASSISTED_TSO |
|
|
EFX_FEATURE_FW_ASSISTED_TSO_V2 |
|
|
EFX_FEATURE_PACKED_STREAM |
|
|
EFX_FEATURE_TXQ_CKSUM_OP_DESC;
|
|
break;
|
|
#endif /* EFSYS_OPT_HUNTINGTON */
|
|
|
|
#if EFSYS_OPT_MEDFORD
|
|
case EFX_FAMILY_MEDFORD:
|
|
enp->en_enop = &__efx_nic_medford_ops;
|
|
/*
|
|
* FW_ASSISTED_TSO omitted as Medford only supports firmware
|
|
* assisted TSO version 2, not the v1 scheme used on Huntington.
|
|
*/
|
|
enp->en_features =
|
|
EFX_FEATURE_IPV6 |
|
|
EFX_FEATURE_LINK_EVENTS |
|
|
EFX_FEATURE_PERIODIC_MAC_STATS |
|
|
EFX_FEATURE_MCDI |
|
|
EFX_FEATURE_MAC_HEADER_FILTERS |
|
|
EFX_FEATURE_MCDI_DMA |
|
|
EFX_FEATURE_PIO_BUFFERS |
|
|
EFX_FEATURE_FW_ASSISTED_TSO_V2 |
|
|
EFX_FEATURE_PACKED_STREAM |
|
|
EFX_FEATURE_TXQ_CKSUM_OP_DESC;
|
|
break;
|
|
#endif /* EFSYS_OPT_MEDFORD */
|
|
|
|
#if EFSYS_OPT_MEDFORD2
|
|
case EFX_FAMILY_MEDFORD2:
|
|
enp->en_enop = &__efx_nic_medford2_ops;
|
|
enp->en_features =
|
|
EFX_FEATURE_IPV6 |
|
|
EFX_FEATURE_LINK_EVENTS |
|
|
EFX_FEATURE_PERIODIC_MAC_STATS |
|
|
EFX_FEATURE_MCDI |
|
|
EFX_FEATURE_MAC_HEADER_FILTERS |
|
|
EFX_FEATURE_MCDI_DMA |
|
|
EFX_FEATURE_PIO_BUFFERS |
|
|
EFX_FEATURE_FW_ASSISTED_TSO_V2 |
|
|
EFX_FEATURE_PACKED_STREAM |
|
|
EFX_FEATURE_TXQ_CKSUM_OP_DESC;
|
|
break;
|
|
#endif /* EFSYS_OPT_MEDFORD2 */
|
|
|
|
default:
|
|
rc = ENOTSUP;
|
|
goto fail2;
|
|
}
|
|
|
|
enp->en_family = family;
|
|
enp->en_esip = esip;
|
|
enp->en_esbp = esbp;
|
|
enp->en_eslp = eslp;
|
|
|
|
*enpp = enp;
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
|
|
enp->en_magic = 0;
|
|
|
|
/* Free the NIC object */
|
|
EFSYS_KMEM_FREE(esip, sizeof (efx_nic_t), enp);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_probe(
|
|
__in efx_nic_t *enp,
|
|
__in efx_fw_variant_t efv)
|
|
{
|
|
const efx_nic_ops_t *enop;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
#if EFSYS_OPT_MCDI
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
|
|
#endif /* EFSYS_OPT_MCDI */
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_PROBE));
|
|
|
|
/* Ensure FW variant codes match with MC_CMD_FW codes */
|
|
EFX_STATIC_ASSERT(EFX_FW_VARIANT_FULL_FEATURED ==
|
|
MC_CMD_FW_FULL_FEATURED);
|
|
EFX_STATIC_ASSERT(EFX_FW_VARIANT_LOW_LATENCY ==
|
|
MC_CMD_FW_LOW_LATENCY);
|
|
EFX_STATIC_ASSERT(EFX_FW_VARIANT_PACKED_STREAM ==
|
|
MC_CMD_FW_PACKED_STREAM);
|
|
EFX_STATIC_ASSERT(EFX_FW_VARIANT_HIGH_TX_RATE ==
|
|
MC_CMD_FW_HIGH_TX_RATE);
|
|
EFX_STATIC_ASSERT(EFX_FW_VARIANT_PACKED_STREAM_HASH_MODE_1 ==
|
|
MC_CMD_FW_PACKED_STREAM_HASH_MODE_1);
|
|
EFX_STATIC_ASSERT(EFX_FW_VARIANT_RULES_ENGINE ==
|
|
MC_CMD_FW_RULES_ENGINE);
|
|
EFX_STATIC_ASSERT(EFX_FW_VARIANT_DPDK ==
|
|
MC_CMD_FW_DPDK);
|
|
EFX_STATIC_ASSERT(EFX_FW_VARIANT_DONT_CARE ==
|
|
(int)MC_CMD_FW_DONT_CARE);
|
|
|
|
enop = enp->en_enop;
|
|
enp->efv = efv;
|
|
|
|
if ((rc = enop->eno_probe(enp)) != 0)
|
|
goto fail1;
|
|
|
|
if ((rc = efx_phy_probe(enp)) != 0)
|
|
goto fail2;
|
|
|
|
enp->en_mod_flags |= EFX_MOD_PROBE;
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
|
|
enop->eno_unprobe(enp);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_set_drv_limits(
|
|
__inout efx_nic_t *enp,
|
|
__in efx_drv_limits_t *edlp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
|
|
|
if (enop->eno_set_drv_limits != NULL) {
|
|
if ((rc = enop->eno_set_drv_limits(enp, edlp)) != 0)
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_set_drv_version(
|
|
__inout efx_nic_t *enp,
|
|
__in_ecount(length) char const *verp,
|
|
__in size_t length)
|
|
{
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_PROBE));
|
|
|
|
/*
|
|
* length is the string content length in bytes.
|
|
* Accept any content which fits into the version
|
|
* buffer, excluding the last byte. This is reserved
|
|
* for an appended NUL terminator.
|
|
*/
|
|
if (length >= sizeof (enp->en_drv_version)) {
|
|
rc = E2BIG;
|
|
goto fail1;
|
|
}
|
|
|
|
(void) memset(enp->en_drv_version, 0,
|
|
sizeof (enp->en_drv_version));
|
|
memcpy(enp->en_drv_version, verp, length);
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_get_bar_region(
|
|
__in efx_nic_t *enp,
|
|
__in efx_nic_region_t region,
|
|
__out uint32_t *offsetp,
|
|
__out size_t *sizep)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC);
|
|
|
|
if (enop->eno_get_bar_region == NULL) {
|
|
rc = ENOTSUP;
|
|
goto fail1;
|
|
}
|
|
if ((rc = (enop->eno_get_bar_region)(enp,
|
|
region, offsetp, sizep)) != 0) {
|
|
goto fail2;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_get_vi_pool(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *evq_countp,
|
|
__out uint32_t *rxq_countp,
|
|
__out uint32_t *txq_countp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
efx_nic_cfg_t *encp = &enp->en_nic_cfg;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC);
|
|
|
|
if (enop->eno_get_vi_pool != NULL) {
|
|
uint32_t vi_count = 0;
|
|
|
|
if ((rc = (enop->eno_get_vi_pool)(enp, &vi_count)) != 0)
|
|
goto fail1;
|
|
|
|
*evq_countp = vi_count;
|
|
*rxq_countp = vi_count;
|
|
*txq_countp = vi_count;
|
|
} else {
|
|
/* Use NIC limits as default value */
|
|
*evq_countp = encp->enc_evq_limit;
|
|
*rxq_countp = encp->enc_rxq_limit;
|
|
*txq_countp = encp->enc_txq_limit;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_init(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
|
|
|
if (enp->en_mod_flags & EFX_MOD_NIC) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
if ((rc = enop->eno_init(enp)) != 0)
|
|
goto fail2;
|
|
|
|
enp->en_mod_flags |= EFX_MOD_NIC;
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
void
|
|
efx_nic_fini(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_PROBE);
|
|
EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_NIC);
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_INTR));
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_EV));
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_RX));
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TX));
|
|
|
|
enop->eno_fini(enp);
|
|
|
|
enp->en_mod_flags &= ~EFX_MOD_NIC;
|
|
}
|
|
|
|
void
|
|
efx_nic_unprobe(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
#if EFSYS_OPT_MCDI
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
|
|
#endif /* EFSYS_OPT_MCDI */
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NIC));
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_INTR));
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_EV));
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_RX));
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TX));
|
|
|
|
efx_phy_unprobe(enp);
|
|
|
|
enop->eno_unprobe(enp);
|
|
|
|
enp->en_mod_flags &= ~EFX_MOD_PROBE;
|
|
}
|
|
|
|
void
|
|
efx_nic_destroy(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efsys_identifier_t *esip = enp->en_esip;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0);
|
|
|
|
enp->en_family = EFX_FAMILY_INVALID;
|
|
enp->en_esip = NULL;
|
|
enp->en_esbp = NULL;
|
|
enp->en_eslp = NULL;
|
|
|
|
enp->en_enop = NULL;
|
|
|
|
enp->en_magic = 0;
|
|
|
|
/* Free the NIC object */
|
|
EFSYS_KMEM_FREE(esip, sizeof (efx_nic_t), enp);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_reset(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
unsigned int mod_flags;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_PROBE);
|
|
/*
|
|
* All modules except the MCDI, PROBE, NVRAM, VPD, MON, TUNNEL
|
|
* (which we do not reset here) must have been shut down or never
|
|
* initialized.
|
|
*
|
|
* A rule of thumb here is: If the controller or MC reboots, is *any*
|
|
* state lost. If it's lost and needs reapplying, then the module
|
|
* *must* not be initialised during the reset.
|
|
*/
|
|
mod_flags = enp->en_mod_flags;
|
|
mod_flags &= ~(EFX_MOD_MCDI | EFX_MOD_PROBE | EFX_MOD_NVRAM |
|
|
EFX_MOD_VPD | EFX_MOD_MON);
|
|
#if EFSYS_OPT_TUNNEL
|
|
mod_flags &= ~EFX_MOD_TUNNEL;
|
|
#endif /* EFSYS_OPT_TUNNEL */
|
|
EFSYS_ASSERT3U(mod_flags, ==, 0);
|
|
if (mod_flags != 0) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
if ((rc = enop->eno_reset(enp)) != 0)
|
|
goto fail2;
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
const efx_nic_cfg_t *
|
|
efx_nic_cfg_get(
|
|
__in const efx_nic_t *enp)
|
|
{
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
|
|
|
return (&(enp->en_nic_cfg));
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_get_fw_version(
|
|
__in efx_nic_t *enp,
|
|
__out efx_nic_fw_info_t *enfip)
|
|
{
|
|
uint16_t mc_fw_version[4];
|
|
efx_rc_t rc;
|
|
|
|
if (enfip == NULL) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
|
|
EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
|
|
|
|
/* Ensure RXDP_FW_ID codes match with MC_CMD_GET_CAPABILITIES codes */
|
|
EFX_STATIC_ASSERT(EFX_RXDP_FULL_FEATURED_FW_ID ==
|
|
MC_CMD_GET_CAPABILITIES_OUT_RXDP);
|
|
EFX_STATIC_ASSERT(EFX_RXDP_LOW_LATENCY_FW_ID ==
|
|
MC_CMD_GET_CAPABILITIES_OUT_RXDP_LOW_LATENCY);
|
|
EFX_STATIC_ASSERT(EFX_RXDP_PACKED_STREAM_FW_ID ==
|
|
MC_CMD_GET_CAPABILITIES_OUT_RXDP_PACKED_STREAM);
|
|
EFX_STATIC_ASSERT(EFX_RXDP_RULES_ENGINE_FW_ID ==
|
|
MC_CMD_GET_CAPABILITIES_OUT_RXDP_RULES_ENGINE);
|
|
EFX_STATIC_ASSERT(EFX_RXDP_DPDK_FW_ID ==
|
|
MC_CMD_GET_CAPABILITIES_OUT_RXDP_DPDK);
|
|
|
|
rc = efx_mcdi_version(enp, mc_fw_version, NULL, NULL);
|
|
if (rc != 0)
|
|
goto fail2;
|
|
|
|
rc = efx_mcdi_get_capabilities(enp, NULL,
|
|
&enfip->enfi_rx_dpcpu_fw_id,
|
|
&enfip->enfi_tx_dpcpu_fw_id,
|
|
NULL, NULL);
|
|
if (rc == 0) {
|
|
enfip->enfi_dpcpu_fw_ids_valid = B_TRUE;
|
|
} else if (rc == ENOTSUP) {
|
|
enfip->enfi_dpcpu_fw_ids_valid = B_FALSE;
|
|
enfip->enfi_rx_dpcpu_fw_id = 0;
|
|
enfip->enfi_tx_dpcpu_fw_id = 0;
|
|
} else {
|
|
goto fail3;
|
|
}
|
|
|
|
memcpy(enfip->enfi_mc_fw_version, mc_fw_version,
|
|
sizeof (mc_fw_version));
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn boolean_t
|
|
efx_nic_hw_unavailable(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
/* NOTE: can be used by MCDI before NIC probe */
|
|
|
|
if (enop->eno_hw_unavailable != NULL) {
|
|
if ((enop->eno_hw_unavailable)(enp) != B_FALSE)
|
|
goto unavail;
|
|
}
|
|
|
|
return (B_FALSE);
|
|
|
|
unavail:
|
|
return (B_TRUE);
|
|
}
|
|
|
|
void
|
|
efx_nic_set_hw_unavailable(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
|
|
if (enop->eno_set_hw_unavailable != NULL)
|
|
enop->eno_set_hw_unavailable(enp);
|
|
}
|
|
|
|
|
|
#if EFSYS_OPT_DIAG
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_register_test(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NIC));
|
|
|
|
if ((rc = enop->eno_register_test(enp)) != 0)
|
|
goto fail1;
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#endif /* EFSYS_OPT_DIAG */
|
|
|
|
#if EFSYS_OPT_LOOPBACK
|
|
|
|
extern void
|
|
efx_loopback_mask(
|
|
__in efx_loopback_kind_t loopback_kind,
|
|
__out efx_qword_t *maskp)
|
|
{
|
|
efx_qword_t mask;
|
|
|
|
EFSYS_ASSERT3U(loopback_kind, <, EFX_LOOPBACK_NKINDS);
|
|
EFSYS_ASSERT(maskp != NULL);
|
|
|
|
/* Assert the MC_CMD_LOOPBACK and EFX_LOOPBACK namespaces agree */
|
|
#define LOOPBACK_CHECK(_mcdi, _efx) \
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_##_mcdi == EFX_LOOPBACK_##_efx)
|
|
|
|
LOOPBACK_CHECK(NONE, OFF);
|
|
LOOPBACK_CHECK(DATA, DATA);
|
|
LOOPBACK_CHECK(GMAC, GMAC);
|
|
LOOPBACK_CHECK(XGMII, XGMII);
|
|
LOOPBACK_CHECK(XGXS, XGXS);
|
|
LOOPBACK_CHECK(XAUI, XAUI);
|
|
LOOPBACK_CHECK(GMII, GMII);
|
|
LOOPBACK_CHECK(SGMII, SGMII);
|
|
LOOPBACK_CHECK(XGBR, XGBR);
|
|
LOOPBACK_CHECK(XFI, XFI);
|
|
LOOPBACK_CHECK(XAUI_FAR, XAUI_FAR);
|
|
LOOPBACK_CHECK(GMII_FAR, GMII_FAR);
|
|
LOOPBACK_CHECK(SGMII_FAR, SGMII_FAR);
|
|
LOOPBACK_CHECK(XFI_FAR, XFI_FAR);
|
|
LOOPBACK_CHECK(GPHY, GPHY);
|
|
LOOPBACK_CHECK(PHYXS, PHY_XS);
|
|
LOOPBACK_CHECK(PCS, PCS);
|
|
LOOPBACK_CHECK(PMAPMD, PMA_PMD);
|
|
LOOPBACK_CHECK(XPORT, XPORT);
|
|
LOOPBACK_CHECK(XGMII_WS, XGMII_WS);
|
|
LOOPBACK_CHECK(XAUI_WS, XAUI_WS);
|
|
LOOPBACK_CHECK(XAUI_WS_FAR, XAUI_WS_FAR);
|
|
LOOPBACK_CHECK(XAUI_WS_NEAR, XAUI_WS_NEAR);
|
|
LOOPBACK_CHECK(GMII_WS, GMII_WS);
|
|
LOOPBACK_CHECK(XFI_WS, XFI_WS);
|
|
LOOPBACK_CHECK(XFI_WS_FAR, XFI_WS_FAR);
|
|
LOOPBACK_CHECK(PHYXS_WS, PHYXS_WS);
|
|
LOOPBACK_CHECK(PMA_INT, PMA_INT);
|
|
LOOPBACK_CHECK(SD_NEAR, SD_NEAR);
|
|
LOOPBACK_CHECK(SD_FAR, SD_FAR);
|
|
LOOPBACK_CHECK(PMA_INT_WS, PMA_INT_WS);
|
|
LOOPBACK_CHECK(SD_FEP2_WS, SD_FEP2_WS);
|
|
LOOPBACK_CHECK(SD_FEP1_5_WS, SD_FEP1_5_WS);
|
|
LOOPBACK_CHECK(SD_FEP_WS, SD_FEP_WS);
|
|
LOOPBACK_CHECK(SD_FES_WS, SD_FES_WS);
|
|
LOOPBACK_CHECK(AOE_INT_NEAR, AOE_INT_NEAR);
|
|
LOOPBACK_CHECK(DATA_WS, DATA_WS);
|
|
LOOPBACK_CHECK(FORCE_EXT_LINK, FORCE_EXT_LINK);
|
|
#undef LOOPBACK_CHECK
|
|
|
|
/* Build bitmask of possible loopback types */
|
|
EFX_ZERO_QWORD(mask);
|
|
|
|
if ((loopback_kind == EFX_LOOPBACK_KIND_OFF) ||
|
|
(loopback_kind == EFX_LOOPBACK_KIND_ALL)) {
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_OFF);
|
|
}
|
|
|
|
if ((loopback_kind == EFX_LOOPBACK_KIND_MAC) ||
|
|
(loopback_kind == EFX_LOOPBACK_KIND_ALL)) {
|
|
/*
|
|
* The "MAC" grouping has historically been used by drivers to
|
|
* mean loopbacks supported by on-chip hardware. Keep that
|
|
* meaning here, and include on-chip PHY layer loopbacks.
|
|
*/
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_DATA);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GMAC);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XGMII);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XGXS);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XAUI);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GMII);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SGMII);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XGBR);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XFI);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XAUI_FAR);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GMII_FAR);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SGMII_FAR);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XFI_FAR);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PMA_INT);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SD_NEAR);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SD_FAR);
|
|
}
|
|
|
|
if ((loopback_kind == EFX_LOOPBACK_KIND_PHY) ||
|
|
(loopback_kind == EFX_LOOPBACK_KIND_ALL)) {
|
|
/*
|
|
* The "PHY" grouping has historically been used by drivers to
|
|
* mean loopbacks supported by off-chip hardware. Keep that
|
|
* meaning here.
|
|
*/
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GPHY);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PHY_XS);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PCS);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PMA_PMD);
|
|
}
|
|
|
|
*maskp = mask;
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_get_loopback_modes(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_LOOPBACK_MODES_IN_LEN,
|
|
MC_CMD_GET_LOOPBACK_MODES_OUT_V2_LEN);
|
|
efx_qword_t mask;
|
|
efx_qword_t modes;
|
|
efx_rc_t rc;
|
|
|
|
req.emr_cmd = MC_CMD_GET_LOOPBACK_MODES;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_LOOPBACK_MODES_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_LOOPBACK_MODES_OUT_V2_LEN;
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used <
|
|
MC_CMD_GET_LOOPBACK_MODES_OUT_SUGGESTED_OFST +
|
|
MC_CMD_GET_LOOPBACK_MODES_OUT_SUGGESTED_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
/*
|
|
* We assert the MC_CMD_LOOPBACK and EFX_LOOPBACK namespaces agree
|
|
* in efx_loopback_mask() and in siena_phy.c:siena_phy_get_link().
|
|
*/
|
|
efx_loopback_mask(EFX_LOOPBACK_KIND_ALL, &mask);
|
|
|
|
EFX_AND_QWORD(mask,
|
|
*MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_SUGGESTED));
|
|
|
|
modes = *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_100M);
|
|
EFX_AND_QWORD(modes, mask);
|
|
encp->enc_loopback_types[EFX_LINK_100FDX] = modes;
|
|
|
|
modes = *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_1G);
|
|
EFX_AND_QWORD(modes, mask);
|
|
encp->enc_loopback_types[EFX_LINK_1000FDX] = modes;
|
|
|
|
modes = *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_10G);
|
|
EFX_AND_QWORD(modes, mask);
|
|
encp->enc_loopback_types[EFX_LINK_10000FDX] = modes;
|
|
|
|
if (req.emr_out_length_used >=
|
|
MC_CMD_GET_LOOPBACK_MODES_OUT_40G_OFST +
|
|
MC_CMD_GET_LOOPBACK_MODES_OUT_40G_LEN) {
|
|
/* Response includes 40G loopback modes */
|
|
modes = *MCDI_OUT2(req, efx_qword_t,
|
|
GET_LOOPBACK_MODES_OUT_40G);
|
|
EFX_AND_QWORD(modes, mask);
|
|
encp->enc_loopback_types[EFX_LINK_40000FDX] = modes;
|
|
}
|
|
|
|
if (req.emr_out_length_used >=
|
|
MC_CMD_GET_LOOPBACK_MODES_OUT_V2_25G_OFST +
|
|
MC_CMD_GET_LOOPBACK_MODES_OUT_V2_25G_LEN) {
|
|
/* Response includes 25G loopback modes */
|
|
modes = *MCDI_OUT2(req, efx_qword_t,
|
|
GET_LOOPBACK_MODES_OUT_V2_25G);
|
|
EFX_AND_QWORD(modes, mask);
|
|
encp->enc_loopback_types[EFX_LINK_25000FDX] = modes;
|
|
}
|
|
|
|
if (req.emr_out_length_used >=
|
|
MC_CMD_GET_LOOPBACK_MODES_OUT_V2_50G_OFST +
|
|
MC_CMD_GET_LOOPBACK_MODES_OUT_V2_50G_LEN) {
|
|
/* Response includes 50G loopback modes */
|
|
modes = *MCDI_OUT2(req, efx_qword_t,
|
|
GET_LOOPBACK_MODES_OUT_V2_50G);
|
|
EFX_AND_QWORD(modes, mask);
|
|
encp->enc_loopback_types[EFX_LINK_50000FDX] = modes;
|
|
}
|
|
|
|
if (req.emr_out_length_used >=
|
|
MC_CMD_GET_LOOPBACK_MODES_OUT_V2_100G_OFST +
|
|
MC_CMD_GET_LOOPBACK_MODES_OUT_V2_100G_LEN) {
|
|
/* Response includes 100G loopback modes */
|
|
modes = *MCDI_OUT2(req, efx_qword_t,
|
|
GET_LOOPBACK_MODES_OUT_V2_100G);
|
|
EFX_AND_QWORD(modes, mask);
|
|
encp->enc_loopback_types[EFX_LINK_100000FDX] = modes;
|
|
}
|
|
|
|
EFX_ZERO_QWORD(modes);
|
|
EFX_SET_QWORD_BIT(modes, EFX_LOOPBACK_OFF);
|
|
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_100FDX]);
|
|
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_1000FDX]);
|
|
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_10000FDX]);
|
|
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_40000FDX]);
|
|
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_25000FDX]);
|
|
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_50000FDX]);
|
|
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_100000FDX]);
|
|
encp->enc_loopback_types[EFX_LINK_UNKNOWN] = modes;
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#endif /* EFSYS_OPT_LOOPBACK */
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_calculate_pcie_link_bandwidth(
|
|
__in uint32_t pcie_link_width,
|
|
__in uint32_t pcie_link_gen,
|
|
__out uint32_t *bandwidth_mbpsp)
|
|
{
|
|
uint32_t lane_bandwidth;
|
|
uint32_t total_bandwidth;
|
|
efx_rc_t rc;
|
|
|
|
if ((pcie_link_width == 0) || (pcie_link_width > 16) ||
|
|
!ISP2(pcie_link_width)) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
switch (pcie_link_gen) {
|
|
case EFX_PCIE_LINK_SPEED_GEN1:
|
|
/* 2.5 Gb/s raw bandwidth with 8b/10b encoding */
|
|
lane_bandwidth = 2000;
|
|
break;
|
|
case EFX_PCIE_LINK_SPEED_GEN2:
|
|
/* 5.0 Gb/s raw bandwidth with 8b/10b encoding */
|
|
lane_bandwidth = 4000;
|
|
break;
|
|
case EFX_PCIE_LINK_SPEED_GEN3:
|
|
/* 8.0 Gb/s raw bandwidth with 128b/130b encoding */
|
|
lane_bandwidth = 7877;
|
|
break;
|
|
default:
|
|
rc = EINVAL;
|
|
goto fail2;
|
|
}
|
|
|
|
total_bandwidth = lane_bandwidth * pcie_link_width;
|
|
*bandwidth_mbpsp = total_bandwidth;
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#if EFSYS_OPT_FW_SUBVARIANT_AWARE
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_get_fw_subvariant(
|
|
__in efx_nic_t *enp,
|
|
__out efx_nic_fw_subvariant_t *subvariantp)
|
|
{
|
|
efx_rc_t rc;
|
|
uint32_t value;
|
|
|
|
rc = efx_mcdi_get_nic_global(enp,
|
|
MC_CMD_SET_NIC_GLOBAL_IN_FIRMWARE_SUBVARIANT, &value);
|
|
if (rc != 0)
|
|
goto fail1;
|
|
|
|
/* Mapping is not required since values match MCDI */
|
|
EFX_STATIC_ASSERT(EFX_NIC_FW_SUBVARIANT_DEFAULT ==
|
|
MC_CMD_SET_NIC_GLOBAL_IN_FW_SUBVARIANT_DEFAULT);
|
|
EFX_STATIC_ASSERT(EFX_NIC_FW_SUBVARIANT_NO_TX_CSUM ==
|
|
MC_CMD_SET_NIC_GLOBAL_IN_FW_SUBVARIANT_NO_TX_CSUM);
|
|
|
|
switch (value) {
|
|
case MC_CMD_SET_NIC_GLOBAL_IN_FW_SUBVARIANT_DEFAULT:
|
|
case MC_CMD_SET_NIC_GLOBAL_IN_FW_SUBVARIANT_NO_TX_CSUM:
|
|
*subvariantp = value;
|
|
break;
|
|
default:
|
|
rc = EINVAL;
|
|
goto fail2;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_set_fw_subvariant(
|
|
__in efx_nic_t *enp,
|
|
__in efx_nic_fw_subvariant_t subvariant)
|
|
{
|
|
efx_rc_t rc;
|
|
|
|
switch (subvariant) {
|
|
case EFX_NIC_FW_SUBVARIANT_DEFAULT:
|
|
case EFX_NIC_FW_SUBVARIANT_NO_TX_CSUM:
|
|
/* Mapping is not required since values match MCDI */
|
|
break;
|
|
default:
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
rc = efx_mcdi_set_nic_global(enp,
|
|
MC_CMD_SET_NIC_GLOBAL_IN_FIRMWARE_SUBVARIANT, subvariant);
|
|
if (rc != 0)
|
|
goto fail2;
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#endif /* EFSYS_OPT_FW_SUBVARIANT_AWARE */
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_check_pcie_link_speed(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t pcie_link_width,
|
|
__in uint32_t pcie_link_gen,
|
|
__out efx_pcie_link_performance_t *resultp)
|
|
{
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
uint32_t bandwidth;
|
|
efx_pcie_link_performance_t result;
|
|
efx_rc_t rc;
|
|
|
|
if ((encp->enc_required_pcie_bandwidth_mbps == 0) ||
|
|
(pcie_link_width == 0) || (pcie_link_width == 32) ||
|
|
(pcie_link_gen == 0)) {
|
|
/*
|
|
* No usable info on what is required and/or in use. In virtual
|
|
* machines, sometimes the PCIe link width is reported as 0 or
|
|
* 32, or the speed as 0.
|
|
*/
|
|
result = EFX_PCIE_LINK_PERFORMANCE_UNKNOWN_BANDWIDTH;
|
|
goto out;
|
|
}
|
|
|
|
/* Calculate the available bandwidth in megabits per second */
|
|
rc = efx_nic_calculate_pcie_link_bandwidth(pcie_link_width,
|
|
pcie_link_gen, &bandwidth);
|
|
if (rc != 0)
|
|
goto fail1;
|
|
|
|
if (bandwidth < encp->enc_required_pcie_bandwidth_mbps) {
|
|
result = EFX_PCIE_LINK_PERFORMANCE_SUBOPTIMAL_BANDWIDTH;
|
|
} else if (pcie_link_gen < encp->enc_max_pcie_link_gen) {
|
|
/* The link provides enough bandwidth but not optimal latency */
|
|
result = EFX_PCIE_LINK_PERFORMANCE_SUBOPTIMAL_LATENCY;
|
|
} else {
|
|
result = EFX_PCIE_LINK_PERFORMANCE_OPTIMAL;
|
|
}
|
|
|
|
out:
|
|
*resultp = result;
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|