8cb45c97d3
Support individual/group destination address match (unknown unicast and all-multicast correspondingly in terms of firmware). Signed-off-by: Roman Zhukov <roman.zhukov@oktetlabs.ru> Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com> Reviewed-by: Andrew Lee <alee@solarflare.com>
1182 lines
30 KiB
C
1182 lines
30 KiB
C
/*-
|
|
* Copyright (c) 2017 Solarflare Communications Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This software was jointly developed between OKTET Labs (under contract
|
|
* for Solarflare) and Solarflare Communications, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <rte_tailq.h>
|
|
#include <rte_common.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_eth_ctrl.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_flow.h>
|
|
#include <rte_flow_driver.h>
|
|
|
|
#include "efx.h"
|
|
|
|
#include "sfc.h"
|
|
#include "sfc_rx.h"
|
|
#include "sfc_filter.h"
|
|
#include "sfc_flow.h"
|
|
#include "sfc_log.h"
|
|
|
|
/*
|
|
* At now flow API is implemented in such a manner that each
|
|
* flow rule is converted to a hardware filter.
|
|
* All elements of flow rule (attributes, pattern items, actions)
|
|
* correspond to one or more fields in the efx_filter_spec_s structure
|
|
* that is responsible for the hardware filter.
|
|
*/
|
|
|
|
enum sfc_flow_item_layers {
|
|
SFC_FLOW_ITEM_ANY_LAYER,
|
|
SFC_FLOW_ITEM_START_LAYER,
|
|
SFC_FLOW_ITEM_L2,
|
|
SFC_FLOW_ITEM_L3,
|
|
SFC_FLOW_ITEM_L4,
|
|
};
|
|
|
|
typedef int (sfc_flow_item_parse)(const struct rte_flow_item *item,
|
|
efx_filter_spec_t *spec,
|
|
struct rte_flow_error *error);
|
|
|
|
struct sfc_flow_item {
|
|
enum rte_flow_item_type type; /* Type of item */
|
|
enum sfc_flow_item_layers layer; /* Layer of item */
|
|
enum sfc_flow_item_layers prev_layer; /* Previous layer of item */
|
|
sfc_flow_item_parse *parse; /* Parsing function */
|
|
};
|
|
|
|
static sfc_flow_item_parse sfc_flow_parse_void;
|
|
static sfc_flow_item_parse sfc_flow_parse_eth;
|
|
static sfc_flow_item_parse sfc_flow_parse_vlan;
|
|
static sfc_flow_item_parse sfc_flow_parse_ipv4;
|
|
static sfc_flow_item_parse sfc_flow_parse_ipv6;
|
|
static sfc_flow_item_parse sfc_flow_parse_tcp;
|
|
static sfc_flow_item_parse sfc_flow_parse_udp;
|
|
|
|
static boolean_t
|
|
sfc_flow_is_zero(const uint8_t *buf, unsigned int size)
|
|
{
|
|
uint8_t sum = 0;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < size; i++)
|
|
sum |= buf[i];
|
|
|
|
return (sum == 0) ? B_TRUE : B_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Validate item and prepare structures spec and mask for parsing
|
|
*/
|
|
static int
|
|
sfc_flow_parse_init(const struct rte_flow_item *item,
|
|
const void **spec_ptr,
|
|
const void **mask_ptr,
|
|
const void *supp_mask,
|
|
const void *def_mask,
|
|
unsigned int size,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const uint8_t *spec;
|
|
const uint8_t *mask;
|
|
const uint8_t *last;
|
|
uint8_t match;
|
|
uint8_t supp;
|
|
unsigned int i;
|
|
|
|
if (item == NULL) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
|
|
"NULL item");
|
|
return -rte_errno;
|
|
}
|
|
|
|
if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Mask or last is set without spec");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/*
|
|
* If "mask" is not set, default mask is used,
|
|
* but if default mask is NULL, "mask" should be set
|
|
*/
|
|
if (item->mask == NULL) {
|
|
if (def_mask == NULL) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
|
|
"Mask should be specified");
|
|
return -rte_errno;
|
|
}
|
|
|
|
mask = (const uint8_t *)def_mask;
|
|
} else {
|
|
mask = (const uint8_t *)item->mask;
|
|
}
|
|
|
|
spec = (const uint8_t *)item->spec;
|
|
last = (const uint8_t *)item->last;
|
|
|
|
if (spec == NULL)
|
|
goto exit;
|
|
|
|
/*
|
|
* If field values in "last" are either 0 or equal to the corresponding
|
|
* values in "spec" then they are ignored
|
|
*/
|
|
if (last != NULL &&
|
|
!sfc_flow_is_zero(last, size) &&
|
|
memcmp(last, spec, size) != 0) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Ranging is not supported");
|
|
return -rte_errno;
|
|
}
|
|
|
|
if (supp_mask == NULL) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"Supported mask for item should be specified");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/* Check that mask and spec not asks for more match than supp_mask */
|
|
for (i = 0; i < size; i++) {
|
|
match = spec[i] | mask[i];
|
|
supp = ((const uint8_t *)supp_mask)[i];
|
|
|
|
if ((match | supp) != supp) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Item's field is not supported");
|
|
return -rte_errno;
|
|
}
|
|
}
|
|
|
|
exit:
|
|
*spec_ptr = spec;
|
|
*mask_ptr = mask;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Protocol parsers.
|
|
* Masking is not supported, so masks in items should be either
|
|
* full or empty (zeroed) and set only for supported fields which
|
|
* are specified in the supp_mask.
|
|
*/
|
|
|
|
static int
|
|
sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item,
|
|
__rte_unused efx_filter_spec_t *efx_spec,
|
|
__rte_unused struct rte_flow_error *error)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Convert Ethernet item to EFX filter specification.
|
|
*
|
|
* @param item[in]
|
|
* Item specification. Only source and destination addresses and
|
|
* Ethernet type fields are supported. In addition to full and
|
|
* empty masks of destination address, individual/group mask is
|
|
* also supported. If the mask is NULL, default mask will be used.
|
|
* Ranging is not supported.
|
|
* @param efx_spec[in, out]
|
|
* EFX filter specification to update.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_parse_eth(const struct rte_flow_item *item,
|
|
efx_filter_spec_t *efx_spec,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
const struct rte_flow_item_eth *spec = NULL;
|
|
const struct rte_flow_item_eth *mask = NULL;
|
|
const struct rte_flow_item_eth supp_mask = {
|
|
.dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
|
|
.src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
|
|
.type = 0xffff,
|
|
};
|
|
const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = {
|
|
0x01, 0x00, 0x00, 0x00, 0x00, 0x00
|
|
};
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec,
|
|
(const void **)&mask,
|
|
&supp_mask,
|
|
&rte_flow_item_eth_mask,
|
|
sizeof(struct rte_flow_item_eth),
|
|
error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/* If "spec" is not set, could be any Ethernet */
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
if (is_same_ether_addr(&mask->dst, &supp_mask.dst)) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_MAC;
|
|
rte_memcpy(efx_spec->efs_loc_mac, spec->dst.addr_bytes,
|
|
EFX_MAC_ADDR_LEN);
|
|
} else if (memcmp(mask->dst.addr_bytes, ig_mask,
|
|
EFX_MAC_ADDR_LEN) == 0) {
|
|
if (is_unicast_ether_addr(&spec->dst))
|
|
efx_spec->efs_match_flags |=
|
|
EFX_FILTER_MATCH_UNKNOWN_UCAST_DST;
|
|
else
|
|
efx_spec->efs_match_flags |=
|
|
EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
|
|
} else if (!is_zero_ether_addr(&mask->dst)) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
if (is_same_ether_addr(&mask->src, &supp_mask.src)) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC;
|
|
rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes,
|
|
EFX_MAC_ADDR_LEN);
|
|
} else if (!is_zero_ether_addr(&mask->src)) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
/*
|
|
* Ether type is in big-endian byte order in item and
|
|
* in little-endian in efx_spec, so byte swap is used
|
|
*/
|
|
if (mask->type == supp_mask.type) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
|
|
efx_spec->efs_ether_type = rte_bswap16(spec->type);
|
|
} else if (mask->type != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_bad_mask:
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Bad mask in the ETH pattern item");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/**
|
|
* Convert VLAN item to EFX filter specification.
|
|
*
|
|
* @param item[in]
|
|
* Item specification. Only VID field is supported.
|
|
* The mask can not be NULL. Ranging is not supported.
|
|
* @param efx_spec[in, out]
|
|
* EFX filter specification to update.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_parse_vlan(const struct rte_flow_item *item,
|
|
efx_filter_spec_t *efx_spec,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
uint16_t vid;
|
|
const struct rte_flow_item_vlan *spec = NULL;
|
|
const struct rte_flow_item_vlan *mask = NULL;
|
|
const struct rte_flow_item_vlan supp_mask = {
|
|
.tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX),
|
|
};
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec,
|
|
(const void **)&mask,
|
|
&supp_mask,
|
|
NULL,
|
|
sizeof(struct rte_flow_item_vlan),
|
|
error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/*
|
|
* VID is in big-endian byte order in item and
|
|
* in little-endian in efx_spec, so byte swap is used.
|
|
* If two VLAN items are included, the first matches
|
|
* the outer tag and the next matches the inner tag.
|
|
*/
|
|
if (mask->tci == supp_mask.tci) {
|
|
vid = rte_bswap16(spec->tci);
|
|
|
|
if (!(efx_spec->efs_match_flags &
|
|
EFX_FILTER_MATCH_OUTER_VID)) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID;
|
|
efx_spec->efs_outer_vid = vid;
|
|
} else if (!(efx_spec->efs_match_flags &
|
|
EFX_FILTER_MATCH_INNER_VID)) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID;
|
|
efx_spec->efs_inner_vid = vid;
|
|
} else {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"More than two VLAN items");
|
|
return -rte_errno;
|
|
}
|
|
} else {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"VLAN ID in TCI match is required");
|
|
return -rte_errno;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Convert IPv4 item to EFX filter specification.
|
|
*
|
|
* @param item[in]
|
|
* Item specification. Only source and destination addresses and
|
|
* protocol fields are supported. If the mask is NULL, default
|
|
* mask will be used. Ranging is not supported.
|
|
* @param efx_spec[in, out]
|
|
* EFX filter specification to update.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_parse_ipv4(const struct rte_flow_item *item,
|
|
efx_filter_spec_t *efx_spec,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
const struct rte_flow_item_ipv4 *spec = NULL;
|
|
const struct rte_flow_item_ipv4 *mask = NULL;
|
|
const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4);
|
|
const struct rte_flow_item_ipv4 supp_mask = {
|
|
.hdr = {
|
|
.src_addr = 0xffffffff,
|
|
.dst_addr = 0xffffffff,
|
|
.next_proto_id = 0xff,
|
|
}
|
|
};
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec,
|
|
(const void **)&mask,
|
|
&supp_mask,
|
|
&rte_flow_item_ipv4_mask,
|
|
sizeof(struct rte_flow_item_ipv4),
|
|
error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/*
|
|
* Filtering by IPv4 source and destination addresses requires
|
|
* the appropriate ETHER_TYPE in hardware filters
|
|
*/
|
|
if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
|
|
efx_spec->efs_ether_type = ether_type_ipv4;
|
|
} else if (efx_spec->efs_ether_type != ether_type_ipv4) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Ethertype in pattern with IPV4 item should be appropriate");
|
|
return -rte_errno;
|
|
}
|
|
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* IPv4 addresses are in big-endian byte order in item and in
|
|
* efx_spec
|
|
*/
|
|
if (mask->hdr.src_addr == supp_mask.hdr.src_addr) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
|
|
efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr;
|
|
} else if (mask->hdr.src_addr != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
|
|
efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr;
|
|
} else if (mask->hdr.dst_addr != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
|
|
efx_spec->efs_ip_proto = spec->hdr.next_proto_id;
|
|
} else if (mask->hdr.next_proto_id != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_bad_mask:
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Bad mask in the IPV4 pattern item");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/**
|
|
* Convert IPv6 item to EFX filter specification.
|
|
*
|
|
* @param item[in]
|
|
* Item specification. Only source and destination addresses and
|
|
* next header fields are supported. If the mask is NULL, default
|
|
* mask will be used. Ranging is not supported.
|
|
* @param efx_spec[in, out]
|
|
* EFX filter specification to update.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_parse_ipv6(const struct rte_flow_item *item,
|
|
efx_filter_spec_t *efx_spec,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
const struct rte_flow_item_ipv6 *spec = NULL;
|
|
const struct rte_flow_item_ipv6 *mask = NULL;
|
|
const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6);
|
|
const struct rte_flow_item_ipv6 supp_mask = {
|
|
.hdr = {
|
|
.src_addr = { 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff },
|
|
.dst_addr = { 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff },
|
|
.proto = 0xff,
|
|
}
|
|
};
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec,
|
|
(const void **)&mask,
|
|
&supp_mask,
|
|
&rte_flow_item_ipv6_mask,
|
|
sizeof(struct rte_flow_item_ipv6),
|
|
error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/*
|
|
* Filtering by IPv6 source and destination addresses requires
|
|
* the appropriate ETHER_TYPE in hardware filters
|
|
*/
|
|
if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
|
|
efx_spec->efs_ether_type = ether_type_ipv6;
|
|
} else if (efx_spec->efs_ether_type != ether_type_ipv6) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Ethertype in pattern with IPV6 item should be appropriate");
|
|
return -rte_errno;
|
|
}
|
|
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* IPv6 addresses are in big-endian byte order in item and in
|
|
* efx_spec
|
|
*/
|
|
if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr,
|
|
sizeof(mask->hdr.src_addr)) == 0) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
|
|
|
|
RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) !=
|
|
sizeof(spec->hdr.src_addr));
|
|
rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr,
|
|
sizeof(efx_spec->efs_rem_host));
|
|
} else if (!sfc_flow_is_zero(mask->hdr.src_addr,
|
|
sizeof(mask->hdr.src_addr))) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr,
|
|
sizeof(mask->hdr.dst_addr)) == 0) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
|
|
|
|
RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) !=
|
|
sizeof(spec->hdr.dst_addr));
|
|
rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr,
|
|
sizeof(efx_spec->efs_loc_host));
|
|
} else if (!sfc_flow_is_zero(mask->hdr.dst_addr,
|
|
sizeof(mask->hdr.dst_addr))) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
if (mask->hdr.proto == supp_mask.hdr.proto) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
|
|
efx_spec->efs_ip_proto = spec->hdr.proto;
|
|
} else if (mask->hdr.proto != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_bad_mask:
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Bad mask in the IPV6 pattern item");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/**
|
|
* Convert TCP item to EFX filter specification.
|
|
*
|
|
* @param item[in]
|
|
* Item specification. Only source and destination ports fields
|
|
* are supported. If the mask is NULL, default mask will be used.
|
|
* Ranging is not supported.
|
|
* @param efx_spec[in, out]
|
|
* EFX filter specification to update.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_parse_tcp(const struct rte_flow_item *item,
|
|
efx_filter_spec_t *efx_spec,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
const struct rte_flow_item_tcp *spec = NULL;
|
|
const struct rte_flow_item_tcp *mask = NULL;
|
|
const struct rte_flow_item_tcp supp_mask = {
|
|
.hdr = {
|
|
.src_port = 0xffff,
|
|
.dst_port = 0xffff,
|
|
}
|
|
};
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec,
|
|
(const void **)&mask,
|
|
&supp_mask,
|
|
&rte_flow_item_tcp_mask,
|
|
sizeof(struct rte_flow_item_tcp),
|
|
error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/*
|
|
* Filtering by TCP source and destination ports requires
|
|
* the appropriate IP_PROTO in hardware filters
|
|
*/
|
|
if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
|
|
efx_spec->efs_ip_proto = EFX_IPPROTO_TCP;
|
|
} else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"IP proto in pattern with TCP item should be appropriate");
|
|
return -rte_errno;
|
|
}
|
|
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* Source and destination ports are in big-endian byte order in item and
|
|
* in little-endian in efx_spec, so byte swap is used
|
|
*/
|
|
if (mask->hdr.src_port == supp_mask.hdr.src_port) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
|
|
efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
|
|
} else if (mask->hdr.src_port != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
|
|
efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
|
|
} else if (mask->hdr.dst_port != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_bad_mask:
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Bad mask in the TCP pattern item");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/**
|
|
* Convert UDP item to EFX filter specification.
|
|
*
|
|
* @param item[in]
|
|
* Item specification. Only source and destination ports fields
|
|
* are supported. If the mask is NULL, default mask will be used.
|
|
* Ranging is not supported.
|
|
* @param efx_spec[in, out]
|
|
* EFX filter specification to update.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_parse_udp(const struct rte_flow_item *item,
|
|
efx_filter_spec_t *efx_spec,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
const struct rte_flow_item_udp *spec = NULL;
|
|
const struct rte_flow_item_udp *mask = NULL;
|
|
const struct rte_flow_item_udp supp_mask = {
|
|
.hdr = {
|
|
.src_port = 0xffff,
|
|
.dst_port = 0xffff,
|
|
}
|
|
};
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec,
|
|
(const void **)&mask,
|
|
&supp_mask,
|
|
&rte_flow_item_udp_mask,
|
|
sizeof(struct rte_flow_item_udp),
|
|
error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/*
|
|
* Filtering by UDP source and destination ports requires
|
|
* the appropriate IP_PROTO in hardware filters
|
|
*/
|
|
if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
|
|
efx_spec->efs_ip_proto = EFX_IPPROTO_UDP;
|
|
} else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"IP proto in pattern with UDP item should be appropriate");
|
|
return -rte_errno;
|
|
}
|
|
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* Source and destination ports are in big-endian byte order in item and
|
|
* in little-endian in efx_spec, so byte swap is used
|
|
*/
|
|
if (mask->hdr.src_port == supp_mask.hdr.src_port) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
|
|
efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
|
|
} else if (mask->hdr.src_port != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
|
|
efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
|
|
} else if (mask->hdr.dst_port != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_bad_mask:
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Bad mask in the UDP pattern item");
|
|
return -rte_errno;
|
|
}
|
|
|
|
static const struct sfc_flow_item sfc_flow_items[] = {
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_VOID,
|
|
.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
|
|
.layer = SFC_FLOW_ITEM_ANY_LAYER,
|
|
.parse = sfc_flow_parse_void,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_ETH,
|
|
.prev_layer = SFC_FLOW_ITEM_START_LAYER,
|
|
.layer = SFC_FLOW_ITEM_L2,
|
|
.parse = sfc_flow_parse_eth,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_VLAN,
|
|
.prev_layer = SFC_FLOW_ITEM_L2,
|
|
.layer = SFC_FLOW_ITEM_L2,
|
|
.parse = sfc_flow_parse_vlan,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_IPV4,
|
|
.prev_layer = SFC_FLOW_ITEM_L2,
|
|
.layer = SFC_FLOW_ITEM_L3,
|
|
.parse = sfc_flow_parse_ipv4,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_IPV6,
|
|
.prev_layer = SFC_FLOW_ITEM_L2,
|
|
.layer = SFC_FLOW_ITEM_L3,
|
|
.parse = sfc_flow_parse_ipv6,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_TCP,
|
|
.prev_layer = SFC_FLOW_ITEM_L3,
|
|
.layer = SFC_FLOW_ITEM_L4,
|
|
.parse = sfc_flow_parse_tcp,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_UDP,
|
|
.prev_layer = SFC_FLOW_ITEM_L3,
|
|
.layer = SFC_FLOW_ITEM_L4,
|
|
.parse = sfc_flow_parse_udp,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Protocol-independent flow API support
|
|
*/
|
|
static int
|
|
sfc_flow_parse_attr(const struct rte_flow_attr *attr,
|
|
struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
if (attr == NULL) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ATTR, NULL,
|
|
"NULL attribute");
|
|
return -rte_errno;
|
|
}
|
|
if (attr->group != 0) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
|
|
"Groups are not supported");
|
|
return -rte_errno;
|
|
}
|
|
if (attr->priority != 0) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, attr,
|
|
"Priorities are not supported");
|
|
return -rte_errno;
|
|
}
|
|
if (attr->egress != 0) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr,
|
|
"Egress is not supported");
|
|
return -rte_errno;
|
|
}
|
|
if (attr->ingress == 0) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr,
|
|
"Only ingress is supported");
|
|
return -rte_errno;
|
|
}
|
|
|
|
flow->spec.efs_flags |= EFX_FILTER_FLAG_RX;
|
|
flow->spec.efs_rss_context = EFX_FILTER_SPEC_RSS_CONTEXT_DEFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Get item from array sfc_flow_items */
|
|
static const struct sfc_flow_item *
|
|
sfc_flow_get_item(enum rte_flow_item_type type)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < RTE_DIM(sfc_flow_items); i++)
|
|
if (sfc_flow_items[i].type == type)
|
|
return &sfc_flow_items[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_parse_pattern(const struct rte_flow_item pattern[],
|
|
struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER;
|
|
const struct sfc_flow_item *item;
|
|
|
|
if (pattern == NULL) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
|
|
"NULL pattern");
|
|
return -rte_errno;
|
|
}
|
|
|
|
for (; pattern != NULL &&
|
|
pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
|
|
item = sfc_flow_get_item(pattern->type);
|
|
if (item == NULL) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, pattern,
|
|
"Unsupported pattern item");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/*
|
|
* Omitting one or several protocol layers at the beginning
|
|
* of pattern is supported
|
|
*/
|
|
if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
|
|
prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
|
|
item->prev_layer != prev_layer) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, pattern,
|
|
"Unexpected sequence of pattern items");
|
|
return -rte_errno;
|
|
}
|
|
|
|
rc = item->parse(pattern, &flow->spec, error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
if (item->layer != SFC_FLOW_ITEM_ANY_LAYER)
|
|
prev_layer = item->layer;
|
|
}
|
|
|
|
if (pattern == NULL) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
|
|
"NULL item");
|
|
return -rte_errno;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_parse_queue(struct sfc_adapter *sa,
|
|
const struct rte_flow_action_queue *queue,
|
|
struct rte_flow *flow)
|
|
{
|
|
struct sfc_rxq *rxq;
|
|
|
|
if (queue->index >= sa->rxq_count)
|
|
return -EINVAL;
|
|
|
|
rxq = sa->rxq_info[queue->index].rxq;
|
|
flow->spec.efs_dmaq_id = (uint16_t)rxq->hw_index;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_parse_actions(struct sfc_adapter *sa,
|
|
const struct rte_flow_action actions[],
|
|
struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
boolean_t is_specified = B_FALSE;
|
|
|
|
if (actions == NULL) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
|
|
"NULL actions");
|
|
return -rte_errno;
|
|
}
|
|
|
|
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
|
|
switch (actions->type) {
|
|
case RTE_FLOW_ACTION_TYPE_VOID:
|
|
break;
|
|
|
|
case RTE_FLOW_ACTION_TYPE_QUEUE:
|
|
rc = sfc_flow_parse_queue(sa, actions->conf, flow);
|
|
if (rc != 0) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, actions,
|
|
"Bad QUEUE action");
|
|
return -rte_errno;
|
|
}
|
|
|
|
is_specified = B_TRUE;
|
|
break;
|
|
|
|
default:
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, actions,
|
|
"Action is not supported");
|
|
return -rte_errno;
|
|
}
|
|
}
|
|
|
|
if (!is_specified) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION_NUM, actions,
|
|
"Action is unspecified");
|
|
return -rte_errno;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_parse(struct rte_eth_dev *dev,
|
|
const struct rte_flow_attr *attr,
|
|
const struct rte_flow_item pattern[],
|
|
const struct rte_flow_action actions[],
|
|
struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_adapter *sa = dev->data->dev_private;
|
|
int rc;
|
|
|
|
memset(&flow->spec, 0, sizeof(flow->spec));
|
|
|
|
rc = sfc_flow_parse_attr(attr, flow, error);
|
|
if (rc != 0)
|
|
goto fail_bad_value;
|
|
|
|
rc = sfc_flow_parse_pattern(pattern, flow, error);
|
|
if (rc != 0)
|
|
goto fail_bad_value;
|
|
|
|
rc = sfc_flow_parse_actions(sa, actions, flow, error);
|
|
if (rc != 0)
|
|
goto fail_bad_value;
|
|
|
|
if (!sfc_filter_is_match_supported(sa, flow->spec.efs_match_flags)) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"Flow rule pattern is not supported");
|
|
return -rte_errno;
|
|
}
|
|
|
|
fail_bad_value:
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_validate(struct rte_eth_dev *dev,
|
|
const struct rte_flow_attr *attr,
|
|
const struct rte_flow_item pattern[],
|
|
const struct rte_flow_action actions[],
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct rte_flow flow;
|
|
|
|
return sfc_flow_parse(dev, attr, pattern, actions, &flow, error);
|
|
}
|
|
|
|
static struct rte_flow *
|
|
sfc_flow_create(struct rte_eth_dev *dev,
|
|
const struct rte_flow_attr *attr,
|
|
const struct rte_flow_item pattern[],
|
|
const struct rte_flow_action actions[],
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_adapter *sa = dev->data->dev_private;
|
|
struct rte_flow *flow = NULL;
|
|
int rc;
|
|
|
|
flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0);
|
|
if (flow == NULL) {
|
|
rte_flow_error_set(error, ENOMEM,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"Failed to allocate memory");
|
|
goto fail_no_mem;
|
|
}
|
|
|
|
rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
|
|
if (rc != 0)
|
|
goto fail_bad_value;
|
|
|
|
TAILQ_INSERT_TAIL(&sa->filter.flow_list, flow, entries);
|
|
|
|
sfc_adapter_lock(sa);
|
|
|
|
if (sa->state == SFC_ADAPTER_STARTED) {
|
|
rc = efx_filter_insert(sa->nic, &flow->spec);
|
|
if (rc != 0) {
|
|
rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"Failed to insert filter");
|
|
goto fail_filter_insert;
|
|
}
|
|
}
|
|
|
|
sfc_adapter_unlock(sa);
|
|
|
|
return flow;
|
|
|
|
fail_filter_insert:
|
|
TAILQ_REMOVE(&sa->filter.flow_list, flow, entries);
|
|
|
|
fail_bad_value:
|
|
rte_free(flow);
|
|
sfc_adapter_unlock(sa);
|
|
|
|
fail_no_mem:
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_remove(struct sfc_adapter *sa,
|
|
struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc = 0;
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
if (sa->state == SFC_ADAPTER_STARTED) {
|
|
rc = efx_filter_remove(sa->nic, &flow->spec);
|
|
if (rc != 0)
|
|
rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"Failed to destroy flow rule");
|
|
}
|
|
|
|
TAILQ_REMOVE(&sa->filter.flow_list, flow, entries);
|
|
rte_free(flow);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_destroy(struct rte_eth_dev *dev,
|
|
struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_adapter *sa = dev->data->dev_private;
|
|
struct rte_flow *flow_ptr;
|
|
int rc = EINVAL;
|
|
|
|
sfc_adapter_lock(sa);
|
|
|
|
TAILQ_FOREACH(flow_ptr, &sa->filter.flow_list, entries) {
|
|
if (flow_ptr == flow)
|
|
rc = 0;
|
|
}
|
|
if (rc != 0) {
|
|
rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
|
|
"Failed to find flow rule to destroy");
|
|
goto fail_bad_value;
|
|
}
|
|
|
|
rc = sfc_flow_remove(sa, flow, error);
|
|
|
|
fail_bad_value:
|
|
sfc_adapter_unlock(sa);
|
|
|
|
return -rc;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_flush(struct rte_eth_dev *dev,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_adapter *sa = dev->data->dev_private;
|
|
struct rte_flow *flow;
|
|
int rc = 0;
|
|
int ret = 0;
|
|
|
|
sfc_adapter_lock(sa);
|
|
|
|
while ((flow = TAILQ_FIRST(&sa->filter.flow_list)) != NULL) {
|
|
rc = sfc_flow_remove(sa, flow, error);
|
|
if (rc != 0)
|
|
ret = rc;
|
|
}
|
|
|
|
sfc_adapter_unlock(sa);
|
|
|
|
return -ret;
|
|
}
|
|
|
|
const struct rte_flow_ops sfc_flow_ops = {
|
|
.validate = sfc_flow_validate,
|
|
.create = sfc_flow_create,
|
|
.destroy = sfc_flow_destroy,
|
|
.flush = sfc_flow_flush,
|
|
.query = NULL,
|
|
};
|
|
|
|
void
|
|
sfc_flow_init(struct sfc_adapter *sa)
|
|
{
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
TAILQ_INIT(&sa->filter.flow_list);
|
|
}
|
|
|
|
void
|
|
sfc_flow_fini(struct sfc_adapter *sa)
|
|
{
|
|
struct rte_flow *flow;
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
while ((flow = TAILQ_FIRST(&sa->filter.flow_list)) != NULL) {
|
|
TAILQ_REMOVE(&sa->filter.flow_list, flow, entries);
|
|
rte_free(flow);
|
|
}
|
|
}
|
|
|
|
void
|
|
sfc_flow_stop(struct sfc_adapter *sa)
|
|
{
|
|
struct rte_flow *flow;
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
TAILQ_FOREACH(flow, &sa->filter.flow_list, entries)
|
|
efx_filter_remove(sa->nic, &flow->spec);
|
|
}
|
|
|
|
int
|
|
sfc_flow_start(struct sfc_adapter *sa)
|
|
{
|
|
struct rte_flow *flow;
|
|
int rc = 0;
|
|
|
|
sfc_log_init(sa, "entry");
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
TAILQ_FOREACH(flow, &sa->filter.flow_list, entries) {
|
|
rc = efx_filter_insert(sa->nic, &flow->spec);
|
|
if (rc != 0)
|
|
goto fail_bad_flow;
|
|
}
|
|
|
|
sfc_log_init(sa, "done");
|
|
|
|
fail_bad_flow:
|
|
return rc;
|
|
}
|