39ff94e71c
Currently, destroying external heap chunk and its memseg list is part of one process. When we will gain the ability to unregister external memory from DPDK that doesn't have any heap structures associated with it, we need to be able to find and destroy memseg lists as well as heap data separately. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Acked-by: Yongseok Koh <yskoh@mellanox.com>
1364 lines
36 KiB
C
1364 lines
36 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
#include <stdint.h>
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <errno.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_memory.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_common.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_spinlock.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_fbarray.h>
|
|
|
|
#include "eal_internal_cfg.h"
|
|
#include "eal_memalloc.h"
|
|
#include "malloc_elem.h"
|
|
#include "malloc_heap.h"
|
|
#include "malloc_mp.h"
|
|
|
|
/* start external socket ID's at a very high number */
|
|
#define CONST_MAX(a, b) (a > b ? a : b) /* RTE_MAX is not a constant */
|
|
#define EXTERNAL_HEAP_MIN_SOCKET_ID (CONST_MAX((1 << 8), RTE_MAX_NUMA_NODES))
|
|
|
|
static unsigned
|
|
check_hugepage_sz(unsigned flags, uint64_t hugepage_sz)
|
|
{
|
|
unsigned check_flag = 0;
|
|
|
|
if (!(flags & ~RTE_MEMZONE_SIZE_HINT_ONLY))
|
|
return 1;
|
|
|
|
switch (hugepage_sz) {
|
|
case RTE_PGSIZE_256K:
|
|
check_flag = RTE_MEMZONE_256KB;
|
|
break;
|
|
case RTE_PGSIZE_2M:
|
|
check_flag = RTE_MEMZONE_2MB;
|
|
break;
|
|
case RTE_PGSIZE_16M:
|
|
check_flag = RTE_MEMZONE_16MB;
|
|
break;
|
|
case RTE_PGSIZE_256M:
|
|
check_flag = RTE_MEMZONE_256MB;
|
|
break;
|
|
case RTE_PGSIZE_512M:
|
|
check_flag = RTE_MEMZONE_512MB;
|
|
break;
|
|
case RTE_PGSIZE_1G:
|
|
check_flag = RTE_MEMZONE_1GB;
|
|
break;
|
|
case RTE_PGSIZE_4G:
|
|
check_flag = RTE_MEMZONE_4GB;
|
|
break;
|
|
case RTE_PGSIZE_16G:
|
|
check_flag = RTE_MEMZONE_16GB;
|
|
}
|
|
|
|
return check_flag & flags;
|
|
}
|
|
|
|
int
|
|
malloc_socket_to_heap_id(unsigned int socket_id)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int i;
|
|
|
|
for (i = 0; i < RTE_MAX_HEAPS; i++) {
|
|
struct malloc_heap *heap = &mcfg->malloc_heaps[i];
|
|
|
|
if (heap->socket_id == socket_id)
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Expand the heap with a memory area.
|
|
*/
|
|
static struct malloc_elem *
|
|
malloc_heap_add_memory(struct malloc_heap *heap, struct rte_memseg_list *msl,
|
|
void *start, size_t len)
|
|
{
|
|
struct malloc_elem *elem = start;
|
|
|
|
malloc_elem_init(elem, heap, msl, len, elem, len);
|
|
|
|
malloc_elem_insert(elem);
|
|
|
|
elem = malloc_elem_join_adjacent_free(elem);
|
|
|
|
malloc_elem_free_list_insert(elem);
|
|
|
|
return elem;
|
|
}
|
|
|
|
static int
|
|
malloc_add_seg(const struct rte_memseg_list *msl,
|
|
const struct rte_memseg *ms, size_t len, void *arg __rte_unused)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct rte_memseg_list *found_msl;
|
|
struct malloc_heap *heap;
|
|
int msl_idx, heap_idx;
|
|
|
|
if (msl->external)
|
|
return 0;
|
|
|
|
heap_idx = malloc_socket_to_heap_id(msl->socket_id);
|
|
if (heap_idx < 0) {
|
|
RTE_LOG(ERR, EAL, "Memseg list has invalid socket id\n");
|
|
return -1;
|
|
}
|
|
heap = &mcfg->malloc_heaps[heap_idx];
|
|
|
|
/* msl is const, so find it */
|
|
msl_idx = msl - mcfg->memsegs;
|
|
|
|
if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
|
|
return -1;
|
|
|
|
found_msl = &mcfg->memsegs[msl_idx];
|
|
|
|
malloc_heap_add_memory(heap, found_msl, ms->addr, len);
|
|
|
|
heap->total_size += len;
|
|
|
|
RTE_LOG(DEBUG, EAL, "Added %zuM to heap on socket %i\n", len >> 20,
|
|
msl->socket_id);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Iterates through the freelist for a heap to find a free element
|
|
* which can store data of the required size and with the requested alignment.
|
|
* If size is 0, find the biggest available elem.
|
|
* Returns null on failure, or pointer to element on success.
|
|
*/
|
|
static struct malloc_elem *
|
|
find_suitable_element(struct malloc_heap *heap, size_t size,
|
|
unsigned int flags, size_t align, size_t bound, bool contig)
|
|
{
|
|
size_t idx;
|
|
struct malloc_elem *elem, *alt_elem = NULL;
|
|
|
|
for (idx = malloc_elem_free_list_index(size);
|
|
idx < RTE_HEAP_NUM_FREELISTS; idx++) {
|
|
for (elem = LIST_FIRST(&heap->free_head[idx]);
|
|
!!elem; elem = LIST_NEXT(elem, free_list)) {
|
|
if (malloc_elem_can_hold(elem, size, align, bound,
|
|
contig)) {
|
|
if (check_hugepage_sz(flags,
|
|
elem->msl->page_sz))
|
|
return elem;
|
|
if (alt_elem == NULL)
|
|
alt_elem = elem;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((alt_elem != NULL) && (flags & RTE_MEMZONE_SIZE_HINT_ONLY))
|
|
return alt_elem;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Iterates through the freelist for a heap to find a free element with the
|
|
* biggest size and requested alignment. Will also set size to whatever element
|
|
* size that was found.
|
|
* Returns null on failure, or pointer to element on success.
|
|
*/
|
|
static struct malloc_elem *
|
|
find_biggest_element(struct malloc_heap *heap, size_t *size,
|
|
unsigned int flags, size_t align, bool contig)
|
|
{
|
|
struct malloc_elem *elem, *max_elem = NULL;
|
|
size_t idx, max_size = 0;
|
|
|
|
for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
|
|
for (elem = LIST_FIRST(&heap->free_head[idx]);
|
|
!!elem; elem = LIST_NEXT(elem, free_list)) {
|
|
size_t cur_size;
|
|
if ((flags & RTE_MEMZONE_SIZE_HINT_ONLY) == 0 &&
|
|
!check_hugepage_sz(flags,
|
|
elem->msl->page_sz))
|
|
continue;
|
|
if (contig) {
|
|
cur_size =
|
|
malloc_elem_find_max_iova_contig(elem,
|
|
align);
|
|
} else {
|
|
void *data_start = RTE_PTR_ADD(elem,
|
|
MALLOC_ELEM_HEADER_LEN);
|
|
void *data_end = RTE_PTR_ADD(elem, elem->size -
|
|
MALLOC_ELEM_TRAILER_LEN);
|
|
void *aligned = RTE_PTR_ALIGN_CEIL(data_start,
|
|
align);
|
|
/* check if aligned data start is beyond end */
|
|
if (aligned >= data_end)
|
|
continue;
|
|
cur_size = RTE_PTR_DIFF(data_end, aligned);
|
|
}
|
|
if (cur_size > max_size) {
|
|
max_size = cur_size;
|
|
max_elem = elem;
|
|
}
|
|
}
|
|
}
|
|
|
|
*size = max_size;
|
|
return max_elem;
|
|
}
|
|
|
|
/*
|
|
* Main function to allocate a block of memory from the heap.
|
|
* It locks the free list, scans it, and adds a new memseg if the
|
|
* scan fails. Once the new memseg is added, it re-scans and should return
|
|
* the new element after releasing the lock.
|
|
*/
|
|
static void *
|
|
heap_alloc(struct malloc_heap *heap, const char *type __rte_unused, size_t size,
|
|
unsigned int flags, size_t align, size_t bound, bool contig)
|
|
{
|
|
struct malloc_elem *elem;
|
|
|
|
size = RTE_CACHE_LINE_ROUNDUP(size);
|
|
align = RTE_CACHE_LINE_ROUNDUP(align);
|
|
|
|
elem = find_suitable_element(heap, size, flags, align, bound, contig);
|
|
if (elem != NULL) {
|
|
elem = malloc_elem_alloc(elem, size, align, bound, contig);
|
|
|
|
/* increase heap's count of allocated elements */
|
|
heap->alloc_count++;
|
|
}
|
|
|
|
return elem == NULL ? NULL : (void *)(&elem[1]);
|
|
}
|
|
|
|
static void *
|
|
heap_alloc_biggest(struct malloc_heap *heap, const char *type __rte_unused,
|
|
unsigned int flags, size_t align, bool contig)
|
|
{
|
|
struct malloc_elem *elem;
|
|
size_t size;
|
|
|
|
align = RTE_CACHE_LINE_ROUNDUP(align);
|
|
|
|
elem = find_biggest_element(heap, &size, flags, align, contig);
|
|
if (elem != NULL) {
|
|
elem = malloc_elem_alloc(elem, size, align, 0, contig);
|
|
|
|
/* increase heap's count of allocated elements */
|
|
heap->alloc_count++;
|
|
}
|
|
|
|
return elem == NULL ? NULL : (void *)(&elem[1]);
|
|
}
|
|
|
|
/* this function is exposed in malloc_mp.h */
|
|
void
|
|
rollback_expand_heap(struct rte_memseg **ms, int n_segs,
|
|
struct malloc_elem *elem, void *map_addr, size_t map_len)
|
|
{
|
|
if (elem != NULL) {
|
|
malloc_elem_free_list_remove(elem);
|
|
malloc_elem_hide_region(elem, map_addr, map_len);
|
|
}
|
|
|
|
eal_memalloc_free_seg_bulk(ms, n_segs);
|
|
}
|
|
|
|
/* this function is exposed in malloc_mp.h */
|
|
struct malloc_elem *
|
|
alloc_pages_on_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
|
|
int socket, unsigned int flags, size_t align, size_t bound,
|
|
bool contig, struct rte_memseg **ms, int n_segs)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct rte_memseg_list *msl;
|
|
struct malloc_elem *elem = NULL;
|
|
size_t alloc_sz;
|
|
int allocd_pages;
|
|
void *ret, *map_addr;
|
|
|
|
alloc_sz = (size_t)pg_sz * n_segs;
|
|
|
|
/* first, check if we're allowed to allocate this memory */
|
|
if (eal_memalloc_mem_alloc_validate(socket,
|
|
heap->total_size + alloc_sz) < 0) {
|
|
RTE_LOG(DEBUG, EAL, "User has disallowed allocation\n");
|
|
return NULL;
|
|
}
|
|
|
|
allocd_pages = eal_memalloc_alloc_seg_bulk(ms, n_segs, pg_sz,
|
|
socket, true);
|
|
|
|
/* make sure we've allocated our pages... */
|
|
if (allocd_pages < 0)
|
|
return NULL;
|
|
|
|
map_addr = ms[0]->addr;
|
|
msl = rte_mem_virt2memseg_list(map_addr);
|
|
|
|
/* check if we wanted contiguous memory but didn't get it */
|
|
if (contig && !eal_memalloc_is_contig(msl, map_addr, alloc_sz)) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): couldn't allocate physically contiguous space\n",
|
|
__func__);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Once we have all the memseg lists configured, if there is a dma mask
|
|
* set, check iova addresses are not out of range. Otherwise the device
|
|
* setting the dma mask could have problems with the mapped memory.
|
|
*
|
|
* There are two situations when this can happen:
|
|
* 1) memory initialization
|
|
* 2) dynamic memory allocation
|
|
*
|
|
* For 1), an error when checking dma mask implies app can not be
|
|
* executed. For 2) implies the new memory can not be added.
|
|
*/
|
|
if (mcfg->dma_maskbits &&
|
|
rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
|
|
/*
|
|
* Currently this can only happen if IOMMU is enabled
|
|
* and the address width supported by the IOMMU hw is
|
|
* not enough for using the memory mapped IOVAs.
|
|
*
|
|
* If IOVA is VA, advice to try with '--iova-mode pa'
|
|
* which could solve some situations when IOVA VA is not
|
|
* really needed.
|
|
*/
|
|
RTE_LOG(ERR, EAL,
|
|
"%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask\n",
|
|
__func__);
|
|
|
|
/*
|
|
* If IOVA is VA and it is possible to run with IOVA PA,
|
|
* because user is root, give and advice for solving the
|
|
* problem.
|
|
*/
|
|
if ((rte_eal_iova_mode() == RTE_IOVA_VA) &&
|
|
rte_eal_using_phys_addrs())
|
|
RTE_LOG(ERR, EAL,
|
|
"%s(): Please try initializing EAL with --iova-mode=pa parameter\n",
|
|
__func__);
|
|
goto fail;
|
|
}
|
|
|
|
/* add newly minted memsegs to malloc heap */
|
|
elem = malloc_heap_add_memory(heap, msl, map_addr, alloc_sz);
|
|
|
|
/* try once more, as now we have allocated new memory */
|
|
ret = find_suitable_element(heap, elt_size, flags, align, bound,
|
|
contig);
|
|
|
|
if (ret == NULL)
|
|
goto fail;
|
|
|
|
return elem;
|
|
|
|
fail:
|
|
rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
try_expand_heap_primary(struct malloc_heap *heap, uint64_t pg_sz,
|
|
size_t elt_size, int socket, unsigned int flags, size_t align,
|
|
size_t bound, bool contig)
|
|
{
|
|
struct malloc_elem *elem;
|
|
struct rte_memseg **ms;
|
|
void *map_addr;
|
|
size_t alloc_sz;
|
|
int n_segs;
|
|
bool callback_triggered = false;
|
|
|
|
alloc_sz = RTE_ALIGN_CEIL(align + elt_size +
|
|
MALLOC_ELEM_TRAILER_LEN, pg_sz);
|
|
n_segs = alloc_sz / pg_sz;
|
|
|
|
/* we can't know in advance how many pages we'll need, so we malloc */
|
|
ms = malloc(sizeof(*ms) * n_segs);
|
|
if (ms == NULL)
|
|
return -1;
|
|
memset(ms, 0, sizeof(*ms) * n_segs);
|
|
|
|
elem = alloc_pages_on_heap(heap, pg_sz, elt_size, socket, flags, align,
|
|
bound, contig, ms, n_segs);
|
|
|
|
if (elem == NULL)
|
|
goto free_ms;
|
|
|
|
map_addr = ms[0]->addr;
|
|
|
|
/* notify user about changes in memory map */
|
|
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC, map_addr, alloc_sz);
|
|
|
|
/* notify other processes that this has happened */
|
|
if (request_sync()) {
|
|
/* we couldn't ensure all processes have mapped memory,
|
|
* so free it back and notify everyone that it's been
|
|
* freed back.
|
|
*
|
|
* technically, we could've avoided adding memory addresses to
|
|
* the map, but that would've led to inconsistent behavior
|
|
* between primary and secondary processes, as those get
|
|
* callbacks during sync. therefore, force primary process to
|
|
* do alloc-and-rollback syncs as well.
|
|
*/
|
|
callback_triggered = true;
|
|
goto free_elem;
|
|
}
|
|
heap->total_size += alloc_sz;
|
|
|
|
RTE_LOG(DEBUG, EAL, "Heap on socket %d was expanded by %zdMB\n",
|
|
socket, alloc_sz >> 20ULL);
|
|
|
|
free(ms);
|
|
|
|
return 0;
|
|
|
|
free_elem:
|
|
if (callback_triggered)
|
|
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
|
|
map_addr, alloc_sz);
|
|
|
|
rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);
|
|
|
|
request_sync();
|
|
free_ms:
|
|
free(ms);
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
try_expand_heap_secondary(struct malloc_heap *heap, uint64_t pg_sz,
|
|
size_t elt_size, int socket, unsigned int flags, size_t align,
|
|
size_t bound, bool contig)
|
|
{
|
|
struct malloc_mp_req req;
|
|
int req_result;
|
|
|
|
memset(&req, 0, sizeof(req));
|
|
|
|
req.t = REQ_TYPE_ALLOC;
|
|
req.alloc_req.align = align;
|
|
req.alloc_req.bound = bound;
|
|
req.alloc_req.contig = contig;
|
|
req.alloc_req.flags = flags;
|
|
req.alloc_req.elt_size = elt_size;
|
|
req.alloc_req.page_sz = pg_sz;
|
|
req.alloc_req.socket = socket;
|
|
req.alloc_req.heap = heap; /* it's in shared memory */
|
|
|
|
req_result = request_to_primary(&req);
|
|
|
|
if (req_result != 0)
|
|
return -1;
|
|
|
|
if (req.result != REQ_RESULT_SUCCESS)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
try_expand_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
|
|
int socket, unsigned int flags, size_t align, size_t bound,
|
|
bool contig)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int ret;
|
|
|
|
rte_rwlock_write_lock(&mcfg->memory_hotplug_lock);
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
|
|
ret = try_expand_heap_primary(heap, pg_sz, elt_size, socket,
|
|
flags, align, bound, contig);
|
|
} else {
|
|
ret = try_expand_heap_secondary(heap, pg_sz, elt_size, socket,
|
|
flags, align, bound, contig);
|
|
}
|
|
|
|
rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
compare_pagesz(const void *a, const void *b)
|
|
{
|
|
const struct rte_memseg_list * const*mpa = a;
|
|
const struct rte_memseg_list * const*mpb = b;
|
|
const struct rte_memseg_list *msla = *mpa;
|
|
const struct rte_memseg_list *mslb = *mpb;
|
|
uint64_t pg_sz_a = msla->page_sz;
|
|
uint64_t pg_sz_b = mslb->page_sz;
|
|
|
|
if (pg_sz_a < pg_sz_b)
|
|
return -1;
|
|
if (pg_sz_a > pg_sz_b)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
alloc_more_mem_on_socket(struct malloc_heap *heap, size_t size, int socket,
|
|
unsigned int flags, size_t align, size_t bound, bool contig)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct rte_memseg_list *requested_msls[RTE_MAX_MEMSEG_LISTS];
|
|
struct rte_memseg_list *other_msls[RTE_MAX_MEMSEG_LISTS];
|
|
uint64_t requested_pg_sz[RTE_MAX_MEMSEG_LISTS];
|
|
uint64_t other_pg_sz[RTE_MAX_MEMSEG_LISTS];
|
|
uint64_t prev_pg_sz;
|
|
int i, n_other_msls, n_other_pg_sz, n_requested_msls, n_requested_pg_sz;
|
|
bool size_hint = (flags & RTE_MEMZONE_SIZE_HINT_ONLY) > 0;
|
|
unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
|
|
void *ret;
|
|
|
|
memset(requested_msls, 0, sizeof(requested_msls));
|
|
memset(other_msls, 0, sizeof(other_msls));
|
|
memset(requested_pg_sz, 0, sizeof(requested_pg_sz));
|
|
memset(other_pg_sz, 0, sizeof(other_pg_sz));
|
|
|
|
/*
|
|
* go through memseg list and take note of all the page sizes available,
|
|
* and if any of them were specifically requested by the user.
|
|
*/
|
|
n_requested_msls = 0;
|
|
n_other_msls = 0;
|
|
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
|
|
struct rte_memseg_list *msl = &mcfg->memsegs[i];
|
|
|
|
if (msl->socket_id != socket)
|
|
continue;
|
|
|
|
if (msl->base_va == NULL)
|
|
continue;
|
|
|
|
/* if pages of specific size were requested */
|
|
if (size_flags != 0 && check_hugepage_sz(size_flags,
|
|
msl->page_sz))
|
|
requested_msls[n_requested_msls++] = msl;
|
|
else if (size_flags == 0 || size_hint)
|
|
other_msls[n_other_msls++] = msl;
|
|
}
|
|
|
|
/* sort the lists, smallest first */
|
|
qsort(requested_msls, n_requested_msls, sizeof(requested_msls[0]),
|
|
compare_pagesz);
|
|
qsort(other_msls, n_other_msls, sizeof(other_msls[0]),
|
|
compare_pagesz);
|
|
|
|
/* now, extract page sizes we are supposed to try */
|
|
prev_pg_sz = 0;
|
|
n_requested_pg_sz = 0;
|
|
for (i = 0; i < n_requested_msls; i++) {
|
|
uint64_t pg_sz = requested_msls[i]->page_sz;
|
|
|
|
if (prev_pg_sz != pg_sz) {
|
|
requested_pg_sz[n_requested_pg_sz++] = pg_sz;
|
|
prev_pg_sz = pg_sz;
|
|
}
|
|
}
|
|
prev_pg_sz = 0;
|
|
n_other_pg_sz = 0;
|
|
for (i = 0; i < n_other_msls; i++) {
|
|
uint64_t pg_sz = other_msls[i]->page_sz;
|
|
|
|
if (prev_pg_sz != pg_sz) {
|
|
other_pg_sz[n_other_pg_sz++] = pg_sz;
|
|
prev_pg_sz = pg_sz;
|
|
}
|
|
}
|
|
|
|
/* finally, try allocating memory of specified page sizes, starting from
|
|
* the smallest sizes
|
|
*/
|
|
for (i = 0; i < n_requested_pg_sz; i++) {
|
|
uint64_t pg_sz = requested_pg_sz[i];
|
|
|
|
/*
|
|
* do not pass the size hint here, as user expects other page
|
|
* sizes first, before resorting to best effort allocation.
|
|
*/
|
|
if (!try_expand_heap(heap, pg_sz, size, socket, size_flags,
|
|
align, bound, contig))
|
|
return 0;
|
|
}
|
|
if (n_other_pg_sz == 0)
|
|
return -1;
|
|
|
|
/* now, check if we can reserve anything with size hint */
|
|
ret = find_suitable_element(heap, size, flags, align, bound, contig);
|
|
if (ret != NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* we still couldn't reserve memory, so try expanding heap with other
|
|
* page sizes, if there are any
|
|
*/
|
|
for (i = 0; i < n_other_pg_sz; i++) {
|
|
uint64_t pg_sz = other_pg_sz[i];
|
|
|
|
if (!try_expand_heap(heap, pg_sz, size, socket, flags,
|
|
align, bound, contig))
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* this will try lower page sizes first */
|
|
static void *
|
|
malloc_heap_alloc_on_heap_id(const char *type, size_t size,
|
|
unsigned int heap_id, unsigned int flags, size_t align,
|
|
size_t bound, bool contig)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
|
|
unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
|
|
int socket_id;
|
|
void *ret;
|
|
|
|
rte_spinlock_lock(&(heap->lock));
|
|
|
|
align = align == 0 ? 1 : align;
|
|
|
|
/* for legacy mode, try once and with all flags */
|
|
if (internal_config.legacy_mem) {
|
|
ret = heap_alloc(heap, type, size, flags, align, bound, contig);
|
|
goto alloc_unlock;
|
|
}
|
|
|
|
/*
|
|
* we do not pass the size hint here, because even if allocation fails,
|
|
* we may still be able to allocate memory from appropriate page sizes,
|
|
* we just need to request more memory first.
|
|
*/
|
|
|
|
socket_id = rte_socket_id_by_idx(heap_id);
|
|
/*
|
|
* if socket ID is negative, we cannot find a socket ID for this heap -
|
|
* which means it's an external heap. those can have unexpected page
|
|
* sizes, so if the user asked to allocate from there - assume user
|
|
* knows what they're doing, and allow allocating from there with any
|
|
* page size flags.
|
|
*/
|
|
if (socket_id < 0)
|
|
size_flags |= RTE_MEMZONE_SIZE_HINT_ONLY;
|
|
|
|
ret = heap_alloc(heap, type, size, size_flags, align, bound, contig);
|
|
if (ret != NULL)
|
|
goto alloc_unlock;
|
|
|
|
/* if socket ID is invalid, this is an external heap */
|
|
if (socket_id < 0)
|
|
goto alloc_unlock;
|
|
|
|
if (!alloc_more_mem_on_socket(heap, size, socket_id, flags, align,
|
|
bound, contig)) {
|
|
ret = heap_alloc(heap, type, size, flags, align, bound, contig);
|
|
|
|
/* this should have succeeded */
|
|
if (ret == NULL)
|
|
RTE_LOG(ERR, EAL, "Error allocating from heap\n");
|
|
}
|
|
alloc_unlock:
|
|
rte_spinlock_unlock(&(heap->lock));
|
|
return ret;
|
|
}
|
|
|
|
void *
|
|
malloc_heap_alloc(const char *type, size_t size, int socket_arg,
|
|
unsigned int flags, size_t align, size_t bound, bool contig)
|
|
{
|
|
int socket, heap_id, i;
|
|
void *ret;
|
|
|
|
/* return NULL if size is 0 or alignment is not power-of-2 */
|
|
if (size == 0 || (align && !rte_is_power_of_2(align)))
|
|
return NULL;
|
|
|
|
if (!rte_eal_has_hugepages() && socket_arg < RTE_MAX_NUMA_NODES)
|
|
socket_arg = SOCKET_ID_ANY;
|
|
|
|
if (socket_arg == SOCKET_ID_ANY)
|
|
socket = malloc_get_numa_socket();
|
|
else
|
|
socket = socket_arg;
|
|
|
|
/* turn socket ID into heap ID */
|
|
heap_id = malloc_socket_to_heap_id(socket);
|
|
/* if heap id is negative, socket ID was invalid */
|
|
if (heap_id < 0)
|
|
return NULL;
|
|
|
|
ret = malloc_heap_alloc_on_heap_id(type, size, heap_id, flags, align,
|
|
bound, contig);
|
|
if (ret != NULL || socket_arg != SOCKET_ID_ANY)
|
|
return ret;
|
|
|
|
/* try other heaps. we are only iterating through native DPDK sockets,
|
|
* so external heaps won't be included.
|
|
*/
|
|
for (i = 0; i < (int) rte_socket_count(); i++) {
|
|
if (i == heap_id)
|
|
continue;
|
|
ret = malloc_heap_alloc_on_heap_id(type, size, i, flags, align,
|
|
bound, contig);
|
|
if (ret != NULL)
|
|
return ret;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void *
|
|
heap_alloc_biggest_on_heap_id(const char *type, unsigned int heap_id,
|
|
unsigned int flags, size_t align, bool contig)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
|
|
void *ret;
|
|
|
|
rte_spinlock_lock(&(heap->lock));
|
|
|
|
align = align == 0 ? 1 : align;
|
|
|
|
ret = heap_alloc_biggest(heap, type, flags, align, contig);
|
|
|
|
rte_spinlock_unlock(&(heap->lock));
|
|
|
|
return ret;
|
|
}
|
|
|
|
void *
|
|
malloc_heap_alloc_biggest(const char *type, int socket_arg, unsigned int flags,
|
|
size_t align, bool contig)
|
|
{
|
|
int socket, i, cur_socket, heap_id;
|
|
void *ret;
|
|
|
|
/* return NULL if align is not power-of-2 */
|
|
if ((align && !rte_is_power_of_2(align)))
|
|
return NULL;
|
|
|
|
if (!rte_eal_has_hugepages())
|
|
socket_arg = SOCKET_ID_ANY;
|
|
|
|
if (socket_arg == SOCKET_ID_ANY)
|
|
socket = malloc_get_numa_socket();
|
|
else
|
|
socket = socket_arg;
|
|
|
|
/* turn socket ID into heap ID */
|
|
heap_id = malloc_socket_to_heap_id(socket);
|
|
/* if heap id is negative, socket ID was invalid */
|
|
if (heap_id < 0)
|
|
return NULL;
|
|
|
|
ret = heap_alloc_biggest_on_heap_id(type, heap_id, flags, align,
|
|
contig);
|
|
if (ret != NULL || socket_arg != SOCKET_ID_ANY)
|
|
return ret;
|
|
|
|
/* try other heaps */
|
|
for (i = 0; i < (int) rte_socket_count(); i++) {
|
|
cur_socket = rte_socket_id_by_idx(i);
|
|
if (cur_socket == socket)
|
|
continue;
|
|
ret = heap_alloc_biggest_on_heap_id(type, i, flags, align,
|
|
contig);
|
|
if (ret != NULL)
|
|
return ret;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* this function is exposed in malloc_mp.h */
|
|
int
|
|
malloc_heap_free_pages(void *aligned_start, size_t aligned_len)
|
|
{
|
|
int n_segs, seg_idx, max_seg_idx;
|
|
struct rte_memseg_list *msl;
|
|
size_t page_sz;
|
|
|
|
msl = rte_mem_virt2memseg_list(aligned_start);
|
|
if (msl == NULL)
|
|
return -1;
|
|
|
|
page_sz = (size_t)msl->page_sz;
|
|
n_segs = aligned_len / page_sz;
|
|
seg_idx = RTE_PTR_DIFF(aligned_start, msl->base_va) / page_sz;
|
|
max_seg_idx = seg_idx + n_segs;
|
|
|
|
for (; seg_idx < max_seg_idx; seg_idx++) {
|
|
struct rte_memseg *ms;
|
|
|
|
ms = rte_fbarray_get(&msl->memseg_arr, seg_idx);
|
|
eal_memalloc_free_seg(ms);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
malloc_heap_free(struct malloc_elem *elem)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct malloc_heap *heap;
|
|
void *start, *aligned_start, *end, *aligned_end;
|
|
size_t len, aligned_len, page_sz;
|
|
struct rte_memseg_list *msl;
|
|
unsigned int i, n_segs, before_space, after_space;
|
|
int ret;
|
|
|
|
if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
|
|
return -1;
|
|
|
|
/* elem may be merged with previous element, so keep heap address */
|
|
heap = elem->heap;
|
|
msl = elem->msl;
|
|
page_sz = (size_t)msl->page_sz;
|
|
|
|
rte_spinlock_lock(&(heap->lock));
|
|
|
|
/* mark element as free */
|
|
elem->state = ELEM_FREE;
|
|
|
|
elem = malloc_elem_free(elem);
|
|
|
|
/* anything after this is a bonus */
|
|
ret = 0;
|
|
|
|
/* ...of which we can't avail if we are in legacy mode, or if this is an
|
|
* externally allocated segment.
|
|
*/
|
|
if (internal_config.legacy_mem || (msl->external > 0))
|
|
goto free_unlock;
|
|
|
|
/* check if we can free any memory back to the system */
|
|
if (elem->size < page_sz)
|
|
goto free_unlock;
|
|
|
|
/* if user requested to match allocations, the sizes must match - if not,
|
|
* we will defer freeing these hugepages until the entire original allocation
|
|
* can be freed
|
|
*/
|
|
if (internal_config.match_allocations && elem->size != elem->orig_size)
|
|
goto free_unlock;
|
|
|
|
/* probably, but let's make sure, as we may not be using up full page */
|
|
start = elem;
|
|
len = elem->size;
|
|
aligned_start = RTE_PTR_ALIGN_CEIL(start, page_sz);
|
|
end = RTE_PTR_ADD(elem, len);
|
|
aligned_end = RTE_PTR_ALIGN_FLOOR(end, page_sz);
|
|
|
|
aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);
|
|
|
|
/* can't free anything */
|
|
if (aligned_len < page_sz)
|
|
goto free_unlock;
|
|
|
|
/* we can free something. however, some of these pages may be marked as
|
|
* unfreeable, so also check that as well
|
|
*/
|
|
n_segs = aligned_len / page_sz;
|
|
for (i = 0; i < n_segs; i++) {
|
|
const struct rte_memseg *tmp =
|
|
rte_mem_virt2memseg(aligned_start, msl);
|
|
|
|
if (tmp->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
|
|
/* this is an unfreeable segment, so move start */
|
|
aligned_start = RTE_PTR_ADD(tmp->addr, tmp->len);
|
|
}
|
|
}
|
|
|
|
/* recalculate length and number of segments */
|
|
aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);
|
|
n_segs = aligned_len / page_sz;
|
|
|
|
/* check if we can still free some pages */
|
|
if (n_segs == 0)
|
|
goto free_unlock;
|
|
|
|
/* We're not done yet. We also have to check if by freeing space we will
|
|
* be leaving free elements that are too small to store new elements.
|
|
* Check if we have enough space in the beginning and at the end, or if
|
|
* start/end are exactly page aligned.
|
|
*/
|
|
before_space = RTE_PTR_DIFF(aligned_start, elem);
|
|
after_space = RTE_PTR_DIFF(end, aligned_end);
|
|
if (before_space != 0 &&
|
|
before_space < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
|
|
/* There is not enough space before start, but we may be able to
|
|
* move the start forward by one page.
|
|
*/
|
|
if (n_segs == 1)
|
|
goto free_unlock;
|
|
|
|
/* move start */
|
|
aligned_start = RTE_PTR_ADD(aligned_start, page_sz);
|
|
aligned_len -= page_sz;
|
|
n_segs--;
|
|
}
|
|
if (after_space != 0 && after_space <
|
|
MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
|
|
/* There is not enough space after end, but we may be able to
|
|
* move the end backwards by one page.
|
|
*/
|
|
if (n_segs == 1)
|
|
goto free_unlock;
|
|
|
|
/* move end */
|
|
aligned_end = RTE_PTR_SUB(aligned_end, page_sz);
|
|
aligned_len -= page_sz;
|
|
n_segs--;
|
|
}
|
|
|
|
/* now we can finally free us some pages */
|
|
|
|
rte_rwlock_write_lock(&mcfg->memory_hotplug_lock);
|
|
|
|
/*
|
|
* we allow secondary processes to clear the heap of this allocated
|
|
* memory because it is safe to do so, as even if notifications about
|
|
* unmapped pages don't make it to other processes, heap is shared
|
|
* across all processes, and will become empty of this memory anyway,
|
|
* and nothing can allocate it back unless primary process will be able
|
|
* to deliver allocation message to every single running process.
|
|
*/
|
|
|
|
malloc_elem_free_list_remove(elem);
|
|
|
|
malloc_elem_hide_region(elem, (void *) aligned_start, aligned_len);
|
|
|
|
heap->total_size -= aligned_len;
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
|
|
/* notify user about changes in memory map */
|
|
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
|
|
aligned_start, aligned_len);
|
|
|
|
/* don't care if any of this fails */
|
|
malloc_heap_free_pages(aligned_start, aligned_len);
|
|
|
|
request_sync();
|
|
} else {
|
|
struct malloc_mp_req req;
|
|
|
|
memset(&req, 0, sizeof(req));
|
|
|
|
req.t = REQ_TYPE_FREE;
|
|
req.free_req.addr = aligned_start;
|
|
req.free_req.len = aligned_len;
|
|
|
|
/*
|
|
* we request primary to deallocate pages, but we don't do it
|
|
* in this thread. instead, we notify primary that we would like
|
|
* to deallocate pages, and this process will receive another
|
|
* request (in parallel) that will do it for us on another
|
|
* thread.
|
|
*
|
|
* we also don't really care if this succeeds - the data is
|
|
* already removed from the heap, so it is, for all intents and
|
|
* purposes, hidden from the rest of DPDK even if some other
|
|
* process (including this one) may have these pages mapped.
|
|
*
|
|
* notifications about deallocated memory happen during sync.
|
|
*/
|
|
request_to_primary(&req);
|
|
}
|
|
|
|
RTE_LOG(DEBUG, EAL, "Heap on socket %d was shrunk by %zdMB\n",
|
|
msl->socket_id, aligned_len >> 20ULL);
|
|
|
|
rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock);
|
|
free_unlock:
|
|
rte_spinlock_unlock(&(heap->lock));
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
malloc_heap_resize(struct malloc_elem *elem, size_t size)
|
|
{
|
|
int ret;
|
|
|
|
if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
|
|
return -1;
|
|
|
|
rte_spinlock_lock(&(elem->heap->lock));
|
|
|
|
ret = malloc_elem_resize(elem, size);
|
|
|
|
rte_spinlock_unlock(&(elem->heap->lock));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Function to retrieve data for a given heap
|
|
*/
|
|
int
|
|
malloc_heap_get_stats(struct malloc_heap *heap,
|
|
struct rte_malloc_socket_stats *socket_stats)
|
|
{
|
|
size_t idx;
|
|
struct malloc_elem *elem;
|
|
|
|
rte_spinlock_lock(&heap->lock);
|
|
|
|
/* Initialise variables for heap */
|
|
socket_stats->free_count = 0;
|
|
socket_stats->heap_freesz_bytes = 0;
|
|
socket_stats->greatest_free_size = 0;
|
|
|
|
/* Iterate through free list */
|
|
for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
|
|
for (elem = LIST_FIRST(&heap->free_head[idx]);
|
|
!!elem; elem = LIST_NEXT(elem, free_list))
|
|
{
|
|
socket_stats->free_count++;
|
|
socket_stats->heap_freesz_bytes += elem->size;
|
|
if (elem->size > socket_stats->greatest_free_size)
|
|
socket_stats->greatest_free_size = elem->size;
|
|
}
|
|
}
|
|
/* Get stats on overall heap and allocated memory on this heap */
|
|
socket_stats->heap_totalsz_bytes = heap->total_size;
|
|
socket_stats->heap_allocsz_bytes = (socket_stats->heap_totalsz_bytes -
|
|
socket_stats->heap_freesz_bytes);
|
|
socket_stats->alloc_count = heap->alloc_count;
|
|
|
|
rte_spinlock_unlock(&heap->lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function to retrieve data for a given heap
|
|
*/
|
|
void
|
|
malloc_heap_dump(struct malloc_heap *heap, FILE *f)
|
|
{
|
|
struct malloc_elem *elem;
|
|
|
|
rte_spinlock_lock(&heap->lock);
|
|
|
|
fprintf(f, "Heap size: 0x%zx\n", heap->total_size);
|
|
fprintf(f, "Heap alloc count: %u\n", heap->alloc_count);
|
|
|
|
elem = heap->first;
|
|
while (elem) {
|
|
malloc_elem_dump(elem, f);
|
|
elem = elem->next;
|
|
}
|
|
|
|
rte_spinlock_unlock(&heap->lock);
|
|
}
|
|
|
|
static int
|
|
destroy_elem(struct malloc_elem *elem, size_t len)
|
|
{
|
|
struct malloc_heap *heap = elem->heap;
|
|
|
|
/* notify all subscribers that a memory area is going to be removed */
|
|
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE, elem, len);
|
|
|
|
/* this element can be removed */
|
|
malloc_elem_free_list_remove(elem);
|
|
malloc_elem_hide_region(elem, elem, len);
|
|
|
|
heap->total_size -= len;
|
|
|
|
memset(elem, 0, sizeof(*elem));
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct rte_memseg_list *
|
|
malloc_heap_create_external_seg(void *va_addr, rte_iova_t iova_addrs[],
|
|
unsigned int n_pages, size_t page_sz, const char *seg_name,
|
|
unsigned int socket_id)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
char fbarray_name[RTE_FBARRAY_NAME_LEN];
|
|
struct rte_memseg_list *msl = NULL;
|
|
struct rte_fbarray *arr;
|
|
size_t seg_len = n_pages * page_sz;
|
|
unsigned int i;
|
|
|
|
/* first, find a free memseg list */
|
|
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
|
|
struct rte_memseg_list *tmp = &mcfg->memsegs[i];
|
|
if (tmp->base_va == NULL) {
|
|
msl = tmp;
|
|
break;
|
|
}
|
|
}
|
|
if (msl == NULL) {
|
|
RTE_LOG(ERR, EAL, "Couldn't find empty memseg list\n");
|
|
rte_errno = ENOSPC;
|
|
return NULL;
|
|
}
|
|
|
|
snprintf(fbarray_name, sizeof(fbarray_name) - 1, "%s_%p",
|
|
seg_name, va_addr);
|
|
|
|
/* create the backing fbarray */
|
|
if (rte_fbarray_init(&msl->memseg_arr, fbarray_name, n_pages,
|
|
sizeof(struct rte_memseg)) < 0) {
|
|
RTE_LOG(ERR, EAL, "Couldn't create fbarray backing the memseg list\n");
|
|
return NULL;
|
|
}
|
|
arr = &msl->memseg_arr;
|
|
|
|
/* fbarray created, fill it up */
|
|
for (i = 0; i < n_pages; i++) {
|
|
struct rte_memseg *ms;
|
|
|
|
rte_fbarray_set_used(arr, i);
|
|
ms = rte_fbarray_get(arr, i);
|
|
ms->addr = RTE_PTR_ADD(va_addr, i * page_sz);
|
|
ms->iova = iova_addrs == NULL ? RTE_BAD_IOVA : iova_addrs[i];
|
|
ms->hugepage_sz = page_sz;
|
|
ms->len = page_sz;
|
|
ms->nchannel = rte_memory_get_nchannel();
|
|
ms->nrank = rte_memory_get_nrank();
|
|
ms->socket_id = socket_id;
|
|
}
|
|
|
|
/* set up the memseg list */
|
|
msl->base_va = va_addr;
|
|
msl->page_sz = page_sz;
|
|
msl->socket_id = socket_id;
|
|
msl->len = seg_len;
|
|
msl->version = 0;
|
|
msl->external = 1;
|
|
|
|
return msl;
|
|
}
|
|
|
|
struct extseg_walk_arg {
|
|
void *va_addr;
|
|
size_t len;
|
|
struct rte_memseg_list *msl;
|
|
};
|
|
|
|
static int
|
|
extseg_walk(const struct rte_memseg_list *msl, void *arg)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct extseg_walk_arg *wa = arg;
|
|
|
|
if (msl->base_va == wa->va_addr && msl->len == wa->len) {
|
|
unsigned int found_idx;
|
|
|
|
/* msl is const */
|
|
found_idx = msl - mcfg->memsegs;
|
|
wa->msl = &mcfg->memsegs[found_idx];
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct rte_memseg_list *
|
|
malloc_heap_find_external_seg(void *va_addr, size_t len)
|
|
{
|
|
struct extseg_walk_arg wa;
|
|
int res;
|
|
|
|
wa.va_addr = va_addr;
|
|
wa.len = len;
|
|
|
|
res = rte_memseg_list_walk_thread_unsafe(extseg_walk, &wa);
|
|
|
|
if (res != 1) {
|
|
/* 0 means nothing was found, -1 shouldn't happen */
|
|
if (res == 0)
|
|
rte_errno = ENOENT;
|
|
return NULL;
|
|
}
|
|
return wa.msl;
|
|
}
|
|
|
|
int
|
|
malloc_heap_destroy_external_seg(struct rte_memseg_list *msl)
|
|
{
|
|
/* destroy the fbarray backing this memory */
|
|
if (rte_fbarray_destroy(&msl->memseg_arr) < 0)
|
|
return -1;
|
|
|
|
/* reset the memseg list */
|
|
memset(msl, 0, sizeof(*msl));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
malloc_heap_add_external_memory(struct malloc_heap *heap,
|
|
struct rte_memseg_list *msl)
|
|
{
|
|
/* erase contents of new memory */
|
|
memset(msl->base_va, 0, msl->len);
|
|
|
|
/* now, add newly minted memory to the malloc heap */
|
|
malloc_heap_add_memory(heap, msl, msl->base_va, msl->len);
|
|
|
|
heap->total_size += msl->len;
|
|
|
|
/* all done! */
|
|
RTE_LOG(DEBUG, EAL, "Added segment for heap %s starting at %p\n",
|
|
heap->name, msl->base_va);
|
|
|
|
/* notify all subscribers that a new memory area has been added */
|
|
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
|
|
msl->base_va, msl->len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
malloc_heap_remove_external_memory(struct malloc_heap *heap, void *va_addr,
|
|
size_t len)
|
|
{
|
|
struct malloc_elem *elem = heap->first;
|
|
|
|
/* find element with specified va address */
|
|
while (elem != NULL && elem != va_addr) {
|
|
elem = elem->next;
|
|
/* stop if we've blown past our VA */
|
|
if (elem > (struct malloc_elem *)va_addr) {
|
|
rte_errno = ENOENT;
|
|
return -1;
|
|
}
|
|
}
|
|
/* check if element was found */
|
|
if (elem == NULL || elem->msl->len != len) {
|
|
rte_errno = ENOENT;
|
|
return -1;
|
|
}
|
|
/* if element's size is not equal to segment len, segment is busy */
|
|
if (elem->state == ELEM_BUSY || elem->size != len) {
|
|
rte_errno = EBUSY;
|
|
return -1;
|
|
}
|
|
return destroy_elem(elem, len);
|
|
}
|
|
|
|
int
|
|
malloc_heap_create(struct malloc_heap *heap, const char *heap_name)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
uint32_t next_socket_id = mcfg->next_socket_id;
|
|
|
|
/* prevent overflow. did you really create 2 billion heaps??? */
|
|
if (next_socket_id > INT32_MAX) {
|
|
RTE_LOG(ERR, EAL, "Cannot assign new socket ID's\n");
|
|
rte_errno = ENOSPC;
|
|
return -1;
|
|
}
|
|
|
|
/* initialize empty heap */
|
|
heap->alloc_count = 0;
|
|
heap->first = NULL;
|
|
heap->last = NULL;
|
|
LIST_INIT(heap->free_head);
|
|
rte_spinlock_init(&heap->lock);
|
|
heap->total_size = 0;
|
|
heap->socket_id = next_socket_id;
|
|
|
|
/* we hold a global mem hotplug writelock, so it's safe to increment */
|
|
mcfg->next_socket_id++;
|
|
|
|
/* set up name */
|
|
strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
malloc_heap_destroy(struct malloc_heap *heap)
|
|
{
|
|
if (heap->alloc_count != 0) {
|
|
RTE_LOG(ERR, EAL, "Heap is still in use\n");
|
|
rte_errno = EBUSY;
|
|
return -1;
|
|
}
|
|
if (heap->first != NULL || heap->last != NULL) {
|
|
RTE_LOG(ERR, EAL, "Heap still contains memory segments\n");
|
|
rte_errno = EBUSY;
|
|
return -1;
|
|
}
|
|
if (heap->total_size != 0)
|
|
RTE_LOG(ERR, EAL, "Total size not zero, heap is likely corrupt\n");
|
|
|
|
/* after this, the lock will be dropped */
|
|
memset(heap, 0, sizeof(*heap));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_eal_malloc_heap_init(void)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
unsigned int i;
|
|
|
|
if (internal_config.match_allocations) {
|
|
RTE_LOG(DEBUG, EAL, "Hugepages will be freed exactly as allocated.\n");
|
|
}
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
|
|
/* assign min socket ID to external heaps */
|
|
mcfg->next_socket_id = EXTERNAL_HEAP_MIN_SOCKET_ID;
|
|
|
|
/* assign names to default DPDK heaps */
|
|
for (i = 0; i < rte_socket_count(); i++) {
|
|
struct malloc_heap *heap = &mcfg->malloc_heaps[i];
|
|
char heap_name[RTE_HEAP_NAME_MAX_LEN];
|
|
int socket_id = rte_socket_id_by_idx(i);
|
|
|
|
snprintf(heap_name, sizeof(heap_name) - 1,
|
|
"socket_%i", socket_id);
|
|
strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN);
|
|
heap->socket_id = socket_id;
|
|
}
|
|
}
|
|
|
|
|
|
if (register_mp_requests()) {
|
|
RTE_LOG(ERR, EAL, "Couldn't register malloc multiprocess actions\n");
|
|
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
|
|
return -1;
|
|
}
|
|
|
|
/* unlock mem hotplug here. it's safe for primary as no requests can
|
|
* even come before primary itself is fully initialized, and secondaries
|
|
* do not need to initialize the heap.
|
|
*/
|
|
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
|
|
|
|
/* secondary process does not need to initialize anything */
|
|
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
|
|
return 0;
|
|
|
|
/* add all IOVA-contiguous areas to the heap */
|
|
return rte_memseg_contig_walk(malloc_add_seg, NULL);
|
|
}
|