numam-dpdk/lib/power/power_pstate_cpufreq.c
Richael Zhuang d37462e56c power: check frequencies count before filling array
The freqs array size is RTE_MAX_LCORE_FREQS. Before filling the
array with num_freqs elements, restrict the total num to
RTE_MAX_LCORE_FREQS. This fix aims to fix the coverity scan issue
like:
Overrunning array "pi->freqs" of 256 bytes by passing it to a
function which accesses it at byte offset 464.

Coverity issue: 371913
Fixes: ef1cc88f18 ("power: support cppc_cpufreq driver")
Cc: stable@dpdk.org

Signed-off-by: Richael Zhuang <richael.zhuang@arm.com>
Acked-by: David Hunt <david.hunt@intel.com>
2021-07-24 10:09:58 +02:00

861 lines
21 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <limits.h>
#include <errno.h>
#include <inttypes.h>
#include <rte_memcpy.h>
#include <rte_memory.h>
#include <rte_string_fns.h>
#include "power_pstate_cpufreq.h"
#include "power_common.h"
/* macros used for rounding frequency to nearest 100000 */
#define FREQ_ROUNDING_DELTA 50000
#define ROUND_FREQ_TO_N_100000 100000
#define BUS_FREQ 100000
#define POWER_GOVERNOR_PERF "performance"
#define POWER_SYSFILE_MAX_FREQ \
"/sys/devices/system/cpu/cpu%u/cpufreq/scaling_max_freq"
#define POWER_SYSFILE_MIN_FREQ \
"/sys/devices/system/cpu/cpu%u/cpufreq/scaling_min_freq"
#define POWER_SYSFILE_CUR_FREQ \
"/sys/devices/system/cpu/cpu%u/cpufreq/scaling_cur_freq"
#define POWER_SYSFILE_BASE_MAX_FREQ \
"/sys/devices/system/cpu/cpu%u/cpufreq/cpuinfo_max_freq"
#define POWER_SYSFILE_BASE_MIN_FREQ \
"/sys/devices/system/cpu/cpu%u/cpufreq/cpuinfo_min_freq"
#define POWER_SYSFILE_BASE_FREQ \
"/sys/devices/system/cpu/cpu%u/cpufreq/base_frequency"
#define POWER_PSTATE_DRIVER "intel_pstate"
#define POWER_MSR_PATH "/dev/cpu/%u/msr"
/*
* MSR related
*/
#define PLATFORM_INFO 0x0CE
#define NON_TURBO_MASK 0xFF00
#define NON_TURBO_OFFSET 0x8
enum power_state {
POWER_IDLE = 0,
POWER_ONGOING,
POWER_USED,
POWER_UNKNOWN
};
struct pstate_power_info {
unsigned int lcore_id; /**< Logical core id */
uint32_t freqs[RTE_MAX_LCORE_FREQS]; /**< Frequency array */
uint32_t nb_freqs; /**< number of available freqs */
FILE *f_cur_min; /**< FD of scaling_min */
FILE *f_cur_max; /**< FD of scaling_max */
char governor_ori[32]; /**< Original governor name */
uint32_t curr_idx; /**< Freq index in freqs array */
uint32_t non_turbo_max_ratio; /**< Non Turbo Max ratio */
uint32_t sys_max_freq; /**< system wide max freq */
uint32_t core_base_freq; /**< core base freq */
uint32_t state; /**< Power in use state */
uint16_t turbo_available; /**< Turbo Boost available */
uint16_t turbo_enable; /**< Turbo Boost enable/disable */
uint16_t priority_core; /**< High Performance core */
} __rte_cache_aligned;
static struct pstate_power_info lcore_power_info[RTE_MAX_LCORE];
/**
* It is to read the specific MSR.
*/
static int32_t
power_rdmsr(int msr, uint64_t *val, unsigned int lcore_id)
{
int fd, ret;
char fullpath[PATH_MAX];
snprintf(fullpath, sizeof(fullpath), POWER_MSR_PATH, lcore_id);
fd = open(fullpath, O_RDONLY);
if (fd < 0) {
RTE_LOG(ERR, POWER, "Error opening '%s': %s\n", fullpath,
strerror(errno));
return fd;
}
ret = pread(fd, val, sizeof(uint64_t), msr);
if (ret < 0) {
RTE_LOG(ERR, POWER, "Error reading '%s': %s\n", fullpath,
strerror(errno));
goto out;
}
POWER_DEBUG_TRACE("MSR Path %s, offset 0x%X for lcore %u\n",
fullpath, msr, lcore_id);
POWER_DEBUG_TRACE("Ret value %d, content is 0x%"PRIx64"\n", ret, *val);
out: close(fd);
return ret;
}
/**
* It is to fopen the sys file for the future setting the lcore frequency.
*/
static int
power_init_for_setting_freq(struct pstate_power_info *pi)
{
FILE *f_base = NULL, *f_base_max = NULL, *f_min = NULL, *f_max = NULL;
uint32_t base_ratio, base_max_ratio;
uint64_t max_non_turbo;
int ret;
/* open all files we expect to have open */
open_core_sysfs_file(&f_base_max, "r", POWER_SYSFILE_BASE_MAX_FREQ,
pi->lcore_id);
if (f_base_max == NULL) {
RTE_LOG(ERR, POWER, "failed to open %s\n",
POWER_SYSFILE_BASE_MAX_FREQ);
goto err;
}
open_core_sysfs_file(&f_min, "rw+", POWER_SYSFILE_MIN_FREQ,
pi->lcore_id);
if (f_min == NULL) {
RTE_LOG(ERR, POWER, "failed to open %s\n",
POWER_SYSFILE_MIN_FREQ);
goto err;
}
open_core_sysfs_file(&f_max, "rw+", POWER_SYSFILE_MAX_FREQ,
pi->lcore_id);
if (f_max == NULL) {
RTE_LOG(ERR, POWER, "failed to open %s\n",
POWER_SYSFILE_MAX_FREQ);
goto err;
}
open_core_sysfs_file(&f_base, "r", POWER_SYSFILE_BASE_FREQ,
pi->lcore_id);
/* base ratio file may not exist in some kernels, so no error check */
/* read base max ratio */
ret = read_core_sysfs_u32(f_base_max, &base_max_ratio);
if (ret < 0) {
RTE_LOG(ERR, POWER, "Failed to read %s\n",
POWER_SYSFILE_BASE_MAX_FREQ);
goto err;
}
/* base ratio may not exist */
if (f_base != NULL) {
ret = read_core_sysfs_u32(f_base, &base_ratio);
if (ret < 0) {
RTE_LOG(ERR, POWER, "Failed to read %s\n",
POWER_SYSFILE_BASE_FREQ);
goto err;
}
} else {
base_ratio = 0;
}
/* Add MSR read to detect turbo status */
if (power_rdmsr(PLATFORM_INFO, &max_non_turbo, pi->lcore_id) < 0)
goto err;
/* no errors after this point */
/* convert ratios to bins */
base_max_ratio /= BUS_FREQ;
base_ratio /= BUS_FREQ;
/* assign file handles */
pi->f_cur_min = f_min;
pi->f_cur_max = f_max;
max_non_turbo = (max_non_turbo&NON_TURBO_MASK)>>NON_TURBO_OFFSET;
POWER_DEBUG_TRACE("no turbo perf %"PRIu64"\n", max_non_turbo);
pi->non_turbo_max_ratio = (uint32_t)max_non_turbo;
/*
* If base_frequency is reported as greater than the maximum
* turbo frequency, that's a known issue with some kernels.
* Set base_frequency to max_non_turbo as a workaround.
*/
if (base_ratio > base_max_ratio) {
/* base_ratio is greater than max turbo. Kernel bug. */
pi->priority_core = 0;
goto out;
}
/*
* If base_frequency is reported as greater than the maximum
* non-turbo frequency, then mark it as a high priority core.
*/
if (base_ratio > max_non_turbo)
pi->priority_core = 1;
else
pi->priority_core = 0;
pi->core_base_freq = base_ratio * BUS_FREQ;
out:
if (f_base != NULL)
fclose(f_base);
fclose(f_base_max);
/* f_min and f_max are stored, no need to close */
return 0;
err:
if (f_base != NULL)
fclose(f_base);
if (f_base_max != NULL)
fclose(f_base_max);
if (f_min != NULL)
fclose(f_min);
if (f_max != NULL)
fclose(f_max);
return -1;
}
static int
set_freq_internal(struct pstate_power_info *pi, uint32_t idx)
{
uint32_t target_freq = 0;
if (idx >= RTE_MAX_LCORE_FREQS || idx >= pi->nb_freqs) {
RTE_LOG(ERR, POWER, "Invalid frequency index %u, which "
"should be less than %u\n", idx, pi->nb_freqs);
return -1;
}
/* Check if it is the same as current */
if (idx == pi->curr_idx)
return 0;
/* Because Intel Pstate Driver only allow user change min/max hint
* User need change the min/max as same value.
*/
if (fseek(pi->f_cur_min, 0, SEEK_SET) < 0) {
RTE_LOG(ERR, POWER, "Fail to set file position indicator to 0 "
"for setting frequency for lcore %u\n",
pi->lcore_id);
return -1;
}
if (fseek(pi->f_cur_max, 0, SEEK_SET) < 0) {
RTE_LOG(ERR, POWER, "Fail to set file position indicator to 0 "
"for setting frequency for lcore %u\n",
pi->lcore_id);
return -1;
}
/* Turbo is available and enabled, first freq bucket is sys max freq */
if (pi->turbo_available && idx == 0) {
if (pi->turbo_enable)
target_freq = pi->sys_max_freq;
else {
RTE_LOG(ERR, POWER, "Turbo is off, frequency can't be scaled up more %u\n",
pi->lcore_id);
return -1;
}
} else
target_freq = pi->freqs[idx];
/* Decrease freq, the min freq should be updated first */
if (idx > pi->curr_idx) {
if (fprintf(pi->f_cur_min, "%u", target_freq) < 0) {
RTE_LOG(ERR, POWER, "Fail to write new frequency for "
"lcore %u\n", pi->lcore_id);
return -1;
}
if (fprintf(pi->f_cur_max, "%u", target_freq) < 0) {
RTE_LOG(ERR, POWER, "Fail to write new frequency for "
"lcore %u\n", pi->lcore_id);
return -1;
}
POWER_DEBUG_TRACE("Frequency '%u' to be set for lcore %u\n",
target_freq, pi->lcore_id);
fflush(pi->f_cur_min);
fflush(pi->f_cur_max);
}
/* Increase freq, the max freq should be updated first */
if (idx < pi->curr_idx) {
if (fprintf(pi->f_cur_max, "%u", target_freq) < 0) {
RTE_LOG(ERR, POWER, "Fail to write new frequency for "
"lcore %u\n", pi->lcore_id);
return -1;
}
if (fprintf(pi->f_cur_min, "%u", target_freq) < 0) {
RTE_LOG(ERR, POWER, "Fail to write new frequency for "
"lcore %u\n", pi->lcore_id);
return -1;
}
POWER_DEBUG_TRACE("Frequency '%u' to be set for lcore %u\n",
target_freq, pi->lcore_id);
fflush(pi->f_cur_max);
fflush(pi->f_cur_min);
}
pi->curr_idx = idx;
return 1;
}
/**
* It is to check the current scaling governor by reading sys file, and then
* set it into 'performance' if it is not by writing the sys file. The original
* governor will be saved for rolling back.
*/
static int
power_set_governor_performance(struct pstate_power_info *pi)
{
return power_set_governor(pi->lcore_id, POWER_GOVERNOR_PERF,
pi->governor_ori, sizeof(pi->governor_ori));
}
/**
* It is to check the governor and then set the original governor back if
* needed by writing the sys file.
*/
static int
power_set_governor_original(struct pstate_power_info *pi)
{
return power_set_governor(pi->lcore_id, pi->governor_ori, NULL, 0);
}
/**
* It is to get the available frequencies of the specific lcore by reading the
* sys file.
*/
static int
power_get_available_freqs(struct pstate_power_info *pi)
{
FILE *f_min = NULL, *f_max = NULL;
int ret = -1;
uint32_t sys_min_freq = 0, sys_max_freq = 0, base_max_freq = 0;
uint32_t i, num_freqs = 0;
/* open all files */
open_core_sysfs_file(&f_max, "r", POWER_SYSFILE_BASE_MAX_FREQ,
pi->lcore_id);
if (f_max == NULL) {
RTE_LOG(ERR, POWER, "failed to open %s\n",
POWER_SYSFILE_BASE_MAX_FREQ);
goto out;
}
open_core_sysfs_file(&f_min, "r", POWER_SYSFILE_BASE_MIN_FREQ,
pi->lcore_id);
if (f_min == NULL) {
RTE_LOG(ERR, POWER, "failed to open %s\n",
POWER_SYSFILE_BASE_MIN_FREQ);
goto out;
}
/* read base ratios */
ret = read_core_sysfs_u32(f_max, &sys_max_freq);
if (ret < 0) {
RTE_LOG(ERR, POWER, "Failed to read %s\n",
POWER_SYSFILE_BASE_MAX_FREQ);
goto out;
}
ret = read_core_sysfs_u32(f_min, &sys_min_freq);
if (ret < 0) {
RTE_LOG(ERR, POWER, "Failed to read %s\n",
POWER_SYSFILE_BASE_MIN_FREQ);
goto out;
}
if (sys_max_freq < sys_min_freq)
goto out;
pi->sys_max_freq = sys_max_freq;
if (pi->priority_core == 1)
base_max_freq = pi->core_base_freq;
else
base_max_freq = pi->non_turbo_max_ratio * BUS_FREQ;
POWER_DEBUG_TRACE("sys min %u, sys max %u, base_max %u\n",
sys_min_freq,
sys_max_freq,
base_max_freq);
if (base_max_freq < sys_max_freq)
pi->turbo_available = 1;
else
pi->turbo_available = 0;
/* If turbo is available then there is one extra freq bucket
* to store the sys max freq which value is base_max +1
*/
num_freqs = (base_max_freq - sys_min_freq) / BUS_FREQ + 1 +
pi->turbo_available;
if (num_freqs >= RTE_MAX_LCORE_FREQS) {
RTE_LOG(ERR, POWER, "Too many available frequencies: %d\n",
num_freqs);
goto out;
}
/* Generate the freq bucket array.
* If turbo is available the freq bucket[0] value is base_max +1
* the bucket[1] is base_max, bucket[2] is base_max - BUS_FREQ
* and so on.
* If turbo is not available bucket[0] is base_max and so on
*/
for (i = 0, pi->nb_freqs = 0; i < num_freqs; i++) {
if ((i == 0) && pi->turbo_available)
pi->freqs[pi->nb_freqs++] = base_max_freq + 1;
else
pi->freqs[pi->nb_freqs++] =
base_max_freq - (i - pi->turbo_available) * BUS_FREQ;
}
ret = 0;
POWER_DEBUG_TRACE("%d frequency(s) of lcore %u are available\n",
num_freqs, pi->lcore_id);
out:
if (f_min != NULL)
fclose(f_min);
if (f_max != NULL)
fclose(f_max);
return ret;
}
static int
power_get_cur_idx(struct pstate_power_info *pi)
{
FILE *f_cur;
int ret = -1;
uint32_t sys_cur_freq = 0;
unsigned int i;
open_core_sysfs_file(&f_cur, "r", POWER_SYSFILE_CUR_FREQ,
pi->lcore_id);
if (f_cur == NULL) {
RTE_LOG(ERR, POWER, "failed to open %s\n",
POWER_SYSFILE_CUR_FREQ);
goto fail;
}
ret = read_core_sysfs_u32(f_cur, &sys_cur_freq);
if (ret < 0) {
RTE_LOG(ERR, POWER, "Failed to read %s\n",
POWER_SYSFILE_CUR_FREQ);
goto fail;
}
/* convert the frequency to nearest 100000 value
* Ex: if sys_cur_freq=1396789 then freq_conv=1400000
* Ex: if sys_cur_freq=800030 then freq_conv=800000
* Ex: if sys_cur_freq=800030 then freq_conv=800000
*/
unsigned int freq_conv = 0;
freq_conv = (sys_cur_freq + FREQ_ROUNDING_DELTA)
/ ROUND_FREQ_TO_N_100000;
freq_conv = freq_conv * ROUND_FREQ_TO_N_100000;
for (i = 0; i < pi->nb_freqs; i++) {
if (freq_conv == pi->freqs[i]) {
pi->curr_idx = i;
break;
}
}
ret = 0;
fail:
if (f_cur != NULL)
fclose(f_cur);
return ret;
}
int
power_pstate_cpufreq_check_supported(void)
{
return cpufreq_check_scaling_driver(POWER_PSTATE_DRIVER);
}
int
power_pstate_cpufreq_init(unsigned int lcore_id)
{
struct pstate_power_info *pi;
uint32_t exp_state;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Lcore id %u can not exceed %u\n",
lcore_id, RTE_MAX_LCORE - 1U);
return -1;
}
pi = &lcore_power_info[lcore_id];
exp_state = POWER_IDLE;
/* The power in use state works as a guard variable between
* the CPU frequency control initialization and exit process.
* The ACQUIRE memory ordering here pairs with the RELEASE
* ordering below as lock to make sure the frequency operations
* in the critical section are done under the correct state.
*/
if (!__atomic_compare_exchange_n(&(pi->state), &exp_state,
POWER_ONGOING, 0,
__ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) {
RTE_LOG(INFO, POWER, "Power management of lcore %u is "
"in use\n", lcore_id);
return -1;
}
pi->lcore_id = lcore_id;
/* Check and set the governor */
if (power_set_governor_performance(pi) < 0) {
RTE_LOG(ERR, POWER, "Cannot set governor of lcore %u to "
"performance\n", lcore_id);
goto fail;
}
/* Init for setting lcore frequency */
if (power_init_for_setting_freq(pi) < 0) {
RTE_LOG(ERR, POWER, "Cannot init for setting frequency for "
"lcore %u\n", lcore_id);
goto fail;
}
/* Get the available frequencies */
if (power_get_available_freqs(pi) < 0) {
RTE_LOG(ERR, POWER, "Cannot get available frequencies of "
"lcore %u\n", lcore_id);
goto fail;
}
if (power_get_cur_idx(pi) < 0) {
RTE_LOG(ERR, POWER, "Cannot get current frequency "
"index of lcore %u\n", lcore_id);
goto fail;
}
/* Set freq to max by default */
if (power_pstate_cpufreq_freq_max(lcore_id) < 0) {
RTE_LOG(ERR, POWER, "Cannot set frequency of lcore %u "
"to max\n", lcore_id);
goto fail;
}
RTE_LOG(INFO, POWER, "Initialized successfully for lcore %u "
"power management\n", lcore_id);
exp_state = POWER_ONGOING;
__atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_USED,
0, __ATOMIC_RELEASE, __ATOMIC_RELAXED);
return 0;
fail:
exp_state = POWER_ONGOING;
__atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_UNKNOWN,
0, __ATOMIC_RELEASE, __ATOMIC_RELAXED);
return -1;
}
int
power_pstate_cpufreq_exit(unsigned int lcore_id)
{
struct pstate_power_info *pi;
uint32_t exp_state;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Lcore id %u can not exceeds %u\n",
lcore_id, RTE_MAX_LCORE - 1U);
return -1;
}
pi = &lcore_power_info[lcore_id];
exp_state = POWER_USED;
/* The power in use state works as a guard variable between
* the CPU frequency control initialization and exit process.
* The ACQUIRE memory ordering here pairs with the RELEASE
* ordering below as lock to make sure the frequency operations
* in the critical section are under done the correct state.
*/
if (!__atomic_compare_exchange_n(&(pi->state), &exp_state,
POWER_ONGOING, 0,
__ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) {
RTE_LOG(INFO, POWER, "Power management of lcore %u is "
"not used\n", lcore_id);
return -1;
}
/* Close FD of setting freq */
fclose(pi->f_cur_min);
fclose(pi->f_cur_max);
pi->f_cur_min = NULL;
pi->f_cur_max = NULL;
/* Set the governor back to the original */
if (power_set_governor_original(pi) < 0) {
RTE_LOG(ERR, POWER, "Cannot set the governor of %u back "
"to the original\n", lcore_id);
goto fail;
}
RTE_LOG(INFO, POWER, "Power management of lcore %u has exited from "
"'performance' mode and been set back to the "
"original\n", lcore_id);
exp_state = POWER_ONGOING;
__atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_IDLE,
0, __ATOMIC_RELEASE, __ATOMIC_RELAXED);
return 0;
fail:
exp_state = POWER_ONGOING;
__atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_UNKNOWN,
0, __ATOMIC_RELEASE, __ATOMIC_RELAXED);
return -1;
}
uint32_t
power_pstate_cpufreq_freqs(unsigned int lcore_id, uint32_t *freqs, uint32_t num)
{
struct pstate_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return 0;
}
if (freqs == NULL) {
RTE_LOG(ERR, POWER, "NULL buffer supplied\n");
return 0;
}
pi = &lcore_power_info[lcore_id];
if (num < pi->nb_freqs) {
RTE_LOG(ERR, POWER, "Buffer size is not enough\n");
return 0;
}
rte_memcpy(freqs, pi->freqs, pi->nb_freqs * sizeof(uint32_t));
return pi->nb_freqs;
}
uint32_t
power_pstate_cpufreq_get_freq(unsigned int lcore_id)
{
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return RTE_POWER_INVALID_FREQ_INDEX;
}
return lcore_power_info[lcore_id].curr_idx;
}
int
power_pstate_cpufreq_set_freq(unsigned int lcore_id, uint32_t index)
{
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
return set_freq_internal(&(lcore_power_info[lcore_id]), index);
}
int
power_pstate_cpufreq_freq_up(unsigned int lcore_id)
{
struct pstate_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
if (pi->curr_idx == 0 ||
(pi->curr_idx == 1 && pi->turbo_available && !pi->turbo_enable))
return 0;
/* Frequencies in the array are from high to low. */
return set_freq_internal(pi, pi->curr_idx - 1);
}
int
power_pstate_cpufreq_freq_down(unsigned int lcore_id)
{
struct pstate_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
if (pi->curr_idx + 1 == pi->nb_freqs)
return 0;
/* Frequencies in the array are from high to low. */
return set_freq_internal(pi, pi->curr_idx + 1);
}
int
power_pstate_cpufreq_freq_max(unsigned int lcore_id)
{
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
/* Frequencies in the array are from high to low. */
if (lcore_power_info[lcore_id].turbo_available) {
if (lcore_power_info[lcore_id].turbo_enable)
/* Set to Turbo */
return set_freq_internal(
&lcore_power_info[lcore_id], 0);
else
/* Set to max non-turbo */
return set_freq_internal(
&lcore_power_info[lcore_id], 1);
} else
return set_freq_internal(&lcore_power_info[lcore_id], 0);
}
int
power_pstate_cpufreq_freq_min(unsigned int lcore_id)
{
struct pstate_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
/* Frequencies in the array are from high to low. */
return set_freq_internal(pi, pi->nb_freqs - 1);
}
int
power_pstate_turbo_status(unsigned int lcore_id)
{
struct pstate_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
return pi->turbo_enable;
}
int
power_pstate_enable_turbo(unsigned int lcore_id)
{
struct pstate_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
if (pi->turbo_available)
pi->turbo_enable = 1;
else {
pi->turbo_enable = 0;
RTE_LOG(ERR, POWER,
"Failed to enable turbo on lcore %u\n",
lcore_id);
return -1;
}
return 0;
}
int
power_pstate_disable_turbo(unsigned int lcore_id)
{
struct pstate_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
pi->turbo_enable = 0;
if (pi->turbo_available && pi->curr_idx <= 1) {
/* Try to set freq to max by default coming out of turbo */
if (power_pstate_cpufreq_freq_max(lcore_id) < 0) {
RTE_LOG(ERR, POWER,
"Failed to set frequency of lcore %u to max\n",
lcore_id);
return -1;
}
}
return 0;
}
int power_pstate_get_capabilities(unsigned int lcore_id,
struct rte_power_core_capabilities *caps)
{
struct pstate_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
if (caps == NULL) {
RTE_LOG(ERR, POWER, "Invalid argument\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
caps->capabilities = 0;
caps->turbo = !!(pi->turbo_available);
caps->priority = pi->priority_core;
return 0;
}