numam-dpdk/drivers/crypto/octeontx/otx_cryptodev_hw_access.h
Anoob Joseph 98c7b9c97e crypto/octeontx: fix global log variable definition
'cpt_logtype' & 'otx_cryptodev_driver_id' global variables are defined
in a header file which was causing multiple definitions of the
variables. Fixed it by moving the required vars to the .c file and
introducing a new macro so the CPT_LOG macros in common/cpt would use
the associated PMD log var.

Issue has been detected by '-fno-common' gcc flag.

Fixes: bfe2ae495e ("crypto/octeontx: add PMD skeleton")
Cc: stable@dpdk.org

Signed-off-by: Anoob Joseph <anoobj@marvell.com>
Reported-by: Ferruh Yigit <ferruh.yigit@intel.com>
2019-10-09 11:50:12 +02:00

326 lines
8.9 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Cavium, Inc
*/
#ifndef _OTX_CRYPTODEV_HW_ACCESS_H_
#define _OTX_CRYPTODEV_HW_ACCESS_H_
#include <stdbool.h>
#include <rte_branch_prediction.h>
#include <rte_cryptodev.h>
#include <rte_cycles.h>
#include <rte_io.h>
#include <rte_memory.h>
#include <rte_prefetch.h>
#include "otx_cryptodev.h"
#include "cpt_common.h"
#include "cpt_hw_types.h"
#include "cpt_mcode_defines.h"
#include "cpt_pmd_logs.h"
#define CPT_INTR_POLL_INTERVAL_MS (50)
/* Default command queue length */
#define DEFAULT_CMD_QCHUNKS 2
#define DEFAULT_CMD_QCHUNK_SIZE 1023
#define DEFAULT_CMD_QLEN \
(DEFAULT_CMD_QCHUNK_SIZE * DEFAULT_CMD_QCHUNKS)
#define CPT_CSR_REG_BASE(cpt) ((cpt)->reg_base)
/* Read hw register */
#define CPT_READ_CSR(__hw_addr, __offset) \
rte_read64_relaxed((uint8_t *)__hw_addr + __offset)
/* Write hw register */
#define CPT_WRITE_CSR(__hw_addr, __offset, __val) \
rte_write64_relaxed((__val), ((uint8_t *)__hw_addr + __offset))
/* cpt instance */
struct cpt_instance {
uint32_t queue_id;
uintptr_t rsvd;
struct rte_mempool *sess_mp;
struct rte_mempool *sess_mp_priv;
struct cpt_qp_meta_info meta_info;
};
struct command_chunk {
/** 128-byte aligned real_vaddr */
uint8_t *head;
/** 128-byte aligned real_dma_addr */
phys_addr_t dma_addr;
};
/**
* Command queue structure
*/
struct command_queue {
/** Command queue host write idx */
uint32_t idx;
/** Command queue chunk */
uint32_t cchunk;
/** Command queue head; instructions are inserted here */
uint8_t *qhead;
/** Command chunk list head */
struct command_chunk chead[DEFAULT_CMD_QCHUNKS];
};
/**
* CPT VF device structure
*/
struct cpt_vf {
/** CPT instance */
struct cpt_instance instance;
/** Register start address */
uint8_t *reg_base;
/** Command queue information */
struct command_queue cqueue;
/** Pending queue information */
struct pending_queue pqueue;
/** Below fields are accessed only in control path */
/** Env specific pdev representing the pci dev */
void *pdev;
/** Calculated queue size */
uint32_t qsize;
/** Device index (0...CPT_MAX_VQ_NUM)*/
uint8_t vfid;
/** VF type of cpt_vf_type_t (SE_TYPE(2) or AE_TYPE(1) */
uint8_t vftype;
/** VF group (0 - 8) */
uint8_t vfgrp;
/** Operating node: Bits (46:44) in BAR0 address */
uint8_t node;
/** VF-PF mailbox communication */
/** Flag if acked */
bool pf_acked;
/** Flag if not acked */
bool pf_nacked;
/** Device name */
char dev_name[32];
} __rte_cache_aligned;
/*
* CPT Registers map for 81xx
*/
/* VF registers */
#define CPTX_VQX_CTL(a, b) (0x0000100ll + 0x1000000000ll * \
((a) & 0x0) + 0x100000ll * (b))
#define CPTX_VQX_SADDR(a, b) (0x0000200ll + 0x1000000000ll * \
((a) & 0x0) + 0x100000ll * (b))
#define CPTX_VQX_DONE_WAIT(a, b) (0x0000400ll + 0x1000000000ll * \
((a) & 0x0) + 0x100000ll * (b))
#define CPTX_VQX_INPROG(a, b) (0x0000410ll + 0x1000000000ll * \
((a) & 0x0) + 0x100000ll * (b))
#define CPTX_VQX_DONE(a, b) (0x0000420ll + 0x1000000000ll * \
((a) & 0x1) + 0x100000ll * (b))
#define CPTX_VQX_DONE_ACK(a, b) (0x0000440ll + 0x1000000000ll * \
((a) & 0x1) + 0x100000ll * (b))
#define CPTX_VQX_DONE_INT_W1S(a, b) (0x0000460ll + 0x1000000000ll * \
((a) & 0x1) + 0x100000ll * (b))
#define CPTX_VQX_DONE_INT_W1C(a, b) (0x0000468ll + 0x1000000000ll * \
((a) & 0x1) + 0x100000ll * (b))
#define CPTX_VQX_DONE_ENA_W1S(a, b) (0x0000470ll + 0x1000000000ll * \
((a) & 0x1) + 0x100000ll * (b))
#define CPTX_VQX_DONE_ENA_W1C(a, b) (0x0000478ll + 0x1000000000ll * \
((a) & 0x1) + 0x100000ll * (b))
#define CPTX_VQX_MISC_INT(a, b) (0x0000500ll + 0x1000000000ll * \
((a) & 0x1) + 0x100000ll * (b))
#define CPTX_VQX_MISC_INT_W1S(a, b) (0x0000508ll + 0x1000000000ll * \
((a) & 0x1) + 0x100000ll * (b))
#define CPTX_VQX_MISC_ENA_W1S(a, b) (0x0000510ll + 0x1000000000ll * \
((a) & 0x1) + 0x100000ll * (b))
#define CPTX_VQX_MISC_ENA_W1C(a, b) (0x0000518ll + 0x1000000000ll * \
((a) & 0x1) + 0x100000ll * (b))
#define CPTX_VQX_DOORBELL(a, b) (0x0000600ll + 0x1000000000ll * \
((a) & 0x1) + 0x100000ll * (b))
#define CPTX_VFX_PF_MBOXX(a, b, c) (0x0001000ll + 0x1000000000ll * \
((a) & 0x1) + 0x100000ll * (b) + \
8ll * ((c) & 0x1))
/* VF HAL functions */
void
otx_cpt_poll_misc(struct cpt_vf *cptvf);
int
otx_cpt_hw_init(struct cpt_vf *cptvf, void *pdev, void *reg_base, char *name);
int
otx_cpt_deinit_device(void *dev);
int
otx_cpt_get_resource(const struct rte_cryptodev *dev, uint8_t group,
struct cpt_instance **instance, uint16_t qp_id);
int
otx_cpt_put_resource(struct cpt_instance *instance);
int
otx_cpt_start_device(void *cptvf);
void
otx_cpt_stop_device(void *cptvf);
/* Write to VQX_DOORBELL register
*/
static __rte_always_inline void
otx_cpt_write_vq_doorbell(struct cpt_vf *cptvf, uint32_t val)
{
cptx_vqx_doorbell_t vqx_dbell;
vqx_dbell.u = 0;
vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_DOORBELL(0, 0), vqx_dbell.u);
}
static __rte_always_inline uint32_t
otx_cpt_read_vq_doorbell(struct cpt_vf *cptvf)
{
cptx_vqx_doorbell_t vqx_dbell;
vqx_dbell.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_DOORBELL(0, 0));
return vqx_dbell.s.dbell_cnt;
}
static __rte_always_inline void
otx_cpt_ring_dbell(struct cpt_instance *instance, uint16_t count)
{
struct cpt_vf *cptvf = (struct cpt_vf *)instance;
/* Memory barrier to flush pending writes */
rte_smp_wmb();
otx_cpt_write_vq_doorbell(cptvf, count);
}
static __rte_always_inline void *
get_cpt_inst(struct command_queue *cqueue)
{
CPT_LOG_DP_DEBUG("CPT queue idx %u\n", cqueue->idx);
return &cqueue->qhead[cqueue->idx * CPT_INST_SIZE];
}
static __rte_always_inline void
fill_cpt_inst(struct cpt_instance *instance, void *req)
{
struct command_queue *cqueue;
cpt_inst_s_t *cpt_ist_p;
struct cpt_vf *cptvf = (struct cpt_vf *)instance;
struct cpt_request_info *user_req = (struct cpt_request_info *)req;
cqueue = &cptvf->cqueue;
cpt_ist_p = get_cpt_inst(cqueue);
rte_prefetch_non_temporal(cpt_ist_p);
/* EI0, EI1, EI2, EI3 are already prepared */
/* HW W0 */
cpt_ist_p->u[0] = 0;
/* HW W1 */
cpt_ist_p->s8x.res_addr = user_req->comp_baddr;
/* HW W2 */
cpt_ist_p->u[2] = 0;
/* HW W3 */
cpt_ist_p->s8x.wq_ptr = 0;
/* MC EI0 */
cpt_ist_p->s8x.ei0 = user_req->ist.ei0;
/* MC EI1 */
cpt_ist_p->s8x.ei1 = user_req->ist.ei1;
/* MC EI2 */
cpt_ist_p->s8x.ei2 = user_req->ist.ei2;
/* MC EI3 */
cpt_ist_p->s8x.ei3 = user_req->ist.ei3;
}
static __rte_always_inline void
mark_cpt_inst(struct cpt_instance *instance)
{
struct cpt_vf *cptvf = (struct cpt_vf *)instance;
struct command_queue *queue = &cptvf->cqueue;
if (unlikely(++queue->idx >= DEFAULT_CMD_QCHUNK_SIZE)) {
uint32_t cchunk = queue->cchunk;
MOD_INC(cchunk, DEFAULT_CMD_QCHUNKS);
queue->qhead = queue->chead[cchunk].head;
queue->idx = 0;
queue->cchunk = cchunk;
}
}
static __rte_always_inline uint8_t
check_nb_command_id(struct cpt_request_info *user_req,
struct cpt_instance *instance)
{
uint8_t ret = ERR_REQ_PENDING;
struct cpt_vf *cptvf = (struct cpt_vf *)instance;
volatile cpt_res_s_t *cptres;
cptres = (volatile cpt_res_s_t *)user_req->completion_addr;
if (unlikely(cptres->s8x.compcode == CPT_8X_COMP_E_NOTDONE)) {
/*
* Wait for some time for this command to get completed
* before timing out
*/
if (rte_get_timer_cycles() < user_req->time_out)
return ret;
/*
* TODO: See if alternate caddr can be used to not loop
* longer than needed.
*/
if ((cptres->s8x.compcode == CPT_8X_COMP_E_NOTDONE) &&
(user_req->extra_time < TIME_IN_RESET_COUNT)) {
user_req->extra_time++;
return ret;
}
if (cptres->s8x.compcode != CPT_8X_COMP_E_NOTDONE)
goto complete;
ret = ERR_REQ_TIMEOUT;
CPT_LOG_DP_ERR("Request %p timedout", user_req);
otx_cpt_poll_misc(cptvf);
goto exit;
}
complete:
if (likely(cptres->s8x.compcode == CPT_8X_COMP_E_GOOD)) {
ret = 0; /* success */
if (unlikely((uint8_t)*user_req->alternate_caddr)) {
ret = (uint8_t)*user_req->alternate_caddr;
CPT_LOG_DP_ERR("Request %p : failed with microcode"
" error, MC completion code : 0x%x", user_req,
ret);
}
CPT_LOG_DP_DEBUG("MC status %.8x\n",
*((volatile uint32_t *)user_req->alternate_caddr));
CPT_LOG_DP_DEBUG("HW status %.8x\n",
*((volatile uint32_t *)user_req->completion_addr));
} else if ((cptres->s8x.compcode == CPT_8X_COMP_E_SWERR) ||
(cptres->s8x.compcode == CPT_8X_COMP_E_FAULT)) {
ret = (uint8_t)*user_req->alternate_caddr;
if (!ret)
ret = ERR_BAD_ALT_CCODE;
CPT_LOG_DP_DEBUG("Request %p : failed with %s : err code :%x",
user_req,
(cptres->s8x.compcode == CPT_8X_COMP_E_FAULT) ?
"DMA Fault" : "Software error", ret);
} else {
CPT_LOG_DP_ERR("Request %p : unexpected completion code %d",
user_req, cptres->s8x.compcode);
ret = (uint8_t)*user_req->alternate_caddr;
}
exit:
return ret;
}
#endif /* _OTX_CRYPTODEV_HW_ACCESS_H_ */