numam-dpdk/drivers/net/mlx5/mlx5_rxtx_vec_neon.h
Viacheslav Ovsiienko a2854c4de1 net/mlx5: convert Rx timestamps in real-time format
The ConnectX-6DX supports the timestamps in various formats,
the new realtime format is introduced - the upper 32-bit word
of timestamp contains the UTC seconds and the lower 32-bit word
contains the nanoseconds. This patch detects what format is
configured in the NIC and performs the conversion accordingly.

Signed-off-by: Viacheslav Ovsiienko <viacheslavo@mellanox.com>
Acked-by: Matan Azrad <matan@mellanox.com>
2020-07-21 15:44:36 +02:00

810 lines
28 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017 6WIND S.A.
* Copyright 2017 Mellanox Technologies, Ltd
*/
#ifndef RTE_PMD_MLX5_RXTX_VEC_NEON_H_
#define RTE_PMD_MLX5_RXTX_VEC_NEON_H_
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <arm_neon.h>
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include <mlx5_prm.h>
#include "mlx5_defs.h"
#include "mlx5.h"
#include "mlx5_utils.h"
#include "mlx5_rxtx.h"
#include "mlx5_rxtx_vec.h"
#include "mlx5_autoconf.h"
#pragma GCC diagnostic ignored "-Wcast-qual"
/**
* Store free buffers to RX SW ring.
*
* @param rxq
* Pointer to RX queue structure.
* @param pkts
* Pointer to array of packets to be stored.
* @param pkts_n
* Number of packets to be stored.
*/
static inline void
rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
{
const uint16_t q_mask = (1 << rxq->elts_n) - 1;
struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
unsigned int pos;
uint16_t p = n & -2;
for (pos = 0; pos < p; pos += 2) {
uint64x2_t mbp;
mbp = vld1q_u64((void *)&elts[pos]);
vst1q_u64((void *)&pkts[pos], mbp);
}
if (n & 1)
pkts[pos] = elts[pos];
}
/**
* Decompress a compressed completion and fill in mbufs in RX SW ring with data
* extracted from the title completion descriptor.
*
* @param rxq
* Pointer to RX queue structure.
* @param cq
* Pointer to completion array having a compressed completion at first.
* @param elts
* Pointer to SW ring to be filled. The first mbuf has to be pre-built from
* the title completion descriptor to be copied to the rest of mbufs.
*
* @return
* Number of mini-CQEs successfully decompressed.
*/
static inline uint16_t
rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
struct rte_mbuf **elts)
{
volatile struct mlx5_mini_cqe8 *mcq = (void *)&(cq + 1)->pkt_info;
struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
unsigned int pos;
unsigned int i;
unsigned int inv = 0;
/* Mask to shuffle from extracted mini CQE to mbuf. */
const uint8x16_t mcqe_shuf_m1 = {
-1, -1, -1, -1, /* skip packet_type */
7, 6, -1, -1, /* pkt_len, bswap16 */
7, 6, /* data_len, bswap16 */
-1, -1, /* skip vlan_tci */
3, 2, 1, 0 /* hash.rss, bswap32 */
};
const uint8x16_t mcqe_shuf_m2 = {
-1, -1, -1, -1, /* skip packet_type */
15, 14, -1, -1, /* pkt_len, bswap16 */
15, 14, /* data_len, bswap16 */
-1, -1, /* skip vlan_tci */
11, 10, 9, 8 /* hash.rss, bswap32 */
};
/* Restore the compressed count. Must be 16 bits. */
const uint16_t mcqe_n = t_pkt->data_len +
(rxq->crc_present * RTE_ETHER_CRC_LEN);
const uint64x2_t rearm =
vld1q_u64((void *)&t_pkt->rearm_data);
const uint32x4_t rxdf_mask = {
0xffffffff, /* packet_type */
0, /* skip pkt_len */
0xffff0000, /* vlan_tci, skip data_len */
0, /* skip hash.rss */
};
const uint8x16_t rxdf =
vandq_u8(vld1q_u8((void *)&t_pkt->rx_descriptor_fields1),
vreinterpretq_u8_u32(rxdf_mask));
const uint16x8_t crc_adj = {
0, 0,
rxq->crc_present * RTE_ETHER_CRC_LEN, 0,
rxq->crc_present * RTE_ETHER_CRC_LEN, 0,
0, 0
};
const uint32_t flow_tag = t_pkt->hash.fdir.hi;
#ifdef MLX5_PMD_SOFT_COUNTERS
uint32_t rcvd_byte = 0;
#endif
/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
const uint8x8_t len_shuf_m = {
7, 6, /* 1st mCQE */
15, 14, /* 2nd mCQE */
23, 22, /* 3rd mCQE */
31, 30 /* 4th mCQE */
};
/*
* A. load mCQEs into a 128bit register.
* B. store rearm data to mbuf.
* C. combine data from mCQEs with rx_descriptor_fields1.
* D. store rx_descriptor_fields1.
* E. store flow tag (rte_flow mark).
*/
for (pos = 0; pos < mcqe_n; ) {
uint8_t *p = (void *)&mcq[pos % 8];
uint8_t *e0 = (void *)&elts[pos]->rearm_data;
uint8_t *e1 = (void *)&elts[pos + 1]->rearm_data;
uint8_t *e2 = (void *)&elts[pos + 2]->rearm_data;
uint8_t *e3 = (void *)&elts[pos + 3]->rearm_data;
uint16x4_t byte_cnt;
#ifdef MLX5_PMD_SOFT_COUNTERS
uint16x4_t invalid_mask =
vcreate_u16(mcqe_n - pos < MLX5_VPMD_DESCS_PER_LOOP ?
-1UL << ((mcqe_n - pos) *
sizeof(uint16_t) * 8) : 0);
#endif
for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
if (likely(pos + i < mcqe_n))
rte_prefetch0((void *)(cq + pos + i));
__asm__ volatile (
/* A.1 load mCQEs into a 128bit register. */
"ld1 {v16.16b - v17.16b}, [%[mcq]] \n\t"
/* B.1 store rearm data to mbuf. */
"st1 {%[rearm].2d}, [%[e0]] \n\t"
"add %[e0], %[e0], #16 \n\t"
"st1 {%[rearm].2d}, [%[e1]] \n\t"
"add %[e1], %[e1], #16 \n\t"
/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
"tbl v18.16b, {v16.16b}, %[mcqe_shuf_m1].16b \n\t"
"tbl v19.16b, {v16.16b}, %[mcqe_shuf_m2].16b \n\t"
"sub v18.8h, v18.8h, %[crc_adj].8h \n\t"
"sub v19.8h, v19.8h, %[crc_adj].8h \n\t"
"orr v18.16b, v18.16b, %[rxdf].16b \n\t"
"orr v19.16b, v19.16b, %[rxdf].16b \n\t"
/* D.1 store rx_descriptor_fields1. */
"st1 {v18.2d}, [%[e0]] \n\t"
"st1 {v19.2d}, [%[e1]] \n\t"
/* B.1 store rearm data to mbuf. */
"st1 {%[rearm].2d}, [%[e2]] \n\t"
"add %[e2], %[e2], #16 \n\t"
"st1 {%[rearm].2d}, [%[e3]] \n\t"
"add %[e3], %[e3], #16 \n\t"
/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
"tbl v18.16b, {v17.16b}, %[mcqe_shuf_m1].16b \n\t"
"tbl v19.16b, {v17.16b}, %[mcqe_shuf_m2].16b \n\t"
"sub v18.8h, v18.8h, %[crc_adj].8h \n\t"
"sub v19.8h, v19.8h, %[crc_adj].8h \n\t"
"orr v18.16b, v18.16b, %[rxdf].16b \n\t"
"orr v19.16b, v19.16b, %[rxdf].16b \n\t"
/* D.1 store rx_descriptor_fields1. */
"st1 {v18.2d}, [%[e2]] \n\t"
"st1 {v19.2d}, [%[e3]] \n\t"
#ifdef MLX5_PMD_SOFT_COUNTERS
"tbl %[byte_cnt].8b, {v16.16b - v17.16b}, %[len_shuf_m].8b \n\t"
#endif
:[byte_cnt]"=&w"(byte_cnt)
:[mcq]"r"(p),
[rxdf]"w"(rxdf),
[rearm]"w"(rearm),
[e3]"r"(e3), [e2]"r"(e2), [e1]"r"(e1), [e0]"r"(e0),
[mcqe_shuf_m1]"w"(mcqe_shuf_m1),
[mcqe_shuf_m2]"w"(mcqe_shuf_m2),
[crc_adj]"w"(crc_adj),
[len_shuf_m]"w"(len_shuf_m)
:"memory", "v16", "v17", "v18", "v19");
#ifdef MLX5_PMD_SOFT_COUNTERS
byte_cnt = vbic_u16(byte_cnt, invalid_mask);
rcvd_byte += vget_lane_u64(vpaddl_u32(vpaddl_u16(byte_cnt)), 0);
#endif
if (rxq->mark) {
/* E.1 store flow tag (rte_flow mark). */
elts[pos]->hash.fdir.hi = flow_tag;
elts[pos + 1]->hash.fdir.hi = flow_tag;
elts[pos + 2]->hash.fdir.hi = flow_tag;
elts[pos + 3]->hash.fdir.hi = flow_tag;
}
if (rxq->dynf_meta) {
int32_t offs = rxq->flow_meta_offset;
const uint32_t meta =
*RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *);
/* Check if title packet has valid metadata. */
if (meta) {
MLX5_ASSERT(t_pkt->ol_flags &
rxq->flow_meta_mask);
*RTE_MBUF_DYNFIELD(elts[pos], offs,
uint32_t *) = meta;
*RTE_MBUF_DYNFIELD(elts[pos + 1], offs,
uint32_t *) = meta;
*RTE_MBUF_DYNFIELD(elts[pos + 2], offs,
uint32_t *) = meta;
*RTE_MBUF_DYNFIELD(elts[pos + 3], offs,
uint32_t *) = meta;
}
}
pos += MLX5_VPMD_DESCS_PER_LOOP;
/* Move to next CQE and invalidate consumed CQEs. */
if (!(pos & 0x7) && pos < mcqe_n) {
mcq = (void *)&(cq + pos)->pkt_info;
for (i = 0; i < 8; ++i)
cq[inv++].op_own = MLX5_CQE_INVALIDATE;
}
}
/* Invalidate the rest of CQEs. */
for (; inv < mcqe_n; ++inv)
cq[inv].op_own = MLX5_CQE_INVALIDATE;
#ifdef MLX5_PMD_SOFT_COUNTERS
rxq->stats.ipackets += mcqe_n;
rxq->stats.ibytes += rcvd_byte;
#endif
rxq->cq_ci += mcqe_n;
return mcqe_n;
}
/**
* Calculate packet type and offload flag for mbuf and store it.
*
* @param rxq
* Pointer to RX queue structure.
* @param ptype_info
* Array of four 4bytes packet type info extracted from the original
* completion descriptor.
* @param flow_tag
* Array of four 4bytes flow ID extracted from the original completion
* descriptor.
* @param op_err
* Opcode vector having responder error status. Each field is 4B.
* @param pkts
* Pointer to array of packets to be filled.
*/
static inline void
rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq,
uint32x4_t ptype_info, uint32x4_t flow_tag,
uint16x4_t op_err, struct rte_mbuf **pkts)
{
uint16x4_t ptype;
uint32x4_t pinfo, cv_flags;
uint32x4_t ol_flags =
vdupq_n_u32(rxq->rss_hash * PKT_RX_RSS_HASH |
rxq->hw_timestamp * PKT_RX_TIMESTAMP);
const uint32x4_t ptype_ol_mask = { 0x106, 0x106, 0x106, 0x106 };
const uint8x16_t cv_flag_sel = {
0,
(uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
(uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
0,
(uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
0,
(uint8_t)((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1),
0, 0, 0, 0, 0, 0, 0, 0, 0
};
const uint32x4_t cv_mask =
vdupq_n_u32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
const uint64x2_t mbuf_init = vld1q_u64
((const uint64_t *)&rxq->mbuf_initializer);
uint64x2_t rearm0, rearm1, rearm2, rearm3;
uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
if (rxq->mark) {
const uint32x4_t ft_def = vdupq_n_u32(MLX5_FLOW_MARK_DEFAULT);
const uint32x4_t fdir_flags = vdupq_n_u32(PKT_RX_FDIR);
uint32x4_t fdir_id_flags = vdupq_n_u32(PKT_RX_FDIR_ID);
uint32x4_t invalid_mask;
/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
invalid_mask = vceqzq_u32(flow_tag);
ol_flags = vorrq_u32(ol_flags,
vbicq_u32(fdir_flags, invalid_mask));
/* Mask out invalid entries. */
fdir_id_flags = vbicq_u32(fdir_id_flags, invalid_mask);
/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
ol_flags = vorrq_u32(ol_flags,
vbicq_u32(fdir_id_flags,
vceqq_u32(flow_tag, ft_def)));
}
/*
* ptype_info has the following:
* bit[1] = l3_ok
* bit[2] = l4_ok
* bit[8] = cv
* bit[11:10] = l3_hdr_type
* bit[14:12] = l4_hdr_type
* bit[15] = ip_frag
* bit[16] = tunneled
* bit[17] = outer_l3_type
*/
ptype = vshrn_n_u32(ptype_info, 10);
/* Errored packets will have RTE_PTYPE_ALL_MASK. */
ptype = vorr_u16(ptype, op_err);
pt_idx0 = vget_lane_u8(vreinterpret_u8_u16(ptype), 6);
pt_idx1 = vget_lane_u8(vreinterpret_u8_u16(ptype), 4);
pt_idx2 = vget_lane_u8(vreinterpret_u8_u16(ptype), 2);
pt_idx3 = vget_lane_u8(vreinterpret_u8_u16(ptype), 0);
pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
!!(pt_idx0 & (1 << 6)) * rxq->tunnel;
pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
!!(pt_idx1 & (1 << 6)) * rxq->tunnel;
pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
!!(pt_idx2 & (1 << 6)) * rxq->tunnel;
pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
!!(pt_idx3 & (1 << 6)) * rxq->tunnel;
/* Fill flags for checksum and VLAN. */
pinfo = vandq_u32(ptype_info, ptype_ol_mask);
pinfo = vreinterpretq_u32_u8(
vqtbl1q_u8(cv_flag_sel, vreinterpretq_u8_u32(pinfo)));
/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
cv_flags = vshlq_n_u32(pinfo, 9);
cv_flags = vorrq_u32(pinfo, cv_flags);
/* Move back flags to start from byte[0]. */
cv_flags = vshrq_n_u32(cv_flags, 8);
/* Mask out garbage bits. */
cv_flags = vandq_u32(cv_flags, cv_mask);
/* Merge to ol_flags. */
ol_flags = vorrq_u32(ol_flags, cv_flags);
/* Merge mbuf_init and ol_flags, and store. */
rearm0 = vreinterpretq_u64_u32(vsetq_lane_u32
(vgetq_lane_u32(ol_flags, 3),
vreinterpretq_u32_u64(mbuf_init), 2));
rearm1 = vreinterpretq_u64_u32(vsetq_lane_u32
(vgetq_lane_u32(ol_flags, 2),
vreinterpretq_u32_u64(mbuf_init), 2));
rearm2 = vreinterpretq_u64_u32(vsetq_lane_u32
(vgetq_lane_u32(ol_flags, 1),
vreinterpretq_u32_u64(mbuf_init), 2));
rearm3 = vreinterpretq_u64_u32(vsetq_lane_u32
(vgetq_lane_u32(ol_flags, 0),
vreinterpretq_u32_u64(mbuf_init), 2));
vst1q_u64((void *)&pkts[0]->rearm_data, rearm0);
vst1q_u64((void *)&pkts[1]->rearm_data, rearm1);
vst1q_u64((void *)&pkts[2]->rearm_data, rearm2);
vst1q_u64((void *)&pkts[3]->rearm_data, rearm3);
}
/**
* Receive burst of packets. An errored completion also consumes a mbuf, but the
* packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
* before returning to application.
*
* @param rxq
* Pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
* @param[out] err
* Pointer to a flag. Set non-zero value if pkts array has at least one error
* packet to handle.
* @param[out] no_cq
* Pointer to a boolean. Set true if no new CQE seen.
*
* @return
* Number of packets received including errors (<= pkts_n).
*/
static inline uint16_t
rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n,
uint64_t *err, bool *no_cq)
{
const uint16_t q_n = 1 << rxq->cqe_n;
const uint16_t q_mask = q_n - 1;
volatile struct mlx5_cqe *cq;
struct rte_mbuf **elts;
unsigned int pos;
uint64_t n;
uint16_t repl_n;
uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
uint16_t nocmp_n = 0;
uint16_t rcvd_pkt = 0;
unsigned int cq_idx = rxq->cq_ci & q_mask;
unsigned int elts_idx;
const uint16x4_t ownership = vdup_n_u16(!(rxq->cq_ci & (q_mask + 1)));
const uint16x4_t owner_check = vcreate_u16(0x0001000100010001);
const uint16x4_t opcode_check = vcreate_u16(0x00f000f000f000f0);
const uint16x4_t format_check = vcreate_u16(0x000c000c000c000c);
const uint16x4_t resp_err_check = vcreate_u16(0x00e000e000e000e0);
#ifdef MLX5_PMD_SOFT_COUNTERS
uint32_t rcvd_byte = 0;
#endif
/* Mask to generate 16B length vector. */
const uint8x8_t len_shuf_m = {
52, 53, /* 4th CQE */
36, 37, /* 3rd CQE */
20, 21, /* 2nd CQE */
4, 5 /* 1st CQE */
};
/* Mask to extract 16B data from a 64B CQE. */
const uint8x16_t cqe_shuf_m = {
28, 29, /* hdr_type_etc */
0, /* pkt_info */
-1, /* null */
47, 46, /* byte_cnt, bswap16 */
31, 30, /* vlan_info, bswap16 */
15, 14, 13, 12, /* rx_hash_res, bswap32 */
57, 58, 59, /* flow_tag */
63 /* op_own */
};
/* Mask to generate 16B data for mbuf. */
const uint8x16_t mb_shuf_m = {
4, 5, -1, -1, /* pkt_len */
4, 5, /* data_len */
6, 7, /* vlan_tci */
8, 9, 10, 11, /* hash.rss */
12, 13, 14, -1 /* hash.fdir.hi */
};
/* Mask to generate 16B owner vector. */
const uint8x8_t owner_shuf_m = {
63, -1, /* 4th CQE */
47, -1, /* 3rd CQE */
31, -1, /* 2nd CQE */
15, -1 /* 1st CQE */
};
/* Mask to generate a vector having packet_type/ol_flags. */
const uint8x16_t ptype_shuf_m = {
48, 49, 50, -1, /* 4th CQE */
32, 33, 34, -1, /* 3rd CQE */
16, 17, 18, -1, /* 2nd CQE */
0, 1, 2, -1 /* 1st CQE */
};
/* Mask to generate a vector having flow tags. */
const uint8x16_t ftag_shuf_m = {
60, 61, 62, -1, /* 4th CQE */
44, 45, 46, -1, /* 3rd CQE */
28, 29, 30, -1, /* 2nd CQE */
12, 13, 14, -1 /* 1st CQE */
};
const uint16x8_t crc_adj = {
0, 0, rxq->crc_present * RTE_ETHER_CRC_LEN, 0, 0, 0, 0, 0
};
const uint32x4_t flow_mark_adj = { 0, 0, 0, rxq->mark * (-1) };
MLX5_ASSERT(rxq->sges_n == 0);
MLX5_ASSERT(rxq->cqe_n == rxq->elts_n);
cq = &(*rxq->cqes)[cq_idx];
rte_prefetch_non_temporal(cq);
rte_prefetch_non_temporal(cq + 1);
rte_prefetch_non_temporal(cq + 2);
rte_prefetch_non_temporal(cq + 3);
pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
if (repl_n >= rxq->rq_repl_thresh)
mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
/* See if there're unreturned mbufs from compressed CQE. */
rcvd_pkt = rxq->decompressed;
if (rcvd_pkt > 0) {
rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
rxq->rq_pi += rcvd_pkt;
pkts += rcvd_pkt;
rxq->decompressed -= rcvd_pkt;
}
elts_idx = rxq->rq_pi & q_mask;
elts = &(*rxq->elts)[elts_idx];
/* Not to overflow pkts array. */
pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
/* Not to cross queue end. */
pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
pkts_n = RTE_MIN(pkts_n, q_n - cq_idx);
if (!pkts_n) {
*no_cq = !rcvd_pkt;
return rcvd_pkt;
}
/* At this point, there shouldn't be any remained packets. */
MLX5_ASSERT(rxq->decompressed == 0);
/*
* Note that vectors have reverse order - {v3, v2, v1, v0}, because
* there's no instruction to count trailing zeros. __builtin_clzl() is
* used instead.
*
* A. copy 4 mbuf pointers from elts ring to returing pkts.
* B. load 64B CQE and extract necessary fields
* Final 16bytes cqes[] extracted from original 64bytes CQE has the
* following structure:
* struct {
* uint16_t hdr_type_etc;
* uint8_t pkt_info;
* uint8_t rsvd;
* uint16_t byte_cnt;
* uint16_t vlan_info;
* uint32_t rx_has_res;
* uint8_t flow_tag[3];
* uint8_t op_own;
* } c;
* C. fill in mbuf.
* D. get valid CQEs.
* E. find compressed CQE.
*/
for (pos = 0;
pos < pkts_n;
pos += MLX5_VPMD_DESCS_PER_LOOP) {
uint16x4_t op_own;
uint16x4_t opcode, owner_mask, invalid_mask;
uint16x4_t comp_mask;
uint16x4_t mask;
uint16x4_t byte_cnt;
uint32x4_t ptype_info, flow_tag;
register uint64x2_t c0, c1, c2, c3;
uint8_t *p0, *p1, *p2, *p3;
uint8_t *e0 = (void *)&elts[pos]->pkt_len;
uint8_t *e1 = (void *)&elts[pos + 1]->pkt_len;
uint8_t *e2 = (void *)&elts[pos + 2]->pkt_len;
uint8_t *e3 = (void *)&elts[pos + 3]->pkt_len;
void *elts_p = (void *)&elts[pos];
void *pkts_p = (void *)&pkts[pos];
/* A.0 do not cross the end of CQ. */
mask = vcreate_u16(pkts_n - pos < MLX5_VPMD_DESCS_PER_LOOP ?
-1UL >> ((pkts_n - pos) *
sizeof(uint16_t) * 8) : 0);
p0 = (void *)&cq[pos].pkt_info;
p1 = p0 + (pkts_n - pos > 1) * sizeof(struct mlx5_cqe);
p2 = p1 + (pkts_n - pos > 2) * sizeof(struct mlx5_cqe);
p3 = p2 + (pkts_n - pos > 3) * sizeof(struct mlx5_cqe);
/* B.0 (CQE 3) load a block having op_own. */
c3 = vld1q_u64((uint64_t *)(p3 + 48));
/* B.0 (CQE 2) load a block having op_own. */
c2 = vld1q_u64((uint64_t *)(p2 + 48));
/* B.0 (CQE 1) load a block having op_own. */
c1 = vld1q_u64((uint64_t *)(p1 + 48));
/* B.0 (CQE 0) load a block having op_own. */
c0 = vld1q_u64((uint64_t *)(p0 + 48));
/* Synchronize for loading the rest of blocks. */
rte_cio_rmb();
/* Prefetch next 4 CQEs. */
if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
unsigned int next = pos + MLX5_VPMD_DESCS_PER_LOOP;
rte_prefetch_non_temporal(&cq[next]);
rte_prefetch_non_temporal(&cq[next + 1]);
rte_prefetch_non_temporal(&cq[next + 2]);
rte_prefetch_non_temporal(&cq[next + 3]);
}
__asm__ volatile (
/* B.1 (CQE 3) load the rest of blocks. */
"ld1 {v16.16b - v18.16b}, [%[p3]] \n\t"
/* B.2 (CQE 3) move the block having op_own. */
"mov v19.16b, %[c3].16b \n\t"
/* B.3 (CQE 3) extract 16B fields. */
"tbl v23.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
/* B.1 (CQE 2) load the rest of blocks. */
"ld1 {v16.16b - v18.16b}, [%[p2]] \n\t"
/* B.4 (CQE 3) adjust CRC length. */
"sub v23.8h, v23.8h, %[crc_adj].8h \n\t"
/* C.1 (CQE 3) generate final structure for mbuf. */
"tbl v15.16b, {v23.16b}, %[mb_shuf_m].16b \n\t"
/* B.2 (CQE 2) move the block having op_own. */
"mov v19.16b, %[c2].16b \n\t"
/* B.3 (CQE 2) extract 16B fields. */
"tbl v22.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
/* B.1 (CQE 1) load the rest of blocks. */
"ld1 {v16.16b - v18.16b}, [%[p1]] \n\t"
/* B.4 (CQE 2) adjust CRC length. */
"sub v22.8h, v22.8h, %[crc_adj].8h \n\t"
/* C.1 (CQE 2) generate final structure for mbuf. */
"tbl v14.16b, {v22.16b}, %[mb_shuf_m].16b \n\t"
/* B.2 (CQE 1) move the block having op_own. */
"mov v19.16b, %[c1].16b \n\t"
/* B.3 (CQE 1) extract 16B fields. */
"tbl v21.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
/* B.1 (CQE 0) load the rest of blocks. */
"ld1 {v16.16b - v18.16b}, [%[p0]] \n\t"
/* B.4 (CQE 1) adjust CRC length. */
"sub v21.8h, v21.8h, %[crc_adj].8h \n\t"
/* C.1 (CQE 1) generate final structure for mbuf. */
"tbl v13.16b, {v21.16b}, %[mb_shuf_m].16b \n\t"
/* B.2 (CQE 0) move the block having op_own. */
"mov v19.16b, %[c0].16b \n\t"
/* A.1 load mbuf pointers. */
"ld1 {v24.2d - v25.2d}, [%[elts_p]] \n\t"
/* B.3 (CQE 0) extract 16B fields. */
"tbl v20.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
/* B.4 (CQE 0) adjust CRC length. */
"sub v20.8h, v20.8h, %[crc_adj].8h \n\t"
/* D.1 extract op_own byte. */
"tbl %[op_own].8b, {v20.16b - v23.16b}, %[owner_shuf_m].8b \n\t"
/* C.2 (CQE 3) adjust flow mark. */
"add v15.4s, v15.4s, %[flow_mark_adj].4s \n\t"
/* C.3 (CQE 3) fill in mbuf - rx_descriptor_fields1. */
"st1 {v15.2d}, [%[e3]] \n\t"
/* C.2 (CQE 2) adjust flow mark. */
"add v14.4s, v14.4s, %[flow_mark_adj].4s \n\t"
/* C.3 (CQE 2) fill in mbuf - rx_descriptor_fields1. */
"st1 {v14.2d}, [%[e2]] \n\t"
/* C.1 (CQE 0) generate final structure for mbuf. */
"tbl v12.16b, {v20.16b}, %[mb_shuf_m].16b \n\t"
/* C.2 (CQE 1) adjust flow mark. */
"add v13.4s, v13.4s, %[flow_mark_adj].4s \n\t"
/* C.3 (CQE 1) fill in mbuf - rx_descriptor_fields1. */
"st1 {v13.2d}, [%[e1]] \n\t"
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Extract byte_cnt. */
"tbl %[byte_cnt].8b, {v20.16b - v23.16b}, %[len_shuf_m].8b \n\t"
#endif
/* Extract ptype_info. */
"tbl %[ptype_info].16b, {v20.16b - v23.16b}, %[ptype_shuf_m].16b \n\t"
/* Extract flow_tag. */
"tbl %[flow_tag].16b, {v20.16b - v23.16b}, %[ftag_shuf_m].16b \n\t"
/* A.2 copy mbuf pointers. */
"st1 {v24.2d - v25.2d}, [%[pkts_p]] \n\t"
/* C.2 (CQE 0) adjust flow mark. */
"add v12.4s, v12.4s, %[flow_mark_adj].4s \n\t"
/* C.3 (CQE 1) fill in mbuf - rx_descriptor_fields1. */
"st1 {v12.2d}, [%[e0]] \n\t"
:[op_own]"=&w"(op_own),
[byte_cnt]"=&w"(byte_cnt),
[ptype_info]"=&w"(ptype_info),
[flow_tag]"=&w"(flow_tag)
:[p3]"r"(p3), [p2]"r"(p2), [p1]"r"(p1), [p0]"r"(p0),
[e3]"r"(e3), [e2]"r"(e2), [e1]"r"(e1), [e0]"r"(e0),
[c3]"w"(c3), [c2]"w"(c2), [c1]"w"(c1), [c0]"w"(c0),
[elts_p]"r"(elts_p),
[pkts_p]"r"(pkts_p),
[cqe_shuf_m]"w"(cqe_shuf_m),
[mb_shuf_m]"w"(mb_shuf_m),
[owner_shuf_m]"w"(owner_shuf_m),
[len_shuf_m]"w"(len_shuf_m),
[ptype_shuf_m]"w"(ptype_shuf_m),
[ftag_shuf_m]"w"(ftag_shuf_m),
[crc_adj]"w"(crc_adj),
[flow_mark_adj]"w"(flow_mark_adj)
:"memory",
"v12", "v13", "v14", "v15",
"v16", "v17", "v18", "v19",
"v20", "v21", "v22", "v23",
"v24", "v25");
/* D.2 flip owner bit to mark CQEs from last round. */
owner_mask = vand_u16(op_own, owner_check);
owner_mask = vceq_u16(owner_mask, ownership);
/* D.3 get mask for invalidated CQEs. */
opcode = vand_u16(op_own, opcode_check);
invalid_mask = vceq_u16(opcode_check, opcode);
/* E.1 find compressed CQE format. */
comp_mask = vand_u16(op_own, format_check);
comp_mask = vceq_u16(comp_mask, format_check);
/* D.4 mask out beyond boundary. */
invalid_mask = vorr_u16(invalid_mask, mask);
/* D.5 merge invalid_mask with invalid owner. */
invalid_mask = vorr_u16(invalid_mask, owner_mask);
/* E.2 mask out invalid entries. */
comp_mask = vbic_u16(comp_mask, invalid_mask);
/* E.3 get the first compressed CQE. */
comp_idx = __builtin_clzl(vget_lane_u64(vreinterpret_u64_u16(
comp_mask), 0)) /
(sizeof(uint16_t) * 8);
/* D.6 mask out entries after the compressed CQE. */
mask = vcreate_u16(comp_idx < MLX5_VPMD_DESCS_PER_LOOP ?
-1UL >> (comp_idx * sizeof(uint16_t) * 8) :
0);
invalid_mask = vorr_u16(invalid_mask, mask);
/* D.7 count non-compressed valid CQEs. */
n = __builtin_clzl(vget_lane_u64(vreinterpret_u64_u16(
invalid_mask), 0)) / (sizeof(uint16_t) * 8);
nocmp_n += n;
/* D.2 get the final invalid mask. */
mask = vcreate_u16(n < MLX5_VPMD_DESCS_PER_LOOP ?
-1UL >> (n * sizeof(uint16_t) * 8) : 0);
invalid_mask = vorr_u16(invalid_mask, mask);
/* D.3 check error in opcode. */
opcode = vceq_u16(resp_err_check, opcode);
opcode = vbic_u16(opcode, invalid_mask);
/* D.4 mark if any error is set */
*err |= vget_lane_u64(vreinterpret_u64_u16(opcode), 0);
/* C.4 fill in mbuf - rearm_data and packet_type. */
rxq_cq_to_ptype_oflags_v(rxq, ptype_info, flow_tag,
opcode, &elts[pos]);
if (rxq->hw_timestamp) {
if (rxq->rt_timestamp) {
struct mlx5_dev_ctx_shared *sh = rxq->sh;
uint64_t ts;
ts = rte_be_to_cpu_64
(container_of(p0, struct mlx5_cqe,
pkt_info)->timestamp);
elts[pos]->timestamp =
mlx5_txpp_convert_rx_ts(sh, ts);
ts = rte_be_to_cpu_64
(container_of(p1, struct mlx5_cqe,
pkt_info)->timestamp);
elts[pos + 1]->timestamp =
mlx5_txpp_convert_rx_ts(sh, ts);
ts = rte_be_to_cpu_64
(container_of(p2, struct mlx5_cqe,
pkt_info)->timestamp);
elts[pos + 2]->timestamp =
mlx5_txpp_convert_rx_ts(sh, ts);
ts = rte_be_to_cpu_64
(container_of(p3, struct mlx5_cqe,
pkt_info)->timestamp);
elts[pos + 3]->timestamp =
mlx5_txpp_convert_rx_ts(sh, ts);
} else {
elts[pos]->timestamp = rte_be_to_cpu_64
(container_of(p0, struct mlx5_cqe,
pkt_info)->timestamp);
elts[pos + 1]->timestamp = rte_be_to_cpu_64
(container_of(p1, struct mlx5_cqe,
pkt_info)->timestamp);
elts[pos + 2]->timestamp = rte_be_to_cpu_64
(container_of(p2, struct mlx5_cqe,
pkt_info)->timestamp);
elts[pos + 3]->timestamp = rte_be_to_cpu_64
(container_of(p3, struct mlx5_cqe,
pkt_info)->timestamp);
}
}
if (!!rxq->flow_meta_mask) {
/* This code is subject for futher optimization. */
int32_t offs = rxq->flow_meta_offset;
*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
container_of(p0, struct mlx5_cqe,
pkt_info)->flow_table_metadata;
*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
container_of(p1, struct mlx5_cqe,
pkt_info)->flow_table_metadata;
*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
container_of(p2, struct mlx5_cqe,
pkt_info)->flow_table_metadata;
*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
container_of(p3, struct mlx5_cqe,
pkt_info)->flow_table_metadata;
if (*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *))
elts[pos]->ol_flags |= rxq->flow_meta_mask;
if (*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *))
elts[pos + 1]->ol_flags |= rxq->flow_meta_mask;
if (*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *))
elts[pos + 2]->ol_flags |= rxq->flow_meta_mask;
if (*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *))
elts[pos + 3]->ol_flags |= rxq->flow_meta_mask;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Add up received bytes count. */
byte_cnt = vbic_u16(byte_cnt, invalid_mask);
rcvd_byte += vget_lane_u64(vpaddl_u32(vpaddl_u16(byte_cnt)), 0);
#endif
/*
* Break the loop unless more valid CQE is expected, or if
* there's a compressed CQE.
*/
if (n != MLX5_VPMD_DESCS_PER_LOOP)
break;
}
/* If no new CQE seen, return without updating cq_db. */
if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP)) {
*no_cq = true;
return rcvd_pkt;
}
/* Update the consumer indexes for non-compressed CQEs. */
MLX5_ASSERT(nocmp_n <= pkts_n);
rxq->cq_ci += nocmp_n;
rxq->rq_pi += nocmp_n;
rcvd_pkt += nocmp_n;
#ifdef MLX5_PMD_SOFT_COUNTERS
rxq->stats.ipackets += nocmp_n;
rxq->stats.ibytes += rcvd_byte;
#endif
/* Decompress the last CQE if compressed. */
if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
MLX5_ASSERT(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
rxq->decompressed = rxq_cq_decompress_v(rxq, &cq[nocmp_n],
&elts[nocmp_n]);
/* Return more packets if needed. */
if (nocmp_n < pkts_n) {
uint16_t n = rxq->decompressed;
n = RTE_MIN(n, pkts_n - nocmp_n);
rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
rxq->rq_pi += n;
rcvd_pkt += n;
rxq->decompressed -= n;
}
}
rte_cio_wmb();
*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
*no_cq = !rcvd_pkt;
return rcvd_pkt;
}
#endif /* RTE_PMD_MLX5_RXTX_VEC_NEON_H_ */