4ab82fec13
Libcrypto PMD has support for: Supported cipher algorithms: RTE_CRYPTO_CIPHER_3DES_CBC RTE_CRYPTO_CIPHER_AES_CBC RTE_CRYPTO_CIPHER_AES_CTR RTE_CRYPTO_CIPHER_3DES_CTR RTE_CRYPTO_CIPHER_AES_GCM Supported authentication algorithms: RTE_CRYPTO_AUTH_AES_GMAC RTE_CRYPTO_AUTH_MD5 RTE_CRYPTO_AUTH_SHA1 RTE_CRYPTO_AUTH_SHA224 RTE_CRYPTO_AUTH_SHA256 RTE_CRYPTO_AUTH_SHA384 RTE_CRYPTO_AUTH_SHA512 RTE_CRYPTO_AUTH_MD5_HMAC RTE_CRYPTO_AUTH_SHA1_HMAC RTE_CRYPTO_AUTH_SHA224_HMAC RTE_CRYPTO_AUTH_SHA256_HMAC RTE_CRYPTO_AUTH_SHA384_HMAC RTE_CRYPTO_AUTH_SHA512_HMAC Signed-off-by: Daniel Mrzyglod <danielx.t.mrzyglod@intel.com> Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
2105 lines
57 KiB
C
2105 lines
57 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2015-2016 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <time.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <sys/types.h>
|
|
#include <sys/queue.h>
|
|
#include <netinet/in.h>
|
|
#include <setjmp.h>
|
|
#include <stdarg.h>
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <getopt.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
|
|
#include <rte_atomic.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_common.h>
|
|
#include <rte_cryptodev.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_interrupts.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_log.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_pci.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_prefetch.h>
|
|
#include <rte_random.h>
|
|
#include <rte_hexdump.h>
|
|
|
|
enum cdev_type {
|
|
CDEV_TYPE_ANY,
|
|
CDEV_TYPE_HW,
|
|
CDEV_TYPE_SW
|
|
};
|
|
|
|
#define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
|
|
|
|
#define NB_MBUF 8192
|
|
|
|
#define MAX_STR_LEN 32
|
|
#define MAX_KEY_SIZE 128
|
|
#define MAX_PKT_BURST 32
|
|
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
|
|
|
|
/*
|
|
* Configurable number of RX/TX ring descriptors
|
|
*/
|
|
#define RTE_TEST_RX_DESC_DEFAULT 128
|
|
#define RTE_TEST_TX_DESC_DEFAULT 512
|
|
|
|
static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
|
|
static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
|
|
|
|
/* ethernet addresses of ports */
|
|
static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS];
|
|
|
|
/* mask of enabled ports */
|
|
static uint64_t l2fwd_enabled_port_mask;
|
|
static uint64_t l2fwd_enabled_crypto_mask;
|
|
|
|
/* list of enabled ports */
|
|
static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS];
|
|
|
|
|
|
struct pkt_buffer {
|
|
unsigned len;
|
|
struct rte_mbuf *buffer[MAX_PKT_BURST];
|
|
};
|
|
|
|
struct op_buffer {
|
|
unsigned len;
|
|
struct rte_crypto_op *buffer[MAX_PKT_BURST];
|
|
};
|
|
|
|
#define MAX_RX_QUEUE_PER_LCORE 16
|
|
#define MAX_TX_QUEUE_PER_PORT 16
|
|
|
|
enum l2fwd_crypto_xform_chain {
|
|
L2FWD_CRYPTO_CIPHER_HASH,
|
|
L2FWD_CRYPTO_HASH_CIPHER,
|
|
L2FWD_CRYPTO_CIPHER_ONLY,
|
|
L2FWD_CRYPTO_HASH_ONLY
|
|
};
|
|
|
|
struct l2fwd_key {
|
|
uint8_t *data;
|
|
uint32_t length;
|
|
phys_addr_t phys_addr;
|
|
};
|
|
|
|
char supported_auth_algo[RTE_CRYPTO_AUTH_LIST_END][MAX_STR_LEN];
|
|
char supported_cipher_algo[RTE_CRYPTO_CIPHER_LIST_END][MAX_STR_LEN];
|
|
|
|
/** l2fwd crypto application command line options */
|
|
struct l2fwd_crypto_options {
|
|
unsigned portmask;
|
|
unsigned nb_ports_per_lcore;
|
|
unsigned refresh_period;
|
|
unsigned single_lcore:1;
|
|
|
|
enum cdev_type type;
|
|
unsigned sessionless:1;
|
|
|
|
enum l2fwd_crypto_xform_chain xform_chain;
|
|
|
|
struct rte_crypto_sym_xform cipher_xform;
|
|
unsigned ckey_param;
|
|
int ckey_random_size;
|
|
|
|
struct l2fwd_key iv;
|
|
unsigned iv_param;
|
|
int iv_random_size;
|
|
|
|
struct rte_crypto_sym_xform auth_xform;
|
|
uint8_t akey_param;
|
|
int akey_random_size;
|
|
|
|
struct l2fwd_key aad;
|
|
unsigned aad_param;
|
|
int aad_random_size;
|
|
|
|
int digest_size;
|
|
|
|
uint16_t block_size;
|
|
char string_type[MAX_STR_LEN];
|
|
};
|
|
|
|
/** l2fwd crypto lcore params */
|
|
struct l2fwd_crypto_params {
|
|
uint8_t dev_id;
|
|
uint8_t qp_id;
|
|
|
|
unsigned digest_length;
|
|
unsigned block_size;
|
|
|
|
struct l2fwd_key iv;
|
|
struct l2fwd_key aad;
|
|
struct rte_cryptodev_sym_session *session;
|
|
|
|
uint8_t do_cipher;
|
|
uint8_t do_hash;
|
|
uint8_t hash_verify;
|
|
|
|
enum rte_crypto_cipher_algorithm cipher_algo;
|
|
enum rte_crypto_auth_algorithm auth_algo;
|
|
};
|
|
|
|
/** lcore configuration */
|
|
struct lcore_queue_conf {
|
|
unsigned nb_rx_ports;
|
|
unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
|
|
|
|
unsigned nb_crypto_devs;
|
|
unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE];
|
|
|
|
struct op_buffer op_buf[RTE_MAX_ETHPORTS];
|
|
struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS];
|
|
} __rte_cache_aligned;
|
|
|
|
struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
|
|
|
|
static const struct rte_eth_conf port_conf = {
|
|
.rxmode = {
|
|
.mq_mode = ETH_MQ_RX_NONE,
|
|
.max_rx_pkt_len = ETHER_MAX_LEN,
|
|
.split_hdr_size = 0,
|
|
.header_split = 0, /**< Header Split disabled */
|
|
.hw_ip_checksum = 0, /**< IP checksum offload disabled */
|
|
.hw_vlan_filter = 0, /**< VLAN filtering disabled */
|
|
.jumbo_frame = 0, /**< Jumbo Frame Support disabled */
|
|
.hw_strip_crc = 0, /**< CRC stripped by hardware */
|
|
},
|
|
.txmode = {
|
|
.mq_mode = ETH_MQ_TX_NONE,
|
|
},
|
|
};
|
|
|
|
struct rte_mempool *l2fwd_pktmbuf_pool;
|
|
struct rte_mempool *l2fwd_crypto_op_pool;
|
|
|
|
/* Per-port statistics struct */
|
|
struct l2fwd_port_statistics {
|
|
uint64_t tx;
|
|
uint64_t rx;
|
|
|
|
uint64_t crypto_enqueued;
|
|
uint64_t crypto_dequeued;
|
|
|
|
uint64_t dropped;
|
|
} __rte_cache_aligned;
|
|
|
|
struct l2fwd_crypto_statistics {
|
|
uint64_t enqueued;
|
|
uint64_t dequeued;
|
|
|
|
uint64_t errors;
|
|
} __rte_cache_aligned;
|
|
|
|
struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];
|
|
struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS];
|
|
|
|
/* A tsc-based timer responsible for triggering statistics printout */
|
|
#define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */
|
|
#define MAX_TIMER_PERIOD 86400UL /* 1 day max */
|
|
|
|
/* default period is 10 seconds */
|
|
static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000;
|
|
|
|
/* Print out statistics on packets dropped */
|
|
static void
|
|
print_stats(void)
|
|
{
|
|
uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
|
|
uint64_t total_packets_enqueued, total_packets_dequeued,
|
|
total_packets_errors;
|
|
unsigned portid;
|
|
uint64_t cdevid;
|
|
|
|
total_packets_dropped = 0;
|
|
total_packets_tx = 0;
|
|
total_packets_rx = 0;
|
|
total_packets_enqueued = 0;
|
|
total_packets_dequeued = 0;
|
|
total_packets_errors = 0;
|
|
|
|
const char clr[] = { 27, '[', '2', 'J', '\0' };
|
|
const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
|
|
|
|
/* Clear screen and move to top left */
|
|
printf("%s%s", clr, topLeft);
|
|
|
|
printf("\nPort statistics ====================================");
|
|
|
|
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
|
|
/* skip disabled ports */
|
|
if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
|
|
continue;
|
|
printf("\nStatistics for port %u ------------------------------"
|
|
"\nPackets sent: %32"PRIu64
|
|
"\nPackets received: %28"PRIu64
|
|
"\nPackets dropped: %29"PRIu64,
|
|
portid,
|
|
port_statistics[portid].tx,
|
|
port_statistics[portid].rx,
|
|
port_statistics[portid].dropped);
|
|
|
|
total_packets_dropped += port_statistics[portid].dropped;
|
|
total_packets_tx += port_statistics[portid].tx;
|
|
total_packets_rx += port_statistics[portid].rx;
|
|
}
|
|
printf("\nCrypto statistics ==================================");
|
|
|
|
for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) {
|
|
/* skip disabled ports */
|
|
if ((l2fwd_enabled_crypto_mask & (1lu << cdevid)) == 0)
|
|
continue;
|
|
printf("\nStatistics for cryptodev %"PRIu64
|
|
" -------------------------"
|
|
"\nPackets enqueued: %28"PRIu64
|
|
"\nPackets dequeued: %28"PRIu64
|
|
"\nPackets errors: %30"PRIu64,
|
|
cdevid,
|
|
crypto_statistics[cdevid].enqueued,
|
|
crypto_statistics[cdevid].dequeued,
|
|
crypto_statistics[cdevid].errors);
|
|
|
|
total_packets_enqueued += crypto_statistics[cdevid].enqueued;
|
|
total_packets_dequeued += crypto_statistics[cdevid].dequeued;
|
|
total_packets_errors += crypto_statistics[cdevid].errors;
|
|
}
|
|
printf("\nAggregate statistics ==============================="
|
|
"\nTotal packets received: %22"PRIu64
|
|
"\nTotal packets enqueued: %22"PRIu64
|
|
"\nTotal packets dequeued: %22"PRIu64
|
|
"\nTotal packets sent: %26"PRIu64
|
|
"\nTotal packets dropped: %23"PRIu64
|
|
"\nTotal packets crypto errors: %17"PRIu64,
|
|
total_packets_rx,
|
|
total_packets_enqueued,
|
|
total_packets_dequeued,
|
|
total_packets_tx,
|
|
total_packets_dropped,
|
|
total_packets_errors);
|
|
printf("\n====================================================\n");
|
|
}
|
|
|
|
static void
|
|
fill_supported_algorithm_tables(void)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++)
|
|
strcpy(supported_auth_algo[i], "NOT_SUPPORTED");
|
|
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_GCM], "AES_GCM");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_GMAC], "AES_GMAC");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_MD5_HMAC], "MD5_HMAC");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_MD5], "MD5");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_NULL], "NULL");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_XCBC_MAC],
|
|
"AES_XCBC_MAC");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA1_HMAC], "SHA1_HMAC");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA1], "SHA1");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA224_HMAC], "SHA224_HMAC");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA224], "SHA224");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA256_HMAC], "SHA256_HMAC");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA256], "SHA256");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA384_HMAC], "SHA384_HMAC");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA384], "SHA384");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA512_HMAC], "SHA512_HMAC");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA512], "SHA512");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SNOW3G_UIA2], "SNOW3G_UIA2");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_ZUC_EIA3], "ZUC_EIA3");
|
|
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_KASUMI_F9], "KASUMI_F9");
|
|
|
|
for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++)
|
|
strcpy(supported_cipher_algo[i], "NOT_SUPPORTED");
|
|
|
|
strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CBC], "AES_CBC");
|
|
strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CTR], "AES_CTR");
|
|
strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_GCM], "AES_GCM");
|
|
strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_NULL], "NULL");
|
|
strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_SNOW3G_UEA2], "SNOW3G_UEA2");
|
|
strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_ZUC_EEA3], "ZUC_EEA3");
|
|
strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_KASUMI_F8], "KASUMI_F8");
|
|
strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_3DES_CTR], "3DES_CTR");
|
|
strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_3DES_CBC], "3DES_CBC");
|
|
}
|
|
|
|
|
|
static int
|
|
l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,
|
|
struct l2fwd_crypto_params *cparams)
|
|
{
|
|
struct rte_crypto_op **op_buffer;
|
|
unsigned ret;
|
|
|
|
op_buffer = (struct rte_crypto_op **)
|
|
qconf->op_buf[cparams->dev_id].buffer;
|
|
|
|
ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
|
|
cparams->qp_id, op_buffer, (uint16_t) n);
|
|
|
|
crypto_statistics[cparams->dev_id].enqueued += ret;
|
|
if (unlikely(ret < n)) {
|
|
crypto_statistics[cparams->dev_id].errors += (n - ret);
|
|
do {
|
|
rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
|
|
rte_crypto_op_free(op_buffer[ret]);
|
|
} while (++ret < n);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
l2fwd_crypto_enqueue(struct rte_crypto_op *op,
|
|
struct l2fwd_crypto_params *cparams)
|
|
{
|
|
unsigned lcore_id, len;
|
|
struct lcore_queue_conf *qconf;
|
|
|
|
lcore_id = rte_lcore_id();
|
|
|
|
qconf = &lcore_queue_conf[lcore_id];
|
|
len = qconf->op_buf[cparams->dev_id].len;
|
|
qconf->op_buf[cparams->dev_id].buffer[len] = op;
|
|
len++;
|
|
|
|
/* enough ops to be sent */
|
|
if (len == MAX_PKT_BURST) {
|
|
l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
|
|
len = 0;
|
|
}
|
|
|
|
qconf->op_buf[cparams->dev_id].len = len;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
l2fwd_simple_crypto_enqueue(struct rte_mbuf *m,
|
|
struct rte_crypto_op *op,
|
|
struct l2fwd_crypto_params *cparams)
|
|
{
|
|
struct ether_hdr *eth_hdr;
|
|
struct ipv4_hdr *ip_hdr;
|
|
|
|
unsigned ipdata_offset, pad_len, data_len;
|
|
char *padding;
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
|
|
|
|
if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4))
|
|
return -1;
|
|
|
|
ipdata_offset = sizeof(struct ether_hdr);
|
|
|
|
ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) +
|
|
ipdata_offset);
|
|
|
|
ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK)
|
|
* IPV4_IHL_MULTIPLIER;
|
|
|
|
|
|
/* Zero pad data to be crypto'd so it is block aligned */
|
|
data_len = rte_pktmbuf_data_len(m) - ipdata_offset;
|
|
pad_len = data_len % cparams->block_size ? cparams->block_size -
|
|
(data_len % cparams->block_size) : 0;
|
|
|
|
if (pad_len) {
|
|
padding = rte_pktmbuf_append(m, pad_len);
|
|
if (unlikely(!padding))
|
|
return -1;
|
|
|
|
data_len += pad_len;
|
|
memset(padding, 0, pad_len);
|
|
}
|
|
|
|
/* Set crypto operation data parameters */
|
|
rte_crypto_op_attach_sym_session(op, cparams->session);
|
|
|
|
if (cparams->do_hash) {
|
|
if (!cparams->hash_verify) {
|
|
/* Append space for digest to end of packet */
|
|
op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
|
|
cparams->digest_length);
|
|
} else {
|
|
op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
|
|
cparams->digest_length);
|
|
}
|
|
|
|
op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m,
|
|
rte_pktmbuf_pkt_len(m) - cparams->digest_length);
|
|
op->sym->auth.digest.length = cparams->digest_length;
|
|
|
|
/* For wireless algorithms, offset/length must be in bits */
|
|
if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 ||
|
|
cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 ||
|
|
cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) {
|
|
op->sym->auth.data.offset = ipdata_offset << 3;
|
|
op->sym->auth.data.length = data_len << 3;
|
|
} else {
|
|
op->sym->auth.data.offset = ipdata_offset;
|
|
op->sym->auth.data.length = data_len;
|
|
}
|
|
|
|
if (cparams->aad.length) {
|
|
op->sym->auth.aad.data = cparams->aad.data;
|
|
op->sym->auth.aad.phys_addr = cparams->aad.phys_addr;
|
|
op->sym->auth.aad.length = cparams->aad.length;
|
|
}
|
|
}
|
|
|
|
if (cparams->do_cipher) {
|
|
op->sym->cipher.iv.data = cparams->iv.data;
|
|
op->sym->cipher.iv.phys_addr = cparams->iv.phys_addr;
|
|
op->sym->cipher.iv.length = cparams->iv.length;
|
|
|
|
/* For wireless algorithms, offset/length must be in bits */
|
|
if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 ||
|
|
cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 ||
|
|
cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) {
|
|
op->sym->cipher.data.offset = ipdata_offset << 3;
|
|
if (cparams->do_hash && cparams->hash_verify)
|
|
/* Do not cipher the hash tag */
|
|
op->sym->cipher.data.length = (data_len -
|
|
cparams->digest_length) << 3;
|
|
else
|
|
op->sym->cipher.data.length = data_len << 3;
|
|
|
|
} else {
|
|
op->sym->cipher.data.offset = ipdata_offset;
|
|
if (cparams->do_hash && cparams->hash_verify)
|
|
/* Do not cipher the hash tag */
|
|
op->sym->cipher.data.length = data_len -
|
|
cparams->digest_length;
|
|
else
|
|
op->sym->cipher.data.length = data_len;
|
|
}
|
|
}
|
|
|
|
op->sym->m_src = m;
|
|
|
|
return l2fwd_crypto_enqueue(op, cparams);
|
|
}
|
|
|
|
|
|
/* Send the burst of packets on an output interface */
|
|
static int
|
|
l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n,
|
|
uint8_t port)
|
|
{
|
|
struct rte_mbuf **pkt_buffer;
|
|
unsigned ret;
|
|
|
|
pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer;
|
|
|
|
ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n);
|
|
port_statistics[port].tx += ret;
|
|
if (unlikely(ret < n)) {
|
|
port_statistics[port].dropped += (n - ret);
|
|
do {
|
|
rte_pktmbuf_free(pkt_buffer[ret]);
|
|
} while (++ret < n);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Enqueue packets for TX and prepare them to be sent */
|
|
static int
|
|
l2fwd_send_packet(struct rte_mbuf *m, uint8_t port)
|
|
{
|
|
unsigned lcore_id, len;
|
|
struct lcore_queue_conf *qconf;
|
|
|
|
lcore_id = rte_lcore_id();
|
|
|
|
qconf = &lcore_queue_conf[lcore_id];
|
|
len = qconf->pkt_buf[port].len;
|
|
qconf->pkt_buf[port].buffer[len] = m;
|
|
len++;
|
|
|
|
/* enough pkts to be sent */
|
|
if (unlikely(len == MAX_PKT_BURST)) {
|
|
l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
|
|
len = 0;
|
|
}
|
|
|
|
qconf->pkt_buf[port].len = len;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
|
|
{
|
|
struct ether_hdr *eth;
|
|
void *tmp;
|
|
unsigned dst_port;
|
|
|
|
dst_port = l2fwd_dst_ports[portid];
|
|
eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
|
|
|
|
/* 02:00:00:00:00:xx */
|
|
tmp = ð->d_addr.addr_bytes[0];
|
|
*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40);
|
|
|
|
/* src addr */
|
|
ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr);
|
|
|
|
l2fwd_send_packet(m, (uint8_t) dst_port);
|
|
}
|
|
|
|
/** Generate random key */
|
|
static void
|
|
generate_random_key(uint8_t *key, unsigned length)
|
|
{
|
|
int fd;
|
|
int ret;
|
|
|
|
fd = open("/dev/urandom", O_RDONLY);
|
|
if (fd < 0)
|
|
rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
|
|
|
|
ret = read(fd, key, length);
|
|
close(fd);
|
|
|
|
if (ret != (signed)length)
|
|
rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
|
|
}
|
|
|
|
static struct rte_cryptodev_sym_session *
|
|
initialize_crypto_session(struct l2fwd_crypto_options *options,
|
|
uint8_t cdev_id)
|
|
{
|
|
struct rte_crypto_sym_xform *first_xform;
|
|
|
|
if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
|
|
first_xform = &options->cipher_xform;
|
|
first_xform->next = &options->auth_xform;
|
|
} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
|
|
first_xform = &options->auth_xform;
|
|
first_xform->next = &options->cipher_xform;
|
|
} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
|
|
first_xform = &options->cipher_xform;
|
|
} else {
|
|
first_xform = &options->auth_xform;
|
|
}
|
|
|
|
/* Setup Cipher Parameters */
|
|
return rte_cryptodev_sym_session_create(cdev_id, first_xform);
|
|
}
|
|
|
|
static void
|
|
l2fwd_crypto_options_print(struct l2fwd_crypto_options *options);
|
|
|
|
/* main processing loop */
|
|
static void
|
|
l2fwd_main_loop(struct l2fwd_crypto_options *options)
|
|
{
|
|
struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST];
|
|
struct rte_crypto_op *ops_burst[MAX_PKT_BURST];
|
|
|
|
unsigned lcore_id = rte_lcore_id();
|
|
uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
|
|
unsigned i, j, portid, nb_rx, len;
|
|
struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id];
|
|
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
|
|
US_PER_S * BURST_TX_DRAIN_US;
|
|
struct l2fwd_crypto_params *cparams;
|
|
struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs];
|
|
|
|
if (qconf->nb_rx_ports == 0) {
|
|
RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id);
|
|
return;
|
|
}
|
|
|
|
RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id);
|
|
|
|
for (i = 0; i < qconf->nb_rx_ports; i++) {
|
|
|
|
portid = qconf->rx_port_list[i];
|
|
RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id,
|
|
portid);
|
|
}
|
|
|
|
for (i = 0; i < qconf->nb_crypto_devs; i++) {
|
|
port_cparams[i].do_cipher = 0;
|
|
port_cparams[i].do_hash = 0;
|
|
|
|
switch (options->xform_chain) {
|
|
case L2FWD_CRYPTO_CIPHER_HASH:
|
|
case L2FWD_CRYPTO_HASH_CIPHER:
|
|
port_cparams[i].do_cipher = 1;
|
|
port_cparams[i].do_hash = 1;
|
|
break;
|
|
case L2FWD_CRYPTO_HASH_ONLY:
|
|
port_cparams[i].do_hash = 1;
|
|
break;
|
|
case L2FWD_CRYPTO_CIPHER_ONLY:
|
|
port_cparams[i].do_cipher = 1;
|
|
break;
|
|
}
|
|
|
|
port_cparams[i].dev_id = qconf->cryptodev_list[i];
|
|
port_cparams[i].qp_id = 0;
|
|
|
|
port_cparams[i].block_size = options->block_size;
|
|
|
|
if (port_cparams[i].do_hash) {
|
|
port_cparams[i].digest_length =
|
|
options->auth_xform.auth.digest_length;
|
|
if (options->auth_xform.auth.add_auth_data_length) {
|
|
port_cparams[i].aad.data = options->aad.data;
|
|
port_cparams[i].aad.length =
|
|
options->auth_xform.auth.add_auth_data_length;
|
|
port_cparams[i].aad.phys_addr = options->aad.phys_addr;
|
|
if (!options->aad_param)
|
|
generate_random_key(port_cparams[i].aad.data,
|
|
port_cparams[i].aad.length);
|
|
|
|
}
|
|
|
|
if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
|
|
port_cparams[i].hash_verify = 1;
|
|
else
|
|
port_cparams[i].hash_verify = 0;
|
|
|
|
port_cparams[i].auth_algo = options->auth_xform.auth.algo;
|
|
}
|
|
|
|
if (port_cparams[i].do_cipher) {
|
|
port_cparams[i].iv.data = options->iv.data;
|
|
port_cparams[i].iv.length = options->iv.length;
|
|
port_cparams[i].iv.phys_addr = options->iv.phys_addr;
|
|
if (!options->iv_param)
|
|
generate_random_key(port_cparams[i].iv.data,
|
|
port_cparams[i].iv.length);
|
|
|
|
port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo;
|
|
}
|
|
|
|
port_cparams[i].session = initialize_crypto_session(options,
|
|
port_cparams[i].dev_id);
|
|
|
|
if (port_cparams[i].session == NULL)
|
|
return;
|
|
RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id,
|
|
port_cparams[i].dev_id);
|
|
}
|
|
|
|
l2fwd_crypto_options_print(options);
|
|
|
|
/*
|
|
* Initialize previous tsc timestamp before the loop,
|
|
* to avoid showing the port statistics immediately,
|
|
* so user can see the crypto information.
|
|
*/
|
|
prev_tsc = rte_rdtsc();
|
|
while (1) {
|
|
|
|
cur_tsc = rte_rdtsc();
|
|
|
|
/*
|
|
* Crypto device/TX burst queue drain
|
|
*/
|
|
diff_tsc = cur_tsc - prev_tsc;
|
|
if (unlikely(diff_tsc > drain_tsc)) {
|
|
/* Enqueue all crypto ops remaining in buffers */
|
|
for (i = 0; i < qconf->nb_crypto_devs; i++) {
|
|
cparams = &port_cparams[i];
|
|
len = qconf->op_buf[cparams->dev_id].len;
|
|
l2fwd_crypto_send_burst(qconf, len, cparams);
|
|
qconf->op_buf[cparams->dev_id].len = 0;
|
|
}
|
|
/* Transmit all packets remaining in buffers */
|
|
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
|
|
if (qconf->pkt_buf[portid].len == 0)
|
|
continue;
|
|
l2fwd_send_burst(&lcore_queue_conf[lcore_id],
|
|
qconf->pkt_buf[portid].len,
|
|
(uint8_t) portid);
|
|
qconf->pkt_buf[portid].len = 0;
|
|
}
|
|
|
|
/* if timer is enabled */
|
|
if (timer_period > 0) {
|
|
|
|
/* advance the timer */
|
|
timer_tsc += diff_tsc;
|
|
|
|
/* if timer has reached its timeout */
|
|
if (unlikely(timer_tsc >=
|
|
(uint64_t)timer_period)) {
|
|
|
|
/* do this only on master core */
|
|
if (lcore_id == rte_get_master_lcore()
|
|
&& options->refresh_period) {
|
|
print_stats();
|
|
timer_tsc = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
prev_tsc = cur_tsc;
|
|
}
|
|
|
|
/*
|
|
* Read packet from RX queues
|
|
*/
|
|
for (i = 0; i < qconf->nb_rx_ports; i++) {
|
|
portid = qconf->rx_port_list[i];
|
|
|
|
cparams = &port_cparams[i];
|
|
|
|
nb_rx = rte_eth_rx_burst((uint8_t) portid, 0,
|
|
pkts_burst, MAX_PKT_BURST);
|
|
|
|
port_statistics[portid].rx += nb_rx;
|
|
|
|
if (nb_rx) {
|
|
/*
|
|
* If we can't allocate a crypto_ops, then drop
|
|
* the rest of the burst and dequeue and
|
|
* process the packets to free offload structs
|
|
*/
|
|
if (rte_crypto_op_bulk_alloc(
|
|
l2fwd_crypto_op_pool,
|
|
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
|
|
ops_burst, nb_rx) !=
|
|
nb_rx) {
|
|
for (j = 0; j < nb_rx; j++)
|
|
rte_pktmbuf_free(pkts_burst[i]);
|
|
|
|
nb_rx = 0;
|
|
}
|
|
|
|
/* Enqueue packets from Crypto device*/
|
|
for (j = 0; j < nb_rx; j++) {
|
|
m = pkts_burst[j];
|
|
|
|
l2fwd_simple_crypto_enqueue(m,
|
|
ops_burst[j], cparams);
|
|
}
|
|
}
|
|
|
|
/* Dequeue packets from Crypto device */
|
|
do {
|
|
nb_rx = rte_cryptodev_dequeue_burst(
|
|
cparams->dev_id, cparams->qp_id,
|
|
ops_burst, MAX_PKT_BURST);
|
|
|
|
crypto_statistics[cparams->dev_id].dequeued +=
|
|
nb_rx;
|
|
|
|
/* Forward crypto'd packets */
|
|
for (j = 0; j < nb_rx; j++) {
|
|
m = ops_burst[j]->sym->m_src;
|
|
|
|
rte_crypto_op_free(ops_burst[j]);
|
|
l2fwd_simple_forward(m, portid);
|
|
}
|
|
} while (nb_rx == MAX_PKT_BURST);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
l2fwd_launch_one_lcore(void *arg)
|
|
{
|
|
l2fwd_main_loop((struct l2fwd_crypto_options *)arg);
|
|
return 0;
|
|
}
|
|
|
|
/* Display command line arguments usage */
|
|
static void
|
|
l2fwd_crypto_usage(const char *prgname)
|
|
{
|
|
printf("%s [EAL options] --\n"
|
|
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
|
|
" -q NQ: number of queue (=ports) per lcore (default is 1)\n"
|
|
" -s manage all ports from single lcore\n"
|
|
" -T PERIOD: statistics will be refreshed each PERIOD seconds"
|
|
" (0 to disable, 10 default, 86400 maximum)\n"
|
|
|
|
" --cdev_type HW / SW / ANY\n"
|
|
" --chain HASH_CIPHER / CIPHER_HASH\n"
|
|
|
|
" --cipher_algo ALGO\n"
|
|
" --cipher_op ENCRYPT / DECRYPT\n"
|
|
" --cipher_key KEY (bytes separated with \":\")\n"
|
|
" --cipher_key_random_size SIZE: size of cipher key when generated randomly\n"
|
|
" --iv IV (bytes separated with \":\")\n"
|
|
" --iv_random_size SIZE: size of IV when generated randomly\n"
|
|
|
|
" --auth_algo ALGO\n"
|
|
" --auth_op GENERATE / VERIFY\n"
|
|
" --auth_key KEY (bytes separated with \":\")\n"
|
|
" --auth_key_random_size SIZE: size of auth key when generated randomly\n"
|
|
" --aad AAD (bytes separated with \":\")\n"
|
|
" --aad_random_size SIZE: size of AAD when generated randomly\n"
|
|
" --digest_size SIZE: size of digest to be generated/verified\n"
|
|
|
|
" --sessionless\n",
|
|
prgname);
|
|
}
|
|
|
|
/** Parse crypto device type command line argument */
|
|
static int
|
|
parse_cryptodev_type(enum cdev_type *type, char *optarg)
|
|
{
|
|
if (strcmp("HW", optarg) == 0) {
|
|
*type = CDEV_TYPE_HW;
|
|
return 0;
|
|
} else if (strcmp("SW", optarg) == 0) {
|
|
*type = CDEV_TYPE_SW;
|
|
return 0;
|
|
} else if (strcmp("ANY", optarg) == 0) {
|
|
*type = CDEV_TYPE_ANY;
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/** Parse crypto chain xform command line argument */
|
|
static int
|
|
parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg)
|
|
{
|
|
if (strcmp("CIPHER_HASH", optarg) == 0) {
|
|
options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
|
|
return 0;
|
|
} else if (strcmp("HASH_CIPHER", optarg) == 0) {
|
|
options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER;
|
|
return 0;
|
|
} else if (strcmp("CIPHER_ONLY", optarg) == 0) {
|
|
options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY;
|
|
return 0;
|
|
} else if (strcmp("HASH_ONLY", optarg) == 0) {
|
|
options->xform_chain = L2FWD_CRYPTO_HASH_ONLY;
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/** Parse crypto cipher algo option command line argument */
|
|
static int
|
|
parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++) {
|
|
if (!strcmp(supported_cipher_algo[i], optarg)) {
|
|
*algo = (enum rte_crypto_cipher_algorithm)i;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
printf("Cipher algorithm not supported!\n");
|
|
return -1;
|
|
}
|
|
|
|
/** Parse crypto cipher operation command line argument */
|
|
static int
|
|
parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg)
|
|
{
|
|
if (strcmp("ENCRYPT", optarg) == 0) {
|
|
*op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
|
|
return 0;
|
|
} else if (strcmp("DECRYPT", optarg) == 0) {
|
|
*op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
|
|
return 0;
|
|
}
|
|
|
|
printf("Cipher operation not supported!\n");
|
|
return -1;
|
|
}
|
|
|
|
/** Parse crypto key command line argument */
|
|
static int
|
|
parse_key(uint8_t *data, char *input_arg)
|
|
{
|
|
unsigned byte_count;
|
|
char *token;
|
|
|
|
for (byte_count = 0, token = strtok(input_arg, ":");
|
|
(byte_count < MAX_KEY_SIZE) && (token != NULL);
|
|
token = strtok(NULL, ":")) {
|
|
|
|
int number = (int)strtol(token, NULL, 16);
|
|
|
|
if (errno == EINVAL || errno == ERANGE || number > 0xFF)
|
|
return -1;
|
|
|
|
data[byte_count++] = (uint8_t)number;
|
|
}
|
|
|
|
return byte_count;
|
|
}
|
|
|
|
/** Parse size param*/
|
|
static int
|
|
parse_size(int *size, const char *q_arg)
|
|
{
|
|
char *end = NULL;
|
|
unsigned long n;
|
|
|
|
/* parse hexadecimal string */
|
|
n = strtoul(q_arg, &end, 10);
|
|
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
|
|
n = 0;
|
|
|
|
if (n == 0) {
|
|
printf("invalid size\n");
|
|
return -1;
|
|
}
|
|
|
|
*size = n;
|
|
return 0;
|
|
}
|
|
|
|
/** Parse crypto cipher operation command line argument */
|
|
static int
|
|
parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++) {
|
|
if (!strcmp(supported_auth_algo[i], optarg)) {
|
|
*algo = (enum rte_crypto_auth_algorithm)i;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
printf("Authentication algorithm specified not supported!\n");
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg)
|
|
{
|
|
if (strcmp("VERIFY", optarg) == 0) {
|
|
*op = RTE_CRYPTO_AUTH_OP_VERIFY;
|
|
return 0;
|
|
} else if (strcmp("GENERATE", optarg) == 0) {
|
|
*op = RTE_CRYPTO_AUTH_OP_GENERATE;
|
|
return 0;
|
|
}
|
|
|
|
printf("Authentication operation specified not supported!\n");
|
|
return -1;
|
|
}
|
|
|
|
/** Parse long options */
|
|
static int
|
|
l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options,
|
|
struct option *lgopts, int option_index)
|
|
{
|
|
int retval;
|
|
|
|
if (strcmp(lgopts[option_index].name, "cdev_type") == 0) {
|
|
retval = parse_cryptodev_type(&options->type, optarg);
|
|
if (retval == 0)
|
|
snprintf(options->string_type, MAX_STR_LEN,
|
|
"%s", optarg);
|
|
return retval;
|
|
}
|
|
|
|
else if (strcmp(lgopts[option_index].name, "chain") == 0)
|
|
return parse_crypto_opt_chain(options, optarg);
|
|
|
|
/* Cipher options */
|
|
else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0)
|
|
return parse_cipher_algo(&options->cipher_xform.cipher.algo,
|
|
optarg);
|
|
|
|
else if (strcmp(lgopts[option_index].name, "cipher_op") == 0)
|
|
return parse_cipher_op(&options->cipher_xform.cipher.op,
|
|
optarg);
|
|
|
|
else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) {
|
|
options->ckey_param = 1;
|
|
options->cipher_xform.cipher.key.length =
|
|
parse_key(options->cipher_xform.cipher.key.data, optarg);
|
|
if (options->cipher_xform.cipher.key.length > 0)
|
|
return 0;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0)
|
|
return parse_size(&options->ckey_random_size, optarg);
|
|
|
|
else if (strcmp(lgopts[option_index].name, "iv") == 0) {
|
|
options->iv_param = 1;
|
|
options->iv.length =
|
|
parse_key(options->iv.data, optarg);
|
|
if (options->iv.length > 0)
|
|
return 0;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
else if (strcmp(lgopts[option_index].name, "iv_random_size") == 0)
|
|
return parse_size(&options->iv_random_size, optarg);
|
|
|
|
/* Authentication options */
|
|
else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) {
|
|
return parse_auth_algo(&options->auth_xform.auth.algo,
|
|
optarg);
|
|
}
|
|
|
|
else if (strcmp(lgopts[option_index].name, "auth_op") == 0)
|
|
return parse_auth_op(&options->auth_xform.auth.op,
|
|
optarg);
|
|
|
|
else if (strcmp(lgopts[option_index].name, "auth_key") == 0) {
|
|
options->akey_param = 1;
|
|
options->auth_xform.auth.key.length =
|
|
parse_key(options->auth_xform.auth.key.data, optarg);
|
|
if (options->auth_xform.auth.key.length > 0)
|
|
return 0;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) {
|
|
return parse_size(&options->akey_random_size, optarg);
|
|
}
|
|
|
|
else if (strcmp(lgopts[option_index].name, "aad") == 0) {
|
|
options->aad_param = 1;
|
|
options->aad.length =
|
|
parse_key(options->aad.data, optarg);
|
|
if (options->aad.length > 0)
|
|
return 0;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) {
|
|
return parse_size(&options->aad_random_size, optarg);
|
|
}
|
|
|
|
else if (strcmp(lgopts[option_index].name, "digest_size") == 0) {
|
|
return parse_size(&options->digest_size, optarg);
|
|
}
|
|
|
|
else if (strcmp(lgopts[option_index].name, "sessionless") == 0) {
|
|
options->sessionless = 1;
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/** Parse port mask */
|
|
static int
|
|
l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options,
|
|
const char *q_arg)
|
|
{
|
|
char *end = NULL;
|
|
unsigned long pm;
|
|
|
|
/* parse hexadecimal string */
|
|
pm = strtoul(q_arg, &end, 16);
|
|
if ((pm == '\0') || (end == NULL) || (*end != '\0'))
|
|
pm = 0;
|
|
|
|
options->portmask = pm;
|
|
if (options->portmask == 0) {
|
|
printf("invalid portmask specified\n");
|
|
return -1;
|
|
}
|
|
|
|
return pm;
|
|
}
|
|
|
|
/** Parse number of queues */
|
|
static int
|
|
l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options,
|
|
const char *q_arg)
|
|
{
|
|
char *end = NULL;
|
|
unsigned long n;
|
|
|
|
/* parse hexadecimal string */
|
|
n = strtoul(q_arg, &end, 10);
|
|
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
|
|
n = 0;
|
|
else if (n >= MAX_RX_QUEUE_PER_LCORE)
|
|
n = 0;
|
|
|
|
options->nb_ports_per_lcore = n;
|
|
if (options->nb_ports_per_lcore == 0) {
|
|
printf("invalid number of ports selected\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Parse timer period */
|
|
static int
|
|
l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options,
|
|
const char *q_arg)
|
|
{
|
|
char *end = NULL;
|
|
unsigned long n;
|
|
|
|
/* parse number string */
|
|
n = (unsigned)strtol(q_arg, &end, 10);
|
|
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
|
|
n = 0;
|
|
|
|
if (n >= MAX_TIMER_PERIOD) {
|
|
printf("Warning refresh period specified %lu is greater than "
|
|
"max value %lu! using max value",
|
|
n, MAX_TIMER_PERIOD);
|
|
n = MAX_TIMER_PERIOD;
|
|
}
|
|
|
|
options->refresh_period = n * 1000 * TIMER_MILLISECOND;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Generate default options for application */
|
|
static void
|
|
l2fwd_crypto_default_options(struct l2fwd_crypto_options *options)
|
|
{
|
|
options->portmask = 0xffffffff;
|
|
options->nb_ports_per_lcore = 1;
|
|
options->refresh_period = 10000;
|
|
options->single_lcore = 0;
|
|
options->sessionless = 0;
|
|
|
|
options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
|
|
|
|
/* Cipher Data */
|
|
options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
|
|
options->cipher_xform.next = NULL;
|
|
options->ckey_param = 0;
|
|
options->ckey_random_size = -1;
|
|
options->cipher_xform.cipher.key.length = 0;
|
|
options->iv_param = 0;
|
|
options->iv_random_size = -1;
|
|
options->iv.length = 0;
|
|
|
|
options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
|
|
options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
|
|
|
|
/* Authentication Data */
|
|
options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH;
|
|
options->auth_xform.next = NULL;
|
|
options->akey_param = 0;
|
|
options->akey_random_size = -1;
|
|
options->auth_xform.auth.key.length = 0;
|
|
options->aad_param = 0;
|
|
options->aad_random_size = -1;
|
|
options->aad.length = 0;
|
|
options->digest_size = -1;
|
|
|
|
options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC;
|
|
options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
|
|
|
|
options->type = CDEV_TYPE_ANY;
|
|
}
|
|
|
|
static void
|
|
display_cipher_info(struct l2fwd_crypto_options *options)
|
|
{
|
|
printf("\n---- Cipher information ---\n");
|
|
printf("Algorithm: %s\n",
|
|
supported_cipher_algo[options->cipher_xform.cipher.algo]);
|
|
rte_hexdump(stdout, "Cipher key:",
|
|
options->cipher_xform.cipher.key.data,
|
|
options->cipher_xform.cipher.key.length);
|
|
rte_hexdump(stdout, "IV:", options->iv.data, options->iv.length);
|
|
}
|
|
|
|
static void
|
|
display_auth_info(struct l2fwd_crypto_options *options)
|
|
{
|
|
printf("\n---- Authentication information ---\n");
|
|
printf("Algorithm: %s\n",
|
|
supported_auth_algo[options->auth_xform.auth.algo]);
|
|
rte_hexdump(stdout, "Auth key:",
|
|
options->auth_xform.auth.key.data,
|
|
options->auth_xform.auth.key.length);
|
|
rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length);
|
|
}
|
|
|
|
static void
|
|
l2fwd_crypto_options_print(struct l2fwd_crypto_options *options)
|
|
{
|
|
char string_cipher_op[MAX_STR_LEN];
|
|
char string_auth_op[MAX_STR_LEN];
|
|
|
|
if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
|
|
strcpy(string_cipher_op, "Encrypt");
|
|
else
|
|
strcpy(string_cipher_op, "Decrypt");
|
|
|
|
if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE)
|
|
strcpy(string_auth_op, "Auth generate");
|
|
else
|
|
strcpy(string_auth_op, "Auth verify");
|
|
|
|
printf("Options:-\nn");
|
|
printf("portmask: %x\n", options->portmask);
|
|
printf("ports per lcore: %u\n", options->nb_ports_per_lcore);
|
|
printf("refresh period : %u\n", options->refresh_period);
|
|
printf("single lcore mode: %s\n",
|
|
options->single_lcore ? "enabled" : "disabled");
|
|
printf("stats_printing: %s\n",
|
|
options->refresh_period == 0 ? "disabled" : "enabled");
|
|
|
|
printf("sessionless crypto: %s\n",
|
|
options->sessionless ? "enabled" : "disabled");
|
|
|
|
if (options->ckey_param && (options->ckey_random_size != -1))
|
|
printf("Cipher key already parsed, ignoring size of random key\n");
|
|
|
|
if (options->akey_param && (options->akey_random_size != -1))
|
|
printf("Auth key already parsed, ignoring size of random key\n");
|
|
|
|
if (options->iv_param && (options->iv_random_size != -1))
|
|
printf("IV already parsed, ignoring size of random IV\n");
|
|
|
|
if (options->aad_param && (options->aad_random_size != -1))
|
|
printf("AAD already parsed, ignoring size of random AAD\n");
|
|
|
|
printf("\nCrypto chain: ");
|
|
switch (options->xform_chain) {
|
|
case L2FWD_CRYPTO_CIPHER_HASH:
|
|
printf("Input --> %s --> %s --> Output\n",
|
|
string_cipher_op, string_auth_op);
|
|
display_cipher_info(options);
|
|
display_auth_info(options);
|
|
break;
|
|
case L2FWD_CRYPTO_HASH_CIPHER:
|
|
printf("Input --> %s --> %s --> Output\n",
|
|
string_auth_op, string_cipher_op);
|
|
display_cipher_info(options);
|
|
display_auth_info(options);
|
|
break;
|
|
case L2FWD_CRYPTO_HASH_ONLY:
|
|
printf("Input --> %s --> Output\n", string_auth_op);
|
|
display_auth_info(options);
|
|
break;
|
|
case L2FWD_CRYPTO_CIPHER_ONLY:
|
|
printf("Input --> %s --> Output\n", string_cipher_op);
|
|
display_cipher_info(options);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Parse the argument given in the command line of the application */
|
|
static int
|
|
l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options,
|
|
int argc, char **argv)
|
|
{
|
|
int opt, retval, option_index;
|
|
char **argvopt = argv, *prgname = argv[0];
|
|
|
|
static struct option lgopts[] = {
|
|
{ "sessionless", no_argument, 0, 0 },
|
|
|
|
{ "cdev_type", required_argument, 0, 0 },
|
|
{ "chain", required_argument, 0, 0 },
|
|
|
|
{ "cipher_algo", required_argument, 0, 0 },
|
|
{ "cipher_op", required_argument, 0, 0 },
|
|
{ "cipher_key", required_argument, 0, 0 },
|
|
{ "cipher_key_random_size", required_argument, 0, 0 },
|
|
|
|
{ "auth_algo", required_argument, 0, 0 },
|
|
{ "auth_op", required_argument, 0, 0 },
|
|
{ "auth_key", required_argument, 0, 0 },
|
|
{ "auth_key_random_size", required_argument, 0, 0 },
|
|
|
|
{ "iv", required_argument, 0, 0 },
|
|
{ "iv_random_size", required_argument, 0, 0 },
|
|
{ "aad", required_argument, 0, 0 },
|
|
{ "aad_random_size", required_argument, 0, 0 },
|
|
{ "digest_size", required_argument, 0, 0 },
|
|
|
|
{ "sessionless", no_argument, 0, 0 },
|
|
|
|
{ NULL, 0, 0, 0 }
|
|
};
|
|
|
|
l2fwd_crypto_default_options(options);
|
|
|
|
while ((opt = getopt_long(argc, argvopt, "p:q:st:", lgopts,
|
|
&option_index)) != EOF) {
|
|
switch (opt) {
|
|
/* long options */
|
|
case 0:
|
|
retval = l2fwd_crypto_parse_args_long_options(options,
|
|
lgopts, option_index);
|
|
if (retval < 0) {
|
|
l2fwd_crypto_usage(prgname);
|
|
return -1;
|
|
}
|
|
break;
|
|
|
|
/* portmask */
|
|
case 'p':
|
|
retval = l2fwd_crypto_parse_portmask(options, optarg);
|
|
if (retval < 0) {
|
|
l2fwd_crypto_usage(prgname);
|
|
return -1;
|
|
}
|
|
break;
|
|
|
|
/* nqueue */
|
|
case 'q':
|
|
retval = l2fwd_crypto_parse_nqueue(options, optarg);
|
|
if (retval < 0) {
|
|
l2fwd_crypto_usage(prgname);
|
|
return -1;
|
|
}
|
|
break;
|
|
|
|
/* single */
|
|
case 's':
|
|
options->single_lcore = 1;
|
|
|
|
break;
|
|
|
|
/* timer period */
|
|
case 'T':
|
|
retval = l2fwd_crypto_parse_timer_period(options,
|
|
optarg);
|
|
if (retval < 0) {
|
|
l2fwd_crypto_usage(prgname);
|
|
return -1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
l2fwd_crypto_usage(prgname);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
|
|
if (optind >= 0)
|
|
argv[optind-1] = prgname;
|
|
|
|
retval = optind-1;
|
|
optind = 0; /* reset getopt lib */
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Check the link status of all ports in up to 9s, and print them finally */
|
|
static void
|
|
check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
|
|
{
|
|
#define CHECK_INTERVAL 100 /* 100ms */
|
|
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
|
|
uint8_t portid, count, all_ports_up, print_flag = 0;
|
|
struct rte_eth_link link;
|
|
|
|
printf("\nChecking link status");
|
|
fflush(stdout);
|
|
for (count = 0; count <= MAX_CHECK_TIME; count++) {
|
|
all_ports_up = 1;
|
|
for (portid = 0; portid < port_num; portid++) {
|
|
if ((port_mask & (1 << portid)) == 0)
|
|
continue;
|
|
memset(&link, 0, sizeof(link));
|
|
rte_eth_link_get_nowait(portid, &link);
|
|
/* print link status if flag set */
|
|
if (print_flag == 1) {
|
|
if (link.link_status)
|
|
printf("Port %d Link Up - speed %u "
|
|
"Mbps - %s\n", (uint8_t)portid,
|
|
(unsigned)link.link_speed,
|
|
(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
|
|
("full-duplex") : ("half-duplex\n"));
|
|
else
|
|
printf("Port %d Link Down\n",
|
|
(uint8_t)portid);
|
|
continue;
|
|
}
|
|
/* clear all_ports_up flag if any link down */
|
|
if (link.link_status == ETH_LINK_DOWN) {
|
|
all_ports_up = 0;
|
|
break;
|
|
}
|
|
}
|
|
/* after finally printing all link status, get out */
|
|
if (print_flag == 1)
|
|
break;
|
|
|
|
if (all_ports_up == 0) {
|
|
printf(".");
|
|
fflush(stdout);
|
|
rte_delay_ms(CHECK_INTERVAL);
|
|
}
|
|
|
|
/* set the print_flag if all ports up or timeout */
|
|
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
|
|
print_flag = 1;
|
|
printf("done\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check if device has to be HW/SW or any */
|
|
static int
|
|
check_type(struct l2fwd_crypto_options *options, struct rte_cryptodev_info *dev_info)
|
|
{
|
|
if (options->type == CDEV_TYPE_HW &&
|
|
(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
|
|
return 0;
|
|
if (options->type == CDEV_TYPE_SW &&
|
|
!(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
|
|
return 0;
|
|
if (options->type == CDEV_TYPE_ANY)
|
|
return 0;
|
|
|
|
return -1;
|
|
}
|
|
|
|
static inline int
|
|
check_supported_size(uint16_t length, uint16_t min, uint16_t max,
|
|
uint16_t increment)
|
|
{
|
|
uint16_t supp_size;
|
|
|
|
/* Single value */
|
|
if (increment == 0) {
|
|
if (length == min)
|
|
return 0;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
/* Range of values */
|
|
for (supp_size = min; supp_size <= max; supp_size += increment) {
|
|
if (length == supp_size)
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
static int
|
|
initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports,
|
|
uint8_t *enabled_cdevs)
|
|
{
|
|
unsigned i, cdev_id, cdev_count, enabled_cdev_count = 0;
|
|
const struct rte_cryptodev_capabilities *cap;
|
|
enum rte_crypto_auth_algorithm cap_auth_algo;
|
|
enum rte_crypto_auth_algorithm opt_auth_algo;
|
|
enum rte_crypto_cipher_algorithm cap_cipher_algo;
|
|
enum rte_crypto_cipher_algorithm opt_cipher_algo;
|
|
int retval;
|
|
|
|
cdev_count = rte_cryptodev_count();
|
|
if (cdev_count == 0) {
|
|
printf("No crypto devices available\n");
|
|
return -1;
|
|
}
|
|
|
|
for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports;
|
|
cdev_id++) {
|
|
struct rte_cryptodev_qp_conf qp_conf;
|
|
struct rte_cryptodev_info dev_info;
|
|
|
|
struct rte_cryptodev_config conf = {
|
|
.nb_queue_pairs = 1,
|
|
.socket_id = SOCKET_ID_ANY,
|
|
.session_mp = {
|
|
.nb_objs = 2048,
|
|
.cache_size = 64
|
|
}
|
|
};
|
|
|
|
rte_cryptodev_info_get(cdev_id, &dev_info);
|
|
|
|
/* Set cipher parameters */
|
|
if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
|
|
options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
|
|
options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
|
|
/* Check if device supports cipher algo */
|
|
i = 0;
|
|
opt_cipher_algo = options->cipher_xform.cipher.algo;
|
|
cap = &dev_info.capabilities[i];
|
|
while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
|
|
cap_cipher_algo = cap->sym.cipher.algo;
|
|
if (cap->sym.xform_type ==
|
|
RTE_CRYPTO_SYM_XFORM_CIPHER) {
|
|
if (cap_cipher_algo == opt_cipher_algo) {
|
|
if (check_type(options, &dev_info) == 0)
|
|
break;
|
|
}
|
|
}
|
|
cap = &dev_info.capabilities[++i];
|
|
}
|
|
|
|
if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
|
|
printf("Algorithm %s not supported by cryptodev %u"
|
|
" or device not of preferred type (%s)\n",
|
|
supported_cipher_algo[opt_cipher_algo],
|
|
cdev_id,
|
|
options->string_type);
|
|
continue;
|
|
}
|
|
|
|
options->block_size = cap->sym.cipher.block_size;
|
|
/*
|
|
* Check if length of provided IV is supported
|
|
* by the algorithm chosen.
|
|
*/
|
|
if (options->iv_param) {
|
|
if (check_supported_size(options->iv.length,
|
|
cap->sym.cipher.iv_size.min,
|
|
cap->sym.cipher.iv_size.max,
|
|
cap->sym.cipher.iv_size.increment)
|
|
!= 0) {
|
|
printf("Unsupported IV length\n");
|
|
return -1;
|
|
}
|
|
/*
|
|
* Check if length of IV to be randomly generated
|
|
* is supported by the algorithm chosen.
|
|
*/
|
|
} else if (options->iv_random_size != -1) {
|
|
if (check_supported_size(options->iv_random_size,
|
|
cap->sym.cipher.iv_size.min,
|
|
cap->sym.cipher.iv_size.max,
|
|
cap->sym.cipher.iv_size.increment)
|
|
!= 0) {
|
|
printf("Unsupported IV length\n");
|
|
return -1;
|
|
}
|
|
options->iv.length = options->iv_random_size;
|
|
/* No size provided, use minimum size. */
|
|
} else
|
|
options->iv.length = cap->sym.cipher.iv_size.min;
|
|
|
|
/*
|
|
* Check if length of provided cipher key is supported
|
|
* by the algorithm chosen.
|
|
*/
|
|
if (options->ckey_param) {
|
|
if (check_supported_size(
|
|
options->cipher_xform.cipher.key.length,
|
|
cap->sym.cipher.key_size.min,
|
|
cap->sym.cipher.key_size.max,
|
|
cap->sym.cipher.key_size.increment)
|
|
!= 0) {
|
|
printf("Unsupported cipher key length\n");
|
|
return -1;
|
|
}
|
|
/*
|
|
* Check if length of the cipher key to be randomly generated
|
|
* is supported by the algorithm chosen.
|
|
*/
|
|
} else if (options->ckey_random_size != -1) {
|
|
if (check_supported_size(options->ckey_random_size,
|
|
cap->sym.cipher.key_size.min,
|
|
cap->sym.cipher.key_size.max,
|
|
cap->sym.cipher.key_size.increment)
|
|
!= 0) {
|
|
printf("Unsupported cipher key length\n");
|
|
return -1;
|
|
}
|
|
options->cipher_xform.cipher.key.length =
|
|
options->ckey_random_size;
|
|
/* No size provided, use minimum size. */
|
|
} else
|
|
options->cipher_xform.cipher.key.length =
|
|
cap->sym.cipher.key_size.min;
|
|
|
|
if (!options->ckey_param)
|
|
generate_random_key(
|
|
options->cipher_xform.cipher.key.data,
|
|
options->cipher_xform.cipher.key.length);
|
|
|
|
}
|
|
|
|
/* Set auth parameters */
|
|
if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
|
|
options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
|
|
options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) {
|
|
/* Check if device supports auth algo */
|
|
i = 0;
|
|
opt_auth_algo = options->auth_xform.auth.algo;
|
|
cap = &dev_info.capabilities[i];
|
|
while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
|
|
cap_auth_algo = cap->sym.auth.algo;
|
|
if ((cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
|
|
(cap_auth_algo == opt_auth_algo) &&
|
|
(check_type(options, &dev_info) == 0)) {
|
|
break;
|
|
}
|
|
cap = &dev_info.capabilities[++i];
|
|
}
|
|
|
|
if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
|
|
printf("Algorithm %s not supported by cryptodev %u"
|
|
" or device not of preferred type (%s)\n",
|
|
supported_auth_algo[opt_auth_algo],
|
|
cdev_id,
|
|
options->string_type);
|
|
continue;
|
|
}
|
|
|
|
options->block_size = cap->sym.auth.block_size;
|
|
/*
|
|
* Check if length of provided AAD is supported
|
|
* by the algorithm chosen.
|
|
*/
|
|
if (options->aad_param) {
|
|
if (check_supported_size(options->aad.length,
|
|
cap->sym.auth.aad_size.min,
|
|
cap->sym.auth.aad_size.max,
|
|
cap->sym.auth.aad_size.increment)
|
|
!= 0) {
|
|
printf("Unsupported AAD length\n");
|
|
return -1;
|
|
}
|
|
/*
|
|
* Check if length of AAD to be randomly generated
|
|
* is supported by the algorithm chosen.
|
|
*/
|
|
} else if (options->aad_random_size != -1) {
|
|
if (check_supported_size(options->aad_random_size,
|
|
cap->sym.auth.aad_size.min,
|
|
cap->sym.auth.aad_size.max,
|
|
cap->sym.auth.aad_size.increment)
|
|
!= 0) {
|
|
printf("Unsupported AAD length\n");
|
|
return -1;
|
|
}
|
|
options->aad.length = options->aad_random_size;
|
|
/* No size provided, use minimum size. */
|
|
} else
|
|
options->aad.length = cap->sym.auth.aad_size.min;
|
|
|
|
options->auth_xform.auth.add_auth_data_length =
|
|
options->aad.length;
|
|
|
|
/*
|
|
* Check if length of provided auth key is supported
|
|
* by the algorithm chosen.
|
|
*/
|
|
if (options->akey_param) {
|
|
if (check_supported_size(
|
|
options->auth_xform.auth.key.length,
|
|
cap->sym.auth.key_size.min,
|
|
cap->sym.auth.key_size.max,
|
|
cap->sym.auth.key_size.increment)
|
|
!= 0) {
|
|
printf("Unsupported auth key length\n");
|
|
return -1;
|
|
}
|
|
/*
|
|
* Check if length of the auth key to be randomly generated
|
|
* is supported by the algorithm chosen.
|
|
*/
|
|
} else if (options->akey_random_size != -1) {
|
|
if (check_supported_size(options->akey_random_size,
|
|
cap->sym.auth.key_size.min,
|
|
cap->sym.auth.key_size.max,
|
|
cap->sym.auth.key_size.increment)
|
|
!= 0) {
|
|
printf("Unsupported auth key length\n");
|
|
return -1;
|
|
}
|
|
options->auth_xform.auth.key.length =
|
|
options->akey_random_size;
|
|
/* No size provided, use minimum size. */
|
|
} else
|
|
options->auth_xform.auth.key.length =
|
|
cap->sym.auth.key_size.min;
|
|
|
|
if (!options->akey_param)
|
|
generate_random_key(
|
|
options->auth_xform.auth.key.data,
|
|
options->auth_xform.auth.key.length);
|
|
|
|
/* Check if digest size is supported by the algorithm. */
|
|
if (options->digest_size != -1) {
|
|
if (check_supported_size(options->digest_size,
|
|
cap->sym.auth.digest_size.min,
|
|
cap->sym.auth.digest_size.max,
|
|
cap->sym.auth.digest_size.increment)
|
|
!= 0) {
|
|
printf("Unsupported digest length\n");
|
|
return -1;
|
|
}
|
|
options->auth_xform.auth.digest_length =
|
|
options->digest_size;
|
|
/* No size provided, use minimum size. */
|
|
} else
|
|
options->auth_xform.auth.digest_length =
|
|
cap->sym.auth.digest_size.min;
|
|
}
|
|
|
|
retval = rte_cryptodev_configure(cdev_id, &conf);
|
|
if (retval < 0) {
|
|
printf("Failed to configure cryptodev %u", cdev_id);
|
|
return -1;
|
|
}
|
|
|
|
qp_conf.nb_descriptors = 2048;
|
|
|
|
retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf,
|
|
SOCKET_ID_ANY);
|
|
if (retval < 0) {
|
|
printf("Failed to setup queue pair %u on cryptodev %u",
|
|
0, cdev_id);
|
|
return -1;
|
|
}
|
|
|
|
retval = rte_cryptodev_start(cdev_id);
|
|
if (retval < 0) {
|
|
printf("Failed to start device %u: error %d\n",
|
|
cdev_id, retval);
|
|
return -1;
|
|
}
|
|
|
|
l2fwd_enabled_crypto_mask |= (1 << cdev_id);
|
|
|
|
enabled_cdevs[cdev_id] = 1;
|
|
enabled_cdev_count++;
|
|
}
|
|
|
|
return enabled_cdev_count;
|
|
}
|
|
|
|
static int
|
|
initialize_ports(struct l2fwd_crypto_options *options)
|
|
{
|
|
uint8_t last_portid, portid;
|
|
unsigned enabled_portcount = 0;
|
|
unsigned nb_ports = rte_eth_dev_count();
|
|
|
|
if (nb_ports == 0) {
|
|
printf("No Ethernet ports - bye\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Reset l2fwd_dst_ports */
|
|
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
|
|
l2fwd_dst_ports[portid] = 0;
|
|
|
|
for (last_portid = 0, portid = 0; portid < nb_ports; portid++) {
|
|
int retval;
|
|
|
|
/* Skip ports that are not enabled */
|
|
if ((options->portmask & (1 << portid)) == 0)
|
|
continue;
|
|
|
|
/* init port */
|
|
printf("Initializing port %u... ", (unsigned) portid);
|
|
fflush(stdout);
|
|
retval = rte_eth_dev_configure(portid, 1, 1, &port_conf);
|
|
if (retval < 0) {
|
|
printf("Cannot configure device: err=%d, port=%u\n",
|
|
retval, (unsigned) portid);
|
|
return -1;
|
|
}
|
|
|
|
/* init one RX queue */
|
|
fflush(stdout);
|
|
retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
|
|
rte_eth_dev_socket_id(portid),
|
|
NULL, l2fwd_pktmbuf_pool);
|
|
if (retval < 0) {
|
|
printf("rte_eth_rx_queue_setup:err=%d, port=%u\n",
|
|
retval, (unsigned) portid);
|
|
return -1;
|
|
}
|
|
|
|
/* init one TX queue on each port */
|
|
fflush(stdout);
|
|
retval = rte_eth_tx_queue_setup(portid, 0, nb_txd,
|
|
rte_eth_dev_socket_id(portid),
|
|
NULL);
|
|
if (retval < 0) {
|
|
printf("rte_eth_tx_queue_setup:err=%d, port=%u\n",
|
|
retval, (unsigned) portid);
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Start device */
|
|
retval = rte_eth_dev_start(portid);
|
|
if (retval < 0) {
|
|
printf("rte_eth_dev_start:err=%d, port=%u\n",
|
|
retval, (unsigned) portid);
|
|
return -1;
|
|
}
|
|
|
|
rte_eth_promiscuous_enable(portid);
|
|
|
|
rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]);
|
|
|
|
printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n",
|
|
(unsigned) portid,
|
|
l2fwd_ports_eth_addr[portid].addr_bytes[0],
|
|
l2fwd_ports_eth_addr[portid].addr_bytes[1],
|
|
l2fwd_ports_eth_addr[portid].addr_bytes[2],
|
|
l2fwd_ports_eth_addr[portid].addr_bytes[3],
|
|
l2fwd_ports_eth_addr[portid].addr_bytes[4],
|
|
l2fwd_ports_eth_addr[portid].addr_bytes[5]);
|
|
|
|
/* initialize port stats */
|
|
memset(&port_statistics, 0, sizeof(port_statistics));
|
|
|
|
/* Setup port forwarding table */
|
|
if (enabled_portcount % 2) {
|
|
l2fwd_dst_ports[portid] = last_portid;
|
|
l2fwd_dst_ports[last_portid] = portid;
|
|
} else {
|
|
last_portid = portid;
|
|
}
|
|
|
|
l2fwd_enabled_port_mask |= (1 << portid);
|
|
enabled_portcount++;
|
|
}
|
|
|
|
if (enabled_portcount == 1) {
|
|
l2fwd_dst_ports[last_portid] = last_portid;
|
|
} else if (enabled_portcount % 2) {
|
|
printf("odd number of ports in portmask- bye\n");
|
|
return -1;
|
|
}
|
|
|
|
check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask);
|
|
|
|
return enabled_portcount;
|
|
}
|
|
|
|
static void
|
|
reserve_key_memory(struct l2fwd_crypto_options *options)
|
|
{
|
|
options->cipher_xform.cipher.key.data = rte_malloc("crypto key",
|
|
MAX_KEY_SIZE, 0);
|
|
if (options->cipher_xform.cipher.key.data == NULL)
|
|
rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key");
|
|
|
|
|
|
options->auth_xform.auth.key.data = rte_malloc("auth key",
|
|
MAX_KEY_SIZE, 0);
|
|
if (options->auth_xform.auth.key.data == NULL)
|
|
rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key");
|
|
|
|
options->iv.data = rte_malloc("iv", MAX_KEY_SIZE, 0);
|
|
if (options->iv.data == NULL)
|
|
rte_exit(EXIT_FAILURE, "Failed to allocate memory for IV");
|
|
options->iv.phys_addr = rte_malloc_virt2phy(options->iv.data);
|
|
|
|
options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0);
|
|
if (options->aad.data == NULL)
|
|
rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD");
|
|
options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data);
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
struct lcore_queue_conf *qconf;
|
|
struct l2fwd_crypto_options options;
|
|
|
|
uint8_t nb_ports, nb_cryptodevs, portid, cdev_id;
|
|
unsigned lcore_id, rx_lcore_id;
|
|
int ret, enabled_cdevcount, enabled_portcount;
|
|
uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0};
|
|
|
|
/* init EAL */
|
|
ret = rte_eal_init(argc, argv);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
|
|
argc -= ret;
|
|
argv += ret;
|
|
|
|
/* reserve memory for Cipher/Auth key and IV */
|
|
reserve_key_memory(&options);
|
|
|
|
/* fill out the supported algorithm tables */
|
|
fill_supported_algorithm_tables();
|
|
|
|
/* parse application arguments (after the EAL ones) */
|
|
ret = l2fwd_crypto_parse_args(&options, argc, argv);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n");
|
|
|
|
/* create the mbuf pool */
|
|
l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512,
|
|
sizeof(struct rte_crypto_op),
|
|
RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
|
|
if (l2fwd_pktmbuf_pool == NULL)
|
|
rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
|
|
|
|
/* create crypto op pool */
|
|
l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
|
|
RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, 0,
|
|
rte_socket_id());
|
|
if (l2fwd_crypto_op_pool == NULL)
|
|
rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");
|
|
|
|
/* Enable Ethernet ports */
|
|
enabled_portcount = initialize_ports(&options);
|
|
if (enabled_portcount < 1)
|
|
rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n");
|
|
|
|
nb_ports = rte_eth_dev_count();
|
|
/* Initialize the port/queue configuration of each logical core */
|
|
for (rx_lcore_id = 0, qconf = NULL, portid = 0;
|
|
portid < nb_ports; portid++) {
|
|
|
|
/* skip ports that are not enabled */
|
|
if ((options.portmask & (1 << portid)) == 0)
|
|
continue;
|
|
|
|
if (options.single_lcore && qconf == NULL) {
|
|
while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
|
|
rx_lcore_id++;
|
|
if (rx_lcore_id >= RTE_MAX_LCORE)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Not enough cores\n");
|
|
}
|
|
} else if (!options.single_lcore) {
|
|
/* get the lcore_id for this port */
|
|
while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
|
|
lcore_queue_conf[rx_lcore_id].nb_rx_ports ==
|
|
options.nb_ports_per_lcore) {
|
|
rx_lcore_id++;
|
|
if (rx_lcore_id >= RTE_MAX_LCORE)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Not enough cores\n");
|
|
}
|
|
}
|
|
|
|
/* Assigned a new logical core in the loop above. */
|
|
if (qconf != &lcore_queue_conf[rx_lcore_id])
|
|
qconf = &lcore_queue_conf[rx_lcore_id];
|
|
|
|
qconf->rx_port_list[qconf->nb_rx_ports] = portid;
|
|
qconf->nb_rx_ports++;
|
|
|
|
printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid);
|
|
}
|
|
|
|
/* Enable Crypto devices */
|
|
enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount,
|
|
enabled_cdevs);
|
|
if (enabled_cdevcount < 0)
|
|
rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n");
|
|
|
|
if (enabled_cdevcount < enabled_portcount)
|
|
rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) "
|
|
"has to be more or equal to number of ports (%d)\n",
|
|
enabled_cdevcount, enabled_portcount);
|
|
|
|
nb_cryptodevs = rte_cryptodev_count();
|
|
|
|
/* Initialize the port/cryptodev configuration of each logical core */
|
|
for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0;
|
|
cdev_id < nb_cryptodevs && enabled_cdevcount;
|
|
cdev_id++) {
|
|
/* Crypto op not supported by crypto device */
|
|
if (!enabled_cdevs[cdev_id])
|
|
continue;
|
|
|
|
if (options.single_lcore && qconf == NULL) {
|
|
while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
|
|
rx_lcore_id++;
|
|
if (rx_lcore_id >= RTE_MAX_LCORE)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Not enough cores\n");
|
|
}
|
|
} else if (!options.single_lcore) {
|
|
/* get the lcore_id for this port */
|
|
while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
|
|
lcore_queue_conf[rx_lcore_id].nb_crypto_devs ==
|
|
options.nb_ports_per_lcore) {
|
|
rx_lcore_id++;
|
|
if (rx_lcore_id >= RTE_MAX_LCORE)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Not enough cores\n");
|
|
}
|
|
}
|
|
|
|
/* Assigned a new logical core in the loop above. */
|
|
if (qconf != &lcore_queue_conf[rx_lcore_id])
|
|
qconf = &lcore_queue_conf[rx_lcore_id];
|
|
|
|
qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id;
|
|
qconf->nb_crypto_devs++;
|
|
|
|
enabled_cdevcount--;
|
|
|
|
printf("Lcore %u: cryptodev %u\n", rx_lcore_id,
|
|
(unsigned)cdev_id);
|
|
}
|
|
|
|
/* launch per-lcore init on every lcore */
|
|
rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options,
|
|
CALL_MASTER);
|
|
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
|
|
if (rte_eal_wait_lcore(lcore_id) < 0)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|