numam-dpdk/drivers/net/mlx5/mlx5_rxtx_vec_neon.h
Viacheslav Ovsiienko 25ed2ebff1 net/mlx5: support shared Rx queue port data path
When receive packet, mlx5 PMD saves mbuf port number from
RxQ data.

To support shared RxQ, save port number into RQ context as user index.
Received packet resolve port number from CQE user index which derived
from RQ context.

Legacy Verbs API doesn't support RQ user index setting, still read from
RxQ port number.

Signed-off-by: Xueming Li <xuemingl@nvidia.com>
Signed-off-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
2021-11-04 22:55:51 +01:00

893 lines
30 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017 6WIND S.A.
* Copyright 2017 Mellanox Technologies, Ltd
*/
#ifndef RTE_PMD_MLX5_RXTX_VEC_NEON_H_
#define RTE_PMD_MLX5_RXTX_VEC_NEON_H_
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <arm_neon.h>
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include <mlx5_prm.h>
#include "mlx5_defs.h"
#include "mlx5.h"
#include "mlx5_utils.h"
#include "mlx5_rxtx.h"
#include "mlx5_rxtx_vec.h"
#include "mlx5_autoconf.h"
#pragma GCC diagnostic ignored "-Wcast-qual"
/**
* Store free buffers to RX SW ring.
*
* @param elts
* Pointer to SW ring to be filled.
* @param pkts
* Pointer to array of packets to be stored.
* @param pkts_n
* Number of packets to be stored.
*/
static inline void
rxq_copy_mbuf_v(struct rte_mbuf **elts, struct rte_mbuf **pkts, uint16_t n)
{
unsigned int pos;
uint16_t p = n & -2;
for (pos = 0; pos < p; pos += 2) {
uint64x2_t mbp;
mbp = vld1q_u64((void *)&elts[pos]);
vst1q_u64((void *)&pkts[pos], mbp);
}
if (n & 1)
pkts[pos] = elts[pos];
}
/**
* Decompress a compressed completion and fill in mbufs in RX SW ring with data
* extracted from the title completion descriptor.
*
* @param rxq
* Pointer to RX queue structure.
* @param cq
* Pointer to completion array having a compressed completion at first.
* @param elts
* Pointer to SW ring to be filled. The first mbuf has to be pre-built from
* the title completion descriptor to be copied to the rest of mbufs.
*
* @return
* Number of mini-CQEs successfully decompressed.
*/
static inline uint16_t
rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
struct rte_mbuf **elts)
{
volatile struct mlx5_mini_cqe8 *mcq = (void *)&(cq + 1)->pkt_info;
struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
unsigned int pos;
unsigned int i;
unsigned int inv = 0;
/* Mask to shuffle from extracted mini CQE to mbuf. */
const uint8x16_t mcqe_shuf_m1 = {
-1, -1, -1, -1, /* skip packet_type */
7, 6, -1, -1, /* pkt_len, bswap16 */
7, 6, /* data_len, bswap16 */
-1, -1, /* skip vlan_tci */
3, 2, 1, 0 /* hash.rss, bswap32 */
};
const uint8x16_t mcqe_shuf_m2 = {
-1, -1, -1, -1, /* skip packet_type */
15, 14, -1, -1, /* pkt_len, bswap16 */
15, 14, /* data_len, bswap16 */
-1, -1, /* skip vlan_tci */
11, 10, 9, 8 /* hash.rss, bswap32 */
};
/* Restore the compressed count. Must be 16 bits. */
const uint16_t mcqe_n = t_pkt->data_len +
(rxq->crc_present * RTE_ETHER_CRC_LEN);
const uint64x2_t rearm =
vld1q_u64((void *)&t_pkt->rearm_data);
const uint32x4_t rxdf_mask = {
0xffffffff, /* packet_type */
0, /* skip pkt_len */
0xffff0000, /* vlan_tci, skip data_len */
0, /* skip hash.rss */
};
const uint8x16_t rxdf =
vandq_u8(vld1q_u8((void *)&t_pkt->rx_descriptor_fields1),
vreinterpretq_u8_u32(rxdf_mask));
const uint16x8_t crc_adj = {
0, 0,
rxq->crc_present * RTE_ETHER_CRC_LEN, 0,
rxq->crc_present * RTE_ETHER_CRC_LEN, 0,
0, 0
};
uint32x4_t ol_flags = {0, 0, 0, 0};
uint32x4_t ol_flags_mask = {0, 0, 0, 0};
#ifdef MLX5_PMD_SOFT_COUNTERS
uint32_t rcvd_byte = 0;
#endif
/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
const uint8x8_t len_shuf_m = {
7, 6, /* 1st mCQE */
15, 14, /* 2nd mCQE */
23, 22, /* 3rd mCQE */
31, 30 /* 4th mCQE */
};
/*
* A. load mCQEs into a 128bit register.
* B. store rearm data to mbuf.
* C. combine data from mCQEs with rx_descriptor_fields1.
* D. store rx_descriptor_fields1.
* E. store flow tag (rte_flow mark).
*/
for (pos = 0; pos < mcqe_n; ) {
uint8_t *p = (void *)&mcq[pos % 8];
uint8_t *e0 = (void *)&elts[pos]->rearm_data;
uint8_t *e1 = (void *)&elts[pos + 1]->rearm_data;
uint8_t *e2 = (void *)&elts[pos + 2]->rearm_data;
uint8_t *e3 = (void *)&elts[pos + 3]->rearm_data;
uint16x4_t byte_cnt;
#ifdef MLX5_PMD_SOFT_COUNTERS
uint16x4_t invalid_mask =
vcreate_u16(mcqe_n - pos < MLX5_VPMD_DESCS_PER_LOOP ?
-1UL << ((mcqe_n - pos) *
sizeof(uint16_t) * 8) : 0);
#endif
for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
if (likely(pos + i < mcqe_n))
rte_prefetch0((void *)(cq + pos + i));
__asm__ volatile (
/* A.1 load mCQEs into a 128bit register. */
"ld1 {v16.16b - v17.16b}, [%[mcq]] \n\t"
/* B.1 store rearm data to mbuf. */
"st1 {%[rearm].2d}, [%[e0]] \n\t"
"add %[e0], %[e0], #16 \n\t"
"st1 {%[rearm].2d}, [%[e1]] \n\t"
"add %[e1], %[e1], #16 \n\t"
/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
"tbl v18.16b, {v16.16b}, %[mcqe_shuf_m1].16b \n\t"
"tbl v19.16b, {v16.16b}, %[mcqe_shuf_m2].16b \n\t"
"sub v18.8h, v18.8h, %[crc_adj].8h \n\t"
"sub v19.8h, v19.8h, %[crc_adj].8h \n\t"
"orr v18.16b, v18.16b, %[rxdf].16b \n\t"
"orr v19.16b, v19.16b, %[rxdf].16b \n\t"
/* D.1 store rx_descriptor_fields1. */
"st1 {v18.2d}, [%[e0]] \n\t"
"st1 {v19.2d}, [%[e1]] \n\t"
/* B.1 store rearm data to mbuf. */
"st1 {%[rearm].2d}, [%[e2]] \n\t"
"add %[e2], %[e2], #16 \n\t"
"st1 {%[rearm].2d}, [%[e3]] \n\t"
"add %[e3], %[e3], #16 \n\t"
/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
"tbl v18.16b, {v17.16b}, %[mcqe_shuf_m1].16b \n\t"
"tbl v19.16b, {v17.16b}, %[mcqe_shuf_m2].16b \n\t"
"sub v18.8h, v18.8h, %[crc_adj].8h \n\t"
"sub v19.8h, v19.8h, %[crc_adj].8h \n\t"
"orr v18.16b, v18.16b, %[rxdf].16b \n\t"
"orr v19.16b, v19.16b, %[rxdf].16b \n\t"
/* D.1 store rx_descriptor_fields1. */
"st1 {v18.2d}, [%[e2]] \n\t"
"st1 {v19.2d}, [%[e3]] \n\t"
#ifdef MLX5_PMD_SOFT_COUNTERS
"tbl %[byte_cnt].8b, {v16.16b - v17.16b}, %[len_shuf_m].8b \n\t"
#endif
:[byte_cnt]"=&w"(byte_cnt)
:[mcq]"r"(p),
[rxdf]"w"(rxdf),
[rearm]"w"(rearm),
[e3]"r"(e3), [e2]"r"(e2), [e1]"r"(e1), [e0]"r"(e0),
[mcqe_shuf_m1]"w"(mcqe_shuf_m1),
[mcqe_shuf_m2]"w"(mcqe_shuf_m2),
[crc_adj]"w"(crc_adj),
[len_shuf_m]"w"(len_shuf_m)
:"memory", "v16", "v17", "v18", "v19");
#ifdef MLX5_PMD_SOFT_COUNTERS
byte_cnt = vbic_u16(byte_cnt, invalid_mask);
rcvd_byte += vget_lane_u64(vpaddl_u32(vpaddl_u16(byte_cnt)), 0);
#endif
if (rxq->mark) {
if (rxq->mcqe_format !=
MLX5_CQE_RESP_FORMAT_FTAG_STRIDX) {
const uint32_t flow_tag = t_pkt->hash.fdir.hi;
/* E.1 store flow tag (rte_flow mark). */
elts[pos]->hash.fdir.hi = flow_tag;
elts[pos + 1]->hash.fdir.hi = flow_tag;
elts[pos + 2]->hash.fdir.hi = flow_tag;
elts[pos + 3]->hash.fdir.hi = flow_tag;
} else {
const uint32x4_t flow_mark_adj = {
-1, -1, -1, -1 };
const uint8x16_t flow_mark_shuf = {
28, 24, 25, -1,
20, 16, 17, -1,
12, 8, 9, -1,
4, 0, 1, -1};
/* Extract flow_tag field. */
const uint32x4_t ft_mask =
vdupq_n_u32(MLX5_FLOW_MARK_DEFAULT);
const uint32x4_t fdir_flags =
vdupq_n_u32(RTE_MBUF_F_RX_FDIR);
const uint32x4_t fdir_all_flags =
vdupq_n_u32(RTE_MBUF_F_RX_FDIR |
RTE_MBUF_F_RX_FDIR_ID);
uint32x4_t fdir_id_flags =
vdupq_n_u32(RTE_MBUF_F_RX_FDIR_ID);
uint32x4_t invalid_mask, ftag;
__asm__ volatile
/* A.1 load mCQEs into a 128bit register. */
("ld1 {v16.16b - v17.16b}, [%[mcq]]\n\t"
/* Extract flow_tag. */
"tbl %[ftag].16b, {v16.16b - v17.16b}, %[flow_mark_shuf].16b\n\t"
: [ftag]"=&w"(ftag)
: [mcq]"r"(p),
[flow_mark_shuf]"w"(flow_mark_shuf)
: "memory", "v16", "v17");
invalid_mask = vceqzq_u32(ftag);
ol_flags_mask = vorrq_u32(ol_flags_mask,
fdir_all_flags);
/* Set RTE_MBUF_F_RX_FDIR if flow tag is non-zero. */
ol_flags = vorrq_u32(ol_flags,
vbicq_u32(fdir_flags, invalid_mask));
/* Mask out invalid entries. */
fdir_id_flags = vbicq_u32(fdir_id_flags,
invalid_mask);
/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
ol_flags = vorrq_u32(ol_flags,
vbicq_u32(fdir_id_flags,
vceqq_u32(ftag, ft_mask)));
ftag = vaddq_u32(ftag, flow_mark_adj);
elts[pos]->hash.fdir.hi =
vgetq_lane_u32(ftag, 3);
elts[pos + 1]->hash.fdir.hi =
vgetq_lane_u32(ftag, 2);
elts[pos + 2]->hash.fdir.hi =
vgetq_lane_u32(ftag, 1);
elts[pos + 3]->hash.fdir.hi =
vgetq_lane_u32(ftag, 0);
}
}
if (unlikely(rxq->mcqe_format !=
MLX5_CQE_RESP_FORMAT_HASH)) {
if (rxq->mcqe_format ==
MLX5_CQE_RESP_FORMAT_L34H_STRIDX) {
const uint8_t pkt_info =
(cq->pkt_info & 0x3) << 6;
const uint8_t pkt_hdr0 =
mcq[pos % 8].hdr_type;
const uint8_t pkt_hdr1 =
mcq[pos % 8 + 1].hdr_type;
const uint8_t pkt_hdr2 =
mcq[pos % 8 + 2].hdr_type;
const uint8_t pkt_hdr3 =
mcq[pos % 8 + 3].hdr_type;
const uint32x4_t vlan_mask =
vdupq_n_u32(RTE_MBUF_F_RX_VLAN |
RTE_MBUF_F_RX_VLAN_STRIPPED);
const uint32x4_t cv_mask =
vdupq_n_u32(MLX5_CQE_VLAN_STRIPPED);
const uint32x4_t pkt_cv = {
pkt_hdr0 & 0x1, pkt_hdr1 & 0x1,
pkt_hdr2 & 0x1, pkt_hdr3 & 0x1};
ol_flags_mask = vorrq_u32(ol_flags_mask,
vlan_mask);
ol_flags = vorrq_u32(ol_flags,
vandq_u32(vlan_mask,
vceqq_u32(pkt_cv, cv_mask)));
elts[pos]->packet_type =
mlx5_ptype_table[(pkt_hdr0 >> 2) |
pkt_info];
elts[pos + 1]->packet_type =
mlx5_ptype_table[(pkt_hdr1 >> 2) |
pkt_info];
elts[pos + 2]->packet_type =
mlx5_ptype_table[(pkt_hdr2 >> 2) |
pkt_info];
elts[pos + 3]->packet_type =
mlx5_ptype_table[(pkt_hdr3 >> 2) |
pkt_info];
if (rxq->tunnel) {
elts[pos]->packet_type |=
!!(((pkt_hdr0 >> 2) |
pkt_info) & (1 << 6));
elts[pos + 1]->packet_type |=
!!(((pkt_hdr1 >> 2) |
pkt_info) & (1 << 6));
elts[pos + 2]->packet_type |=
!!(((pkt_hdr2 >> 2) |
pkt_info) & (1 << 6));
elts[pos + 3]->packet_type |=
!!(((pkt_hdr3 >> 2) |
pkt_info) & (1 << 6));
}
}
const uint32x4_t hash_flags =
vdupq_n_u32(RTE_MBUF_F_RX_RSS_HASH);
const uint32x4_t rearm_flags =
vdupq_n_u32((uint32_t)t_pkt->ol_flags);
ol_flags_mask = vorrq_u32(ol_flags_mask, hash_flags);
ol_flags = vorrq_u32(ol_flags,
vbicq_u32(rearm_flags, ol_flags_mask));
elts[pos]->ol_flags = vgetq_lane_u32(ol_flags, 3);
elts[pos + 1]->ol_flags = vgetq_lane_u32(ol_flags, 2);
elts[pos + 2]->ol_flags = vgetq_lane_u32(ol_flags, 1);
elts[pos + 3]->ol_flags = vgetq_lane_u32(ol_flags, 0);
elts[pos]->hash.rss = 0;
elts[pos + 1]->hash.rss = 0;
elts[pos + 2]->hash.rss = 0;
elts[pos + 3]->hash.rss = 0;
}
if (rxq->dynf_meta) {
int32_t offs = rxq->flow_meta_offset;
const uint32_t meta =
*RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *);
/* Check if title packet has valid metadata. */
if (meta) {
MLX5_ASSERT(t_pkt->ol_flags &
rxq->flow_meta_mask);
*RTE_MBUF_DYNFIELD(elts[pos], offs,
uint32_t *) = meta;
*RTE_MBUF_DYNFIELD(elts[pos + 1], offs,
uint32_t *) = meta;
*RTE_MBUF_DYNFIELD(elts[pos + 2], offs,
uint32_t *) = meta;
*RTE_MBUF_DYNFIELD(elts[pos + 3], offs,
uint32_t *) = meta;
}
}
pos += MLX5_VPMD_DESCS_PER_LOOP;
/* Move to next CQE and invalidate consumed CQEs. */
if (!(pos & 0x7) && pos < mcqe_n) {
if (pos + 8 < mcqe_n)
rte_prefetch0((void *)(cq + pos + 8));
mcq = (void *)&(cq + pos)->pkt_info;
for (i = 0; i < 8; ++i)
cq[inv++].op_own = MLX5_CQE_INVALIDATE;
}
}
/* Invalidate the rest of CQEs. */
for (; inv < mcqe_n; ++inv)
cq[inv].op_own = MLX5_CQE_INVALIDATE;
#ifdef MLX5_PMD_SOFT_COUNTERS
rxq->stats.ipackets += mcqe_n;
rxq->stats.ibytes += rcvd_byte;
#endif
return mcqe_n;
}
/**
* Calculate packet type and offload flag for mbuf and store it.
*
* @param rxq
* Pointer to RX queue structure.
* @param ptype_info
* Array of four 4bytes packet type info extracted from the original
* completion descriptor.
* @param flow_tag
* Array of four 4bytes flow ID extracted from the original completion
* descriptor.
* @param op_err
* Opcode vector having responder error status. Each field is 4B.
* @param pkts
* Pointer to array of packets to be filled.
*/
static inline void
rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq,
uint32x4_t ptype_info, uint32x4_t flow_tag,
uint16x4_t op_err, struct rte_mbuf **pkts)
{
uint16x4_t ptype;
uint32x4_t pinfo, cv_flags;
uint32x4_t ol_flags =
vdupq_n_u32(rxq->rss_hash * RTE_MBUF_F_RX_RSS_HASH |
rxq->hw_timestamp * rxq->timestamp_rx_flag);
const uint32x4_t ptype_ol_mask = { 0x106, 0x106, 0x106, 0x106 };
const uint8x16_t cv_flag_sel = {
0,
(uint8_t)(RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED),
(uint8_t)(RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1),
0,
(uint8_t)(RTE_MBUF_F_RX_L4_CKSUM_GOOD >> 1),
0,
(uint8_t)((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1),
0, 0, 0, 0, 0, 0, 0, 0, 0
};
const uint32x4_t cv_mask =
vdupq_n_u32(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED);
const uint64x2_t mbuf_init = vld1q_u64
((const uint64_t *)&rxq->mbuf_initializer);
uint64x2_t rearm0, rearm1, rearm2, rearm3;
uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
if (rxq->mark) {
const uint32x4_t ft_def = vdupq_n_u32(MLX5_FLOW_MARK_DEFAULT);
const uint32x4_t fdir_flags = vdupq_n_u32(RTE_MBUF_F_RX_FDIR);
uint32x4_t fdir_id_flags = vdupq_n_u32(RTE_MBUF_F_RX_FDIR_ID);
uint32x4_t invalid_mask;
/* Check if flow tag is non-zero then set RTE_MBUF_F_RX_FDIR. */
invalid_mask = vceqzq_u32(flow_tag);
ol_flags = vorrq_u32(ol_flags,
vbicq_u32(fdir_flags, invalid_mask));
/* Mask out invalid entries. */
fdir_id_flags = vbicq_u32(fdir_id_flags, invalid_mask);
/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
ol_flags = vorrq_u32(ol_flags,
vbicq_u32(fdir_id_flags,
vceqq_u32(flow_tag, ft_def)));
}
/*
* ptype_info has the following:
* bit[1] = l3_ok
* bit[2] = l4_ok
* bit[8] = cv
* bit[11:10] = l3_hdr_type
* bit[14:12] = l4_hdr_type
* bit[15] = ip_frag
* bit[16] = tunneled
* bit[17] = outer_l3_type
*/
ptype = vshrn_n_u32(ptype_info, 10);
/* Errored packets will have RTE_PTYPE_ALL_MASK. */
ptype = vorr_u16(ptype, op_err);
pt_idx0 = vget_lane_u8(vreinterpret_u8_u16(ptype), 6);
pt_idx1 = vget_lane_u8(vreinterpret_u8_u16(ptype), 4);
pt_idx2 = vget_lane_u8(vreinterpret_u8_u16(ptype), 2);
pt_idx3 = vget_lane_u8(vreinterpret_u8_u16(ptype), 0);
pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
!!(pt_idx0 & (1 << 6)) * rxq->tunnel;
pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
!!(pt_idx1 & (1 << 6)) * rxq->tunnel;
pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
!!(pt_idx2 & (1 << 6)) * rxq->tunnel;
pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
!!(pt_idx3 & (1 << 6)) * rxq->tunnel;
/* Fill flags for checksum and VLAN. */
pinfo = vandq_u32(ptype_info, ptype_ol_mask);
pinfo = vreinterpretq_u32_u8(
vqtbl1q_u8(cv_flag_sel, vreinterpretq_u8_u32(pinfo)));
/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
cv_flags = vshlq_n_u32(pinfo, 9);
cv_flags = vorrq_u32(pinfo, cv_flags);
/* Move back flags to start from byte[0]. */
cv_flags = vshrq_n_u32(cv_flags, 8);
/* Mask out garbage bits. */
cv_flags = vandq_u32(cv_flags, cv_mask);
/* Merge to ol_flags. */
ol_flags = vorrq_u32(ol_flags, cv_flags);
/* Merge mbuf_init and ol_flags, and store. */
rearm0 = vreinterpretq_u64_u32(vsetq_lane_u32
(vgetq_lane_u32(ol_flags, 3),
vreinterpretq_u32_u64(mbuf_init), 2));
rearm1 = vreinterpretq_u64_u32(vsetq_lane_u32
(vgetq_lane_u32(ol_flags, 2),
vreinterpretq_u32_u64(mbuf_init), 2));
rearm2 = vreinterpretq_u64_u32(vsetq_lane_u32
(vgetq_lane_u32(ol_flags, 1),
vreinterpretq_u32_u64(mbuf_init), 2));
rearm3 = vreinterpretq_u64_u32(vsetq_lane_u32
(vgetq_lane_u32(ol_flags, 0),
vreinterpretq_u32_u64(mbuf_init), 2));
vst1q_u64((void *)&pkts[0]->rearm_data, rearm0);
vst1q_u64((void *)&pkts[1]->rearm_data, rearm1);
vst1q_u64((void *)&pkts[2]->rearm_data, rearm2);
vst1q_u64((void *)&pkts[3]->rearm_data, rearm3);
}
/**
* Process a non-compressed completion and fill in mbufs in RX SW ring
* with data extracted from the title completion descriptor.
*
* @param rxq
* Pointer to RX queue structure.
* @param cq
* Pointer to completion array having a non-compressed completion at first.
* @param elts
* Pointer to SW ring to be filled. The first mbuf has to be pre-built from
* the title completion descriptor to be copied to the rest of mbufs.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
* @param[out] err
* Pointer to a flag. Set non-zero value if pkts array has at least one error
* packet to handle.
* @param[out] comp
* Pointer to a index. Set it to the first compressed completion if any.
*
* @return
* Number of CQEs successfully processed.
*/
static inline uint16_t
rxq_cq_process_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
struct rte_mbuf **elts, struct rte_mbuf **pkts,
uint16_t pkts_n, uint64_t *err, uint64_t *comp)
{
const uint16_t q_n = 1 << rxq->cqe_n;
const uint16_t q_mask = q_n - 1;
unsigned int pos;
uint64_t n = 0;
uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
uint16_t nocmp_n = 0;
const uint16x4_t ownership = vdup_n_u16(!(rxq->cq_ci & (q_mask + 1)));
const uint16x4_t owner_check = vcreate_u16(0x0001000100010001);
const uint16x4_t opcode_check = vcreate_u16(0x00f000f000f000f0);
const uint16x4_t format_check = vcreate_u16(0x000c000c000c000c);
const uint16x4_t resp_err_check = vcreate_u16(0x00e000e000e000e0);
#ifdef MLX5_PMD_SOFT_COUNTERS
uint32_t rcvd_byte = 0;
#endif
/* Mask to generate 16B length vector. */
const uint8x8_t len_shuf_m = {
52, 53, /* 4th CQE */
36, 37, /* 3rd CQE */
20, 21, /* 2nd CQE */
4, 5 /* 1st CQE */
};
/* Mask to extract 16B data from a 64B CQE. */
const uint8x16_t cqe_shuf_m = {
28, 29, /* hdr_type_etc */
0, /* pkt_info */
-1, /* null */
47, 46, /* byte_cnt, bswap16 */
31, 30, /* vlan_info, bswap16 */
15, 14, 13, 12, /* rx_hash_res, bswap32 */
57, 58, 59, /* flow_tag */
63 /* op_own */
};
/* Mask to generate 16B data for mbuf. */
const uint8x16_t mb_shuf_m = {
4, 5, -1, -1, /* pkt_len */
4, 5, /* data_len */
6, 7, /* vlan_tci */
8, 9, 10, 11, /* hash.rss */
12, 13, 14, -1 /* hash.fdir.hi */
};
/* Mask to generate 16B owner vector. */
const uint8x8_t owner_shuf_m = {
63, -1, /* 4th CQE */
47, -1, /* 3rd CQE */
31, -1, /* 2nd CQE */
15, -1 /* 1st CQE */
};
/* Mask to generate a vector having packet_type/ol_flags. */
const uint8x16_t ptype_shuf_m = {
48, 49, 50, -1, /* 4th CQE */
32, 33, 34, -1, /* 3rd CQE */
16, 17, 18, -1, /* 2nd CQE */
0, 1, 2, -1 /* 1st CQE */
};
/* Mask to generate a vector having flow tags. */
const uint8x16_t ftag_shuf_m = {
60, 61, 62, -1, /* 4th CQE */
44, 45, 46, -1, /* 3rd CQE */
28, 29, 30, -1, /* 2nd CQE */
12, 13, 14, -1 /* 1st CQE */
};
const uint16x8_t crc_adj = {
0, 0, rxq->crc_present * RTE_ETHER_CRC_LEN, 0, 0, 0, 0, 0
};
const uint32x4_t flow_mark_adj = { 0, 0, 0, rxq->mark * (-1) };
/*
* Note that vectors have reverse order - {v3, v2, v1, v0}, because
* there's no instruction to count trailing zeros. __builtin_clzl() is
* used instead.
*
* A. copy 4 mbuf pointers from elts ring to returning pkts.
* B. load 64B CQE and extract necessary fields
* Final 16bytes cqes[] extracted from original 64bytes CQE has the
* following structure:
* struct {
* uint16_t hdr_type_etc;
* uint8_t pkt_info;
* uint8_t rsvd;
* uint16_t byte_cnt;
* uint16_t vlan_info;
* uint32_t rx_has_res;
* uint8_t flow_tag[3];
* uint8_t op_own;
* } c;
* C. fill in mbuf.
* D. get valid CQEs.
* E. find compressed CQE.
*/
for (pos = 0;
pos < pkts_n;
pos += MLX5_VPMD_DESCS_PER_LOOP) {
uint16x4_t op_own;
uint16x4_t opcode, owner_mask, invalid_mask;
uint16x4_t comp_mask;
uint16x4_t mask;
uint16x4_t byte_cnt;
uint32x4_t ptype_info, flow_tag;
register uint64x2_t c0, c1, c2, c3;
uint8_t *p0, *p1, *p2, *p3;
uint8_t *e0 = (void *)&elts[pos]->pkt_len;
uint8_t *e1 = (void *)&elts[pos + 1]->pkt_len;
uint8_t *e2 = (void *)&elts[pos + 2]->pkt_len;
uint8_t *e3 = (void *)&elts[pos + 3]->pkt_len;
void *elts_p = (void *)&elts[pos];
void *pkts_p = (void *)&pkts[pos];
/* A.0 do not cross the end of CQ. */
mask = vcreate_u16(pkts_n - pos < MLX5_VPMD_DESCS_PER_LOOP ?
-1UL >> ((pkts_n - pos) *
sizeof(uint16_t) * 8) : 0);
p0 = (void *)&cq[pos].pkt_info;
p1 = p0 + (pkts_n - pos > 1) * sizeof(struct mlx5_cqe);
p2 = p1 + (pkts_n - pos > 2) * sizeof(struct mlx5_cqe);
p3 = p2 + (pkts_n - pos > 3) * sizeof(struct mlx5_cqe);
/* B.0 (CQE 3) load a block having op_own. */
c3 = vld1q_u64((uint64_t *)(p3 + 48));
/* B.0 (CQE 2) load a block having op_own. */
c2 = vld1q_u64((uint64_t *)(p2 + 48));
/* B.0 (CQE 1) load a block having op_own. */
c1 = vld1q_u64((uint64_t *)(p1 + 48));
/* B.0 (CQE 0) load a block having op_own. */
c0 = vld1q_u64((uint64_t *)(p0 + 48));
/* Synchronize for loading the rest of blocks. */
rte_io_rmb();
/* Prefetch next 4 CQEs. */
if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
unsigned int next = pos + MLX5_VPMD_DESCS_PER_LOOP;
rte_prefetch_non_temporal(&cq[next]);
rte_prefetch_non_temporal(&cq[next + 1]);
rte_prefetch_non_temporal(&cq[next + 2]);
rte_prefetch_non_temporal(&cq[next + 3]);
}
__asm__ volatile (
/* B.1 (CQE 3) load the rest of blocks. */
"ld1 {v16.16b - v18.16b}, [%[p3]] \n\t"
/* B.2 (CQE 3) move the block having op_own. */
"mov v19.16b, %[c3].16b \n\t"
/* B.3 (CQE 3) extract 16B fields. */
"tbl v23.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
/* B.1 (CQE 2) load the rest of blocks. */
"ld1 {v16.16b - v18.16b}, [%[p2]] \n\t"
/* B.4 (CQE 3) adjust CRC length. */
"sub v23.8h, v23.8h, %[crc_adj].8h \n\t"
/* C.1 (CQE 3) generate final structure for mbuf. */
"tbl v15.16b, {v23.16b}, %[mb_shuf_m].16b \n\t"
/* B.2 (CQE 2) move the block having op_own. */
"mov v19.16b, %[c2].16b \n\t"
/* B.3 (CQE 2) extract 16B fields. */
"tbl v22.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
/* B.1 (CQE 1) load the rest of blocks. */
"ld1 {v16.16b - v18.16b}, [%[p1]] \n\t"
/* B.4 (CQE 2) adjust CRC length. */
"sub v22.8h, v22.8h, %[crc_adj].8h \n\t"
/* C.1 (CQE 2) generate final structure for mbuf. */
"tbl v14.16b, {v22.16b}, %[mb_shuf_m].16b \n\t"
/* B.2 (CQE 1) move the block having op_own. */
"mov v19.16b, %[c1].16b \n\t"
/* B.3 (CQE 1) extract 16B fields. */
"tbl v21.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
/* B.1 (CQE 0) load the rest of blocks. */
"ld1 {v16.16b - v18.16b}, [%[p0]] \n\t"
/* B.4 (CQE 1) adjust CRC length. */
"sub v21.8h, v21.8h, %[crc_adj].8h \n\t"
/* C.1 (CQE 1) generate final structure for mbuf. */
"tbl v13.16b, {v21.16b}, %[mb_shuf_m].16b \n\t"
/* B.2 (CQE 0) move the block having op_own. */
"mov v19.16b, %[c0].16b \n\t"
/* A.1 load mbuf pointers. */
"ld1 {v24.2d - v25.2d}, [%[elts_p]] \n\t"
/* B.3 (CQE 0) extract 16B fields. */
"tbl v20.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
/* B.4 (CQE 0) adjust CRC length. */
"sub v20.8h, v20.8h, %[crc_adj].8h \n\t"
/* D.1 extract op_own byte. */
"tbl %[op_own].8b, {v20.16b - v23.16b}, %[owner_shuf_m].8b \n\t"
/* C.2 (CQE 3) adjust flow mark. */
"add v15.4s, v15.4s, %[flow_mark_adj].4s \n\t"
/* C.3 (CQE 3) fill in mbuf - rx_descriptor_fields1. */
"st1 {v15.2d}, [%[e3]] \n\t"
/* C.2 (CQE 2) adjust flow mark. */
"add v14.4s, v14.4s, %[flow_mark_adj].4s \n\t"
/* C.3 (CQE 2) fill in mbuf - rx_descriptor_fields1. */
"st1 {v14.2d}, [%[e2]] \n\t"
/* C.1 (CQE 0) generate final structure for mbuf. */
"tbl v12.16b, {v20.16b}, %[mb_shuf_m].16b \n\t"
/* C.2 (CQE 1) adjust flow mark. */
"add v13.4s, v13.4s, %[flow_mark_adj].4s \n\t"
/* C.3 (CQE 1) fill in mbuf - rx_descriptor_fields1. */
"st1 {v13.2d}, [%[e1]] \n\t"
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Extract byte_cnt. */
"tbl %[byte_cnt].8b, {v20.16b - v23.16b}, %[len_shuf_m].8b \n\t"
#endif
/* Extract ptype_info. */
"tbl %[ptype_info].16b, {v20.16b - v23.16b}, %[ptype_shuf_m].16b \n\t"
/* Extract flow_tag. */
"tbl %[flow_tag].16b, {v20.16b - v23.16b}, %[ftag_shuf_m].16b \n\t"
/* A.2 copy mbuf pointers. */
"st1 {v24.2d - v25.2d}, [%[pkts_p]] \n\t"
/* C.2 (CQE 0) adjust flow mark. */
"add v12.4s, v12.4s, %[flow_mark_adj].4s \n\t"
/* C.3 (CQE 1) fill in mbuf - rx_descriptor_fields1. */
"st1 {v12.2d}, [%[e0]] \n\t"
:[op_own]"=&w"(op_own),
[byte_cnt]"=&w"(byte_cnt),
[ptype_info]"=&w"(ptype_info),
[flow_tag]"=&w"(flow_tag)
:[p3]"r"(p3), [p2]"r"(p2), [p1]"r"(p1), [p0]"r"(p0),
[e3]"r"(e3), [e2]"r"(e2), [e1]"r"(e1), [e0]"r"(e0),
[c3]"w"(c3), [c2]"w"(c2), [c1]"w"(c1), [c0]"w"(c0),
[elts_p]"r"(elts_p),
[pkts_p]"r"(pkts_p),
[cqe_shuf_m]"w"(cqe_shuf_m),
[mb_shuf_m]"w"(mb_shuf_m),
[owner_shuf_m]"w"(owner_shuf_m),
[len_shuf_m]"w"(len_shuf_m),
[ptype_shuf_m]"w"(ptype_shuf_m),
[ftag_shuf_m]"w"(ftag_shuf_m),
[crc_adj]"w"(crc_adj),
[flow_mark_adj]"w"(flow_mark_adj)
:"memory",
"v12", "v13", "v14", "v15",
"v16", "v17", "v18", "v19",
"v20", "v21", "v22", "v23",
"v24", "v25");
/* D.2 flip owner bit to mark CQEs from last round. */
owner_mask = vand_u16(op_own, owner_check);
owner_mask = vceq_u16(owner_mask, ownership);
/* D.3 get mask for invalidated CQEs. */
opcode = vand_u16(op_own, opcode_check);
invalid_mask = vceq_u16(opcode_check, opcode);
/* E.1 find compressed CQE format. */
comp_mask = vand_u16(op_own, format_check);
comp_mask = vceq_u16(comp_mask, format_check);
/* D.4 mask out beyond boundary. */
invalid_mask = vorr_u16(invalid_mask, mask);
/* D.5 merge invalid_mask with invalid owner. */
invalid_mask = vorr_u16(invalid_mask, owner_mask);
/* E.2 mask out invalid entries. */
comp_mask = vbic_u16(comp_mask, invalid_mask);
/* E.3 get the first compressed CQE. */
comp_idx = __builtin_clzl(vget_lane_u64(vreinterpret_u64_u16(
comp_mask), 0)) /
(sizeof(uint16_t) * 8);
invalid_mask = vorr_u16(invalid_mask, comp_mask);
/* D.7 count non-compressed valid CQEs. */
n = __builtin_clzl(vget_lane_u64(vreinterpret_u64_u16(
invalid_mask), 0)) / (sizeof(uint16_t) * 8);
nocmp_n += n;
/*
* D.2 mask out entries after the compressed CQE.
* get the final invalid mask.
*/
mask = vcreate_u16(n < MLX5_VPMD_DESCS_PER_LOOP ?
-1UL >> (n * sizeof(uint16_t) * 8) : 0);
invalid_mask = vorr_u16(invalid_mask, mask);
/* D.3 check error in opcode. */
opcode = vceq_u16(resp_err_check, opcode);
opcode = vbic_u16(opcode, invalid_mask);
/* D.4 mark if any error is set */
*err |= vget_lane_u64(vreinterpret_u64_u16(opcode), 0);
/* C.4 fill in mbuf - rearm_data and packet_type. */
rxq_cq_to_ptype_oflags_v(rxq, ptype_info, flow_tag,
opcode, &elts[pos]);
if (unlikely(rxq->shared)) {
elts[pos]->port = container_of(p0, struct mlx5_cqe,
pkt_info)->user_index_low;
elts[pos + 1]->port = container_of(p1, struct mlx5_cqe,
pkt_info)->user_index_low;
elts[pos + 2]->port = container_of(p2, struct mlx5_cqe,
pkt_info)->user_index_low;
elts[pos + 3]->port = container_of(p3, struct mlx5_cqe,
pkt_info)->user_index_low;
}
if (unlikely(rxq->hw_timestamp)) {
int offset = rxq->timestamp_offset;
if (rxq->rt_timestamp) {
struct mlx5_dev_ctx_shared *sh = rxq->sh;
uint64_t ts;
ts = rte_be_to_cpu_64
(container_of(p0, struct mlx5_cqe,
pkt_info)->timestamp);
mlx5_timestamp_set(elts[pos], offset,
mlx5_txpp_convert_rx_ts(sh, ts));
ts = rte_be_to_cpu_64
(container_of(p1, struct mlx5_cqe,
pkt_info)->timestamp);
mlx5_timestamp_set(elts[pos + 1], offset,
mlx5_txpp_convert_rx_ts(sh, ts));
ts = rte_be_to_cpu_64
(container_of(p2, struct mlx5_cqe,
pkt_info)->timestamp);
mlx5_timestamp_set(elts[pos + 2], offset,
mlx5_txpp_convert_rx_ts(sh, ts));
ts = rte_be_to_cpu_64
(container_of(p3, struct mlx5_cqe,
pkt_info)->timestamp);
mlx5_timestamp_set(elts[pos + 3], offset,
mlx5_txpp_convert_rx_ts(sh, ts));
} else {
mlx5_timestamp_set(elts[pos], offset,
rte_be_to_cpu_64(container_of(p0,
struct mlx5_cqe, pkt_info)->timestamp));
mlx5_timestamp_set(elts[pos + 1], offset,
rte_be_to_cpu_64(container_of(p1,
struct mlx5_cqe, pkt_info)->timestamp));
mlx5_timestamp_set(elts[pos + 2], offset,
rte_be_to_cpu_64(container_of(p2,
struct mlx5_cqe, pkt_info)->timestamp));
mlx5_timestamp_set(elts[pos + 3], offset,
rte_be_to_cpu_64(container_of(p3,
struct mlx5_cqe, pkt_info)->timestamp));
}
}
if (rxq->dynf_meta) {
/* This code is subject for futher optimization. */
int32_t offs = rxq->flow_meta_offset;
uint32_t mask = rxq->flow_meta_port_mask;
*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
rte_be_to_cpu_32(container_of
(p0, struct mlx5_cqe,
pkt_info)->flow_table_metadata) & mask;
*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *) =
rte_be_to_cpu_32(container_of
(p1, struct mlx5_cqe,
pkt_info)->flow_table_metadata) & mask;
*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *) =
rte_be_to_cpu_32(container_of
(p2, struct mlx5_cqe,
pkt_info)->flow_table_metadata) & mask;
*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *) =
rte_be_to_cpu_32(container_of
(p3, struct mlx5_cqe,
pkt_info)->flow_table_metadata) & mask;
if (*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *))
elts[pos]->ol_flags |= rxq->flow_meta_mask;
if (*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *))
elts[pos + 1]->ol_flags |= rxq->flow_meta_mask;
if (*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *))
elts[pos + 2]->ol_flags |= rxq->flow_meta_mask;
if (*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *))
elts[pos + 3]->ol_flags |= rxq->flow_meta_mask;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Add up received bytes count. */
byte_cnt = vbic_u16(byte_cnt, invalid_mask);
rcvd_byte += vget_lane_u64(vpaddl_u32(vpaddl_u16(byte_cnt)), 0);
#endif
/*
* Break the loop unless more valid CQE is expected, or if
* there's a compressed CQE.
*/
if (n != MLX5_VPMD_DESCS_PER_LOOP)
break;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
rxq->stats.ipackets += nocmp_n;
rxq->stats.ibytes += rcvd_byte;
#endif
if (comp_idx == n)
*comp = comp_idx;
return nocmp_n;
}
#endif /* RTE_PMD_MLX5_RXTX_VEC_NEON_H_ */