f03723017a
This patch removes all unused <rte_ring.h> headers. Signed-off-by: Amine Kherbouche <amine.kherbouche@6wind.com>
888 lines
25 KiB
C
888 lines
25 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* Copyright 2014 6WIND S.A.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <sys/queue.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_log.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_interrupts.h>
|
|
#include <rte_pci.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_udp.h>
|
|
#include <rte_sctp.h>
|
|
#include <rte_prefetch.h>
|
|
#include <rte_string_fns.h>
|
|
#include "testpmd.h"
|
|
|
|
#define IP_DEFTTL 64 /* from RFC 1340. */
|
|
#define IP_VERSION 0x40
|
|
#define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */
|
|
#define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
|
|
|
|
#define GRE_KEY_PRESENT 0x2000
|
|
#define GRE_KEY_LEN 4
|
|
#define GRE_SUPPORTED_FIELDS GRE_KEY_PRESENT
|
|
|
|
/* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
|
|
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
|
|
#define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
|
|
#else
|
|
#define _htons(x) (x)
|
|
#endif
|
|
|
|
/* structure that caches offload info for the current packet */
|
|
struct testpmd_offload_info {
|
|
uint16_t ethertype;
|
|
uint16_t l2_len;
|
|
uint16_t l3_len;
|
|
uint16_t l4_len;
|
|
uint8_t l4_proto;
|
|
uint8_t is_tunnel;
|
|
uint16_t outer_ethertype;
|
|
uint16_t outer_l2_len;
|
|
uint16_t outer_l3_len;
|
|
uint8_t outer_l4_proto;
|
|
uint16_t tso_segsz;
|
|
};
|
|
|
|
/* simplified GRE header */
|
|
struct simple_gre_hdr {
|
|
uint16_t flags;
|
|
uint16_t proto;
|
|
} __attribute__((__packed__));
|
|
|
|
static uint16_t
|
|
get_psd_sum(void *l3_hdr, uint16_t ethertype, uint64_t ol_flags)
|
|
{
|
|
if (ethertype == _htons(ETHER_TYPE_IPv4))
|
|
return rte_ipv4_phdr_cksum(l3_hdr, ol_flags);
|
|
else /* assume ethertype == ETHER_TYPE_IPv6 */
|
|
return rte_ipv6_phdr_cksum(l3_hdr, ol_flags);
|
|
}
|
|
|
|
static uint16_t
|
|
get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
|
|
{
|
|
if (ethertype == _htons(ETHER_TYPE_IPv4))
|
|
return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
|
|
else /* assume ethertype == ETHER_TYPE_IPv6 */
|
|
return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
|
|
}
|
|
|
|
/* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
|
|
static void
|
|
parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
|
|
{
|
|
struct tcp_hdr *tcp_hdr;
|
|
|
|
info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
|
|
info->l4_proto = ipv4_hdr->next_proto_id;
|
|
|
|
/* only fill l4_len for TCP, it's useful for TSO */
|
|
if (info->l4_proto == IPPROTO_TCP) {
|
|
tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len);
|
|
info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
|
|
} else
|
|
info->l4_len = 0;
|
|
}
|
|
|
|
/* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
|
|
static void
|
|
parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
|
|
{
|
|
struct tcp_hdr *tcp_hdr;
|
|
|
|
info->l3_len = sizeof(struct ipv6_hdr);
|
|
info->l4_proto = ipv6_hdr->proto;
|
|
|
|
/* only fill l4_len for TCP, it's useful for TSO */
|
|
if (info->l4_proto == IPPROTO_TCP) {
|
|
tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len);
|
|
info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
|
|
} else
|
|
info->l4_len = 0;
|
|
}
|
|
|
|
/*
|
|
* Parse an ethernet header to fill the ethertype, l2_len, l3_len and
|
|
* ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
|
|
* header. The l4_len argument is only set in case of TCP (useful for TSO).
|
|
*/
|
|
static void
|
|
parse_ethernet(struct ether_hdr *eth_hdr, struct testpmd_offload_info *info)
|
|
{
|
|
struct ipv4_hdr *ipv4_hdr;
|
|
struct ipv6_hdr *ipv6_hdr;
|
|
|
|
info->l2_len = sizeof(struct ether_hdr);
|
|
info->ethertype = eth_hdr->ether_type;
|
|
|
|
if (info->ethertype == _htons(ETHER_TYPE_VLAN)) {
|
|
struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
|
|
|
|
info->l2_len += sizeof(struct vlan_hdr);
|
|
info->ethertype = vlan_hdr->eth_proto;
|
|
}
|
|
|
|
switch (info->ethertype) {
|
|
case _htons(ETHER_TYPE_IPv4):
|
|
ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len);
|
|
parse_ipv4(ipv4_hdr, info);
|
|
break;
|
|
case _htons(ETHER_TYPE_IPv6):
|
|
ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len);
|
|
parse_ipv6(ipv6_hdr, info);
|
|
break;
|
|
default:
|
|
info->l4_len = 0;
|
|
info->l3_len = 0;
|
|
info->l4_proto = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Parse a vxlan header */
|
|
static void
|
|
parse_vxlan(struct udp_hdr *udp_hdr,
|
|
struct testpmd_offload_info *info,
|
|
uint32_t pkt_type)
|
|
{
|
|
struct ether_hdr *eth_hdr;
|
|
|
|
/* check udp destination port, 4789 is the default vxlan port
|
|
* (rfc7348) or that the rx offload flag is set (i40e only
|
|
* currently) */
|
|
if (udp_hdr->dst_port != _htons(4789) &&
|
|
RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
|
|
return;
|
|
|
|
info->is_tunnel = 1;
|
|
info->outer_ethertype = info->ethertype;
|
|
info->outer_l2_len = info->l2_len;
|
|
info->outer_l3_len = info->l3_len;
|
|
info->outer_l4_proto = info->l4_proto;
|
|
|
|
eth_hdr = (struct ether_hdr *)((char *)udp_hdr +
|
|
sizeof(struct udp_hdr) +
|
|
sizeof(struct vxlan_hdr));
|
|
|
|
parse_ethernet(eth_hdr, info);
|
|
info->l2_len += ETHER_VXLAN_HLEN; /* add udp + vxlan */
|
|
}
|
|
|
|
/* Parse a gre header */
|
|
static void
|
|
parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
|
|
{
|
|
struct ether_hdr *eth_hdr;
|
|
struct ipv4_hdr *ipv4_hdr;
|
|
struct ipv6_hdr *ipv6_hdr;
|
|
uint8_t gre_len = 0;
|
|
|
|
/* check which fields are supported */
|
|
if ((gre_hdr->flags & _htons(~GRE_SUPPORTED_FIELDS)) != 0)
|
|
return;
|
|
|
|
gre_len += sizeof(struct simple_gre_hdr);
|
|
|
|
if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
|
|
gre_len += GRE_KEY_LEN;
|
|
|
|
if (gre_hdr->proto == _htons(ETHER_TYPE_IPv4)) {
|
|
info->is_tunnel = 1;
|
|
info->outer_ethertype = info->ethertype;
|
|
info->outer_l2_len = info->l2_len;
|
|
info->outer_l3_len = info->l3_len;
|
|
info->outer_l4_proto = info->l4_proto;
|
|
|
|
ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len);
|
|
|
|
parse_ipv4(ipv4_hdr, info);
|
|
info->ethertype = _htons(ETHER_TYPE_IPv4);
|
|
info->l2_len = 0;
|
|
|
|
} else if (gre_hdr->proto == _htons(ETHER_TYPE_IPv6)) {
|
|
info->is_tunnel = 1;
|
|
info->outer_ethertype = info->ethertype;
|
|
info->outer_l2_len = info->l2_len;
|
|
info->outer_l3_len = info->l3_len;
|
|
info->outer_l4_proto = info->l4_proto;
|
|
|
|
ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len);
|
|
|
|
info->ethertype = _htons(ETHER_TYPE_IPv6);
|
|
parse_ipv6(ipv6_hdr, info);
|
|
info->l2_len = 0;
|
|
|
|
} else if (gre_hdr->proto == _htons(ETHER_TYPE_TEB)) {
|
|
info->is_tunnel = 1;
|
|
info->outer_ethertype = info->ethertype;
|
|
info->outer_l2_len = info->l2_len;
|
|
info->outer_l3_len = info->l3_len;
|
|
info->outer_l4_proto = info->l4_proto;
|
|
|
|
eth_hdr = (struct ether_hdr *)((char *)gre_hdr + gre_len);
|
|
|
|
parse_ethernet(eth_hdr, info);
|
|
} else
|
|
return;
|
|
|
|
info->l2_len += gre_len;
|
|
}
|
|
|
|
|
|
/* Parse an encapsulated ip or ipv6 header */
|
|
static void
|
|
parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
|
|
{
|
|
struct ipv4_hdr *ipv4_hdr = encap_ip;
|
|
struct ipv6_hdr *ipv6_hdr = encap_ip;
|
|
uint8_t ip_version;
|
|
|
|
ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
|
|
|
|
if (ip_version != 4 && ip_version != 6)
|
|
return;
|
|
|
|
info->is_tunnel = 1;
|
|
info->outer_ethertype = info->ethertype;
|
|
info->outer_l2_len = info->l2_len;
|
|
info->outer_l3_len = info->l3_len;
|
|
|
|
if (ip_version == 4) {
|
|
parse_ipv4(ipv4_hdr, info);
|
|
info->ethertype = _htons(ETHER_TYPE_IPv4);
|
|
} else {
|
|
parse_ipv6(ipv6_hdr, info);
|
|
info->ethertype = _htons(ETHER_TYPE_IPv6);
|
|
}
|
|
info->l2_len = 0;
|
|
}
|
|
|
|
/* modify the IPv4 or IPv4 source address of a packet */
|
|
static void
|
|
change_ip_addresses(void *l3_hdr, uint16_t ethertype)
|
|
{
|
|
struct ipv4_hdr *ipv4_hdr = l3_hdr;
|
|
struct ipv6_hdr *ipv6_hdr = l3_hdr;
|
|
|
|
if (ethertype == _htons(ETHER_TYPE_IPv4)) {
|
|
ipv4_hdr->src_addr =
|
|
rte_cpu_to_be_32(rte_be_to_cpu_32(ipv4_hdr->src_addr) + 1);
|
|
} else if (ethertype == _htons(ETHER_TYPE_IPv6)) {
|
|
ipv6_hdr->src_addr[15] = ipv6_hdr->src_addr[15] + 1;
|
|
}
|
|
}
|
|
|
|
/* if possible, calculate the checksum of a packet in hw or sw,
|
|
* depending on the testpmd command line configuration */
|
|
static uint64_t
|
|
process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
|
|
uint16_t testpmd_ol_flags)
|
|
{
|
|
struct ipv4_hdr *ipv4_hdr = l3_hdr;
|
|
struct udp_hdr *udp_hdr;
|
|
struct tcp_hdr *tcp_hdr;
|
|
struct sctp_hdr *sctp_hdr;
|
|
uint64_t ol_flags = 0;
|
|
|
|
if (info->ethertype == _htons(ETHER_TYPE_IPv4)) {
|
|
ipv4_hdr = l3_hdr;
|
|
ipv4_hdr->hdr_checksum = 0;
|
|
|
|
ol_flags |= PKT_TX_IPV4;
|
|
if (info->tso_segsz != 0 && info->l4_proto == IPPROTO_TCP) {
|
|
ol_flags |= PKT_TX_IP_CKSUM;
|
|
} else {
|
|
if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM)
|
|
ol_flags |= PKT_TX_IP_CKSUM;
|
|
else
|
|
ipv4_hdr->hdr_checksum =
|
|
rte_ipv4_cksum(ipv4_hdr);
|
|
}
|
|
} else if (info->ethertype == _htons(ETHER_TYPE_IPv6))
|
|
ol_flags |= PKT_TX_IPV6;
|
|
else
|
|
return 0; /* packet type not supported, nothing to do */
|
|
|
|
if (info->l4_proto == IPPROTO_UDP) {
|
|
udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len);
|
|
/* do not recalculate udp cksum if it was 0 */
|
|
if (udp_hdr->dgram_cksum != 0) {
|
|
udp_hdr->dgram_cksum = 0;
|
|
if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM) {
|
|
ol_flags |= PKT_TX_UDP_CKSUM;
|
|
udp_hdr->dgram_cksum = get_psd_sum(l3_hdr,
|
|
info->ethertype, ol_flags);
|
|
} else {
|
|
udp_hdr->dgram_cksum =
|
|
get_udptcp_checksum(l3_hdr, udp_hdr,
|
|
info->ethertype);
|
|
}
|
|
}
|
|
} else if (info->l4_proto == IPPROTO_TCP) {
|
|
tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len);
|
|
tcp_hdr->cksum = 0;
|
|
if (info->tso_segsz != 0) {
|
|
ol_flags |= PKT_TX_TCP_SEG;
|
|
tcp_hdr->cksum = get_psd_sum(l3_hdr, info->ethertype,
|
|
ol_flags);
|
|
} else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM) {
|
|
ol_flags |= PKT_TX_TCP_CKSUM;
|
|
tcp_hdr->cksum = get_psd_sum(l3_hdr, info->ethertype,
|
|
ol_flags);
|
|
} else {
|
|
tcp_hdr->cksum =
|
|
get_udptcp_checksum(l3_hdr, tcp_hdr,
|
|
info->ethertype);
|
|
}
|
|
} else if (info->l4_proto == IPPROTO_SCTP) {
|
|
sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len);
|
|
sctp_hdr->cksum = 0;
|
|
/* sctp payload must be a multiple of 4 to be
|
|
* offloaded */
|
|
if ((testpmd_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM) &&
|
|
((ipv4_hdr->total_length & 0x3) == 0)) {
|
|
ol_flags |= PKT_TX_SCTP_CKSUM;
|
|
} else {
|
|
/* XXX implement CRC32c, example available in
|
|
* RFC3309 */
|
|
}
|
|
}
|
|
|
|
return ol_flags;
|
|
}
|
|
|
|
/* Calculate the checksum of outer header (only vxlan is supported,
|
|
* meaning IP + UDP). The caller already checked that it's a vxlan
|
|
* packet */
|
|
static uint64_t
|
|
process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
|
|
uint16_t testpmd_ol_flags)
|
|
{
|
|
struct ipv4_hdr *ipv4_hdr = outer_l3_hdr;
|
|
struct ipv6_hdr *ipv6_hdr = outer_l3_hdr;
|
|
struct udp_hdr *udp_hdr;
|
|
uint64_t ol_flags = 0;
|
|
|
|
if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) {
|
|
ipv4_hdr->hdr_checksum = 0;
|
|
ol_flags |= PKT_TX_OUTER_IPV4;
|
|
|
|
if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
|
|
ol_flags |= PKT_TX_OUTER_IP_CKSUM;
|
|
else
|
|
ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
|
|
} else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
|
|
ol_flags |= PKT_TX_OUTER_IPV6;
|
|
|
|
if (info->outer_l4_proto != IPPROTO_UDP)
|
|
return ol_flags;
|
|
|
|
/* outer UDP checksum is always done in software as we have no
|
|
* hardware supporting it today, and no API for it. */
|
|
|
|
udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len);
|
|
/* do not recalculate udp cksum if it was 0 */
|
|
if (udp_hdr->dgram_cksum != 0) {
|
|
udp_hdr->dgram_cksum = 0;
|
|
if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4))
|
|
udp_hdr->dgram_cksum =
|
|
rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
|
|
else
|
|
udp_hdr->dgram_cksum =
|
|
rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
|
|
}
|
|
|
|
return ol_flags;
|
|
}
|
|
|
|
/*
|
|
* Helper function.
|
|
* Performs actual copying.
|
|
* Returns number of segments in the destination mbuf on success,
|
|
* or negative error code on failure.
|
|
*/
|
|
static int
|
|
mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
|
|
uint16_t seglen[], uint8_t nb_seg)
|
|
{
|
|
uint32_t dlen, slen, tlen;
|
|
uint32_t i, len;
|
|
const struct rte_mbuf *m;
|
|
const uint8_t *src;
|
|
uint8_t *dst;
|
|
|
|
dlen = 0;
|
|
slen = 0;
|
|
tlen = 0;
|
|
|
|
dst = NULL;
|
|
src = NULL;
|
|
|
|
m = ms;
|
|
i = 0;
|
|
while (ms != NULL && i != nb_seg) {
|
|
|
|
if (slen == 0) {
|
|
slen = rte_pktmbuf_data_len(ms);
|
|
src = rte_pktmbuf_mtod(ms, const uint8_t *);
|
|
}
|
|
|
|
if (dlen == 0) {
|
|
dlen = RTE_MIN(seglen[i], slen);
|
|
md[i]->data_len = dlen;
|
|
md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
|
|
dst = rte_pktmbuf_mtod(md[i], uint8_t *);
|
|
}
|
|
|
|
len = RTE_MIN(slen, dlen);
|
|
memcpy(dst, src, len);
|
|
tlen += len;
|
|
slen -= len;
|
|
dlen -= len;
|
|
src += len;
|
|
dst += len;
|
|
|
|
if (slen == 0)
|
|
ms = ms->next;
|
|
if (dlen == 0)
|
|
i++;
|
|
}
|
|
|
|
if (ms != NULL)
|
|
return -ENOBUFS;
|
|
else if (tlen != m->pkt_len)
|
|
return -EINVAL;
|
|
|
|
md[0]->nb_segs = nb_seg;
|
|
md[0]->pkt_len = tlen;
|
|
md[0]->vlan_tci = m->vlan_tci;
|
|
md[0]->vlan_tci_outer = m->vlan_tci_outer;
|
|
md[0]->ol_flags = m->ol_flags;
|
|
md[0]->tx_offload = m->tx_offload;
|
|
|
|
return nb_seg;
|
|
}
|
|
|
|
/*
|
|
* Allocate a new mbuf with up to tx_pkt_nb_segs segments.
|
|
* Copy packet contents and offload information into then new segmented mbuf.
|
|
*/
|
|
static struct rte_mbuf *
|
|
pkt_copy_split(const struct rte_mbuf *pkt)
|
|
{
|
|
int32_t n, rc;
|
|
uint32_t i, len, nb_seg;
|
|
struct rte_mempool *mp;
|
|
uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
|
|
struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
|
|
|
|
mp = current_fwd_lcore()->mbp;
|
|
|
|
if (tx_pkt_split == TX_PKT_SPLIT_RND)
|
|
nb_seg = random() % tx_pkt_nb_segs + 1;
|
|
else
|
|
nb_seg = tx_pkt_nb_segs;
|
|
|
|
memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
|
|
|
|
/* calculate number of segments to use and their length. */
|
|
len = 0;
|
|
for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
|
|
len += seglen[i];
|
|
md[i] = NULL;
|
|
}
|
|
|
|
n = pkt->pkt_len - len;
|
|
|
|
/* update size of the last segment to fit rest of the packet */
|
|
if (n >= 0) {
|
|
seglen[i - 1] += n;
|
|
len += n;
|
|
}
|
|
|
|
nb_seg = i;
|
|
while (i != 0) {
|
|
p = rte_pktmbuf_alloc(mp);
|
|
if (p == NULL) {
|
|
RTE_LOG(ERR, USER1,
|
|
"failed to allocate %u-th of %u mbuf "
|
|
"from mempool: %s\n",
|
|
nb_seg - i, nb_seg, mp->name);
|
|
break;
|
|
}
|
|
|
|
md[--i] = p;
|
|
if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
|
|
RTE_LOG(ERR, USER1, "mempool %s, %u-th segment: "
|
|
"expected seglen: %u, "
|
|
"actual mbuf tailroom: %u\n",
|
|
mp->name, i, seglen[i],
|
|
rte_pktmbuf_tailroom(md[i]));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* all mbufs successfully allocated, do copy */
|
|
if (i == 0) {
|
|
rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
|
|
if (rc < 0)
|
|
RTE_LOG(ERR, USER1,
|
|
"mbuf_copy_split for %p(len=%u, nb_seg=%hhu) "
|
|
"into %u segments failed with error code: %d\n",
|
|
pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
|
|
|
|
/* figure out how many mbufs to free. */
|
|
i = RTE_MAX(rc, 0);
|
|
}
|
|
|
|
/* free unused mbufs */
|
|
for (; i != nb_seg; i++) {
|
|
rte_pktmbuf_free_seg(md[i]);
|
|
md[i] = NULL;
|
|
}
|
|
|
|
return md[0];
|
|
}
|
|
|
|
/*
|
|
* Receive a burst of packets, and for each packet:
|
|
* - parse packet, and try to recognize a supported packet type (1)
|
|
* - if it's not a supported packet type, don't touch the packet, else:
|
|
* - modify the IPs in inner headers and in outer headers if any
|
|
* - reprocess the checksum of all supported layers. This is done in SW
|
|
* or HW, depending on testpmd command line configuration
|
|
* - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
|
|
* segmentation offload (this implies HW TCP checksum)
|
|
* Then transmit packets on the output port.
|
|
*
|
|
* (1) Supported packets are:
|
|
* Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
|
|
* Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
|
|
* UDP|TCP|SCTP
|
|
* Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
|
|
* Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
|
|
* Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
|
|
*
|
|
* The testpmd command line for this forward engine sets the flags
|
|
* TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
|
|
* wether a checksum must be calculated in software or in hardware. The
|
|
* IP, UDP, TCP and SCTP flags always concern the inner layer. The
|
|
* OUTER_IP is only useful for tunnel packets.
|
|
*/
|
|
static void
|
|
pkt_burst_checksum_forward(struct fwd_stream *fs)
|
|
{
|
|
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
|
|
struct rte_port *txp;
|
|
struct rte_mbuf *m, *p;
|
|
struct ether_hdr *eth_hdr;
|
|
void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
|
|
uint16_t nb_rx;
|
|
uint16_t nb_tx;
|
|
uint16_t i;
|
|
uint64_t ol_flags;
|
|
uint16_t testpmd_ol_flags;
|
|
uint32_t retry;
|
|
uint32_t rx_bad_ip_csum;
|
|
uint32_t rx_bad_l4_csum;
|
|
struct testpmd_offload_info info;
|
|
|
|
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
|
|
uint64_t start_tsc;
|
|
uint64_t end_tsc;
|
|
uint64_t core_cycles;
|
|
#endif
|
|
|
|
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
|
|
start_tsc = rte_rdtsc();
|
|
#endif
|
|
|
|
/* receive a burst of packet */
|
|
nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
|
|
nb_pkt_per_burst);
|
|
if (unlikely(nb_rx == 0))
|
|
return;
|
|
|
|
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
|
|
fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
|
|
#endif
|
|
fs->rx_packets += nb_rx;
|
|
rx_bad_ip_csum = 0;
|
|
rx_bad_l4_csum = 0;
|
|
|
|
txp = &ports[fs->tx_port];
|
|
testpmd_ol_flags = txp->tx_ol_flags;
|
|
memset(&info, 0, sizeof(info));
|
|
info.tso_segsz = txp->tso_segsz;
|
|
|
|
for (i = 0; i < nb_rx; i++) {
|
|
if (likely(i < nb_rx - 1))
|
|
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
|
|
void *));
|
|
|
|
ol_flags = 0;
|
|
info.is_tunnel = 0;
|
|
m = pkts_burst[i];
|
|
|
|
/* Update the L3/L4 checksum error packet statistics */
|
|
rx_bad_ip_csum += ((m->ol_flags & PKT_RX_IP_CKSUM_BAD) != 0);
|
|
rx_bad_l4_csum += ((m->ol_flags & PKT_RX_L4_CKSUM_BAD) != 0);
|
|
|
|
/* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
|
|
* and inner headers */
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
|
|
ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
|
|
ð_hdr->d_addr);
|
|
ether_addr_copy(&ports[fs->tx_port].eth_addr,
|
|
ð_hdr->s_addr);
|
|
parse_ethernet(eth_hdr, &info);
|
|
l3_hdr = (char *)eth_hdr + info.l2_len;
|
|
|
|
/* check if it's a supported tunnel */
|
|
if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_PARSE_TUNNEL) {
|
|
if (info.l4_proto == IPPROTO_UDP) {
|
|
struct udp_hdr *udp_hdr;
|
|
udp_hdr = (struct udp_hdr *)((char *)l3_hdr +
|
|
info.l3_len);
|
|
parse_vxlan(udp_hdr, &info, m->packet_type);
|
|
} else if (info.l4_proto == IPPROTO_GRE) {
|
|
struct simple_gre_hdr *gre_hdr;
|
|
gre_hdr = (struct simple_gre_hdr *)
|
|
((char *)l3_hdr + info.l3_len);
|
|
parse_gre(gre_hdr, &info);
|
|
} else if (info.l4_proto == IPPROTO_IPIP) {
|
|
void *encap_ip_hdr;
|
|
encap_ip_hdr = (char *)l3_hdr + info.l3_len;
|
|
parse_encap_ip(encap_ip_hdr, &info);
|
|
}
|
|
}
|
|
|
|
/* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
|
|
if (info.is_tunnel) {
|
|
outer_l3_hdr = l3_hdr;
|
|
l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
|
|
}
|
|
|
|
/* step 2: change all source IPs (v4 or v6) so we need
|
|
* to recompute the chksums even if they were correct */
|
|
|
|
change_ip_addresses(l3_hdr, info.ethertype);
|
|
if (info.is_tunnel == 1)
|
|
change_ip_addresses(outer_l3_hdr, info.outer_ethertype);
|
|
|
|
/* step 3: depending on user command line configuration,
|
|
* recompute checksum either in software or flag the
|
|
* mbuf to offload the calculation to the NIC. If TSO
|
|
* is configured, prepare the mbuf for TCP segmentation. */
|
|
|
|
/* process checksums of inner headers first */
|
|
ol_flags |= process_inner_cksums(l3_hdr, &info, testpmd_ol_flags);
|
|
|
|
/* Then process outer headers if any. Note that the software
|
|
* checksum will be wrong if one of the inner checksums is
|
|
* processed in hardware. */
|
|
if (info.is_tunnel == 1) {
|
|
ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
|
|
testpmd_ol_flags);
|
|
}
|
|
|
|
/* step 4: fill the mbuf meta data (flags and header lengths) */
|
|
|
|
if (info.is_tunnel == 1) {
|
|
if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) {
|
|
m->outer_l2_len = info.outer_l2_len;
|
|
m->outer_l3_len = info.outer_l3_len;
|
|
m->l2_len = info.l2_len;
|
|
m->l3_len = info.l3_len;
|
|
m->l4_len = info.l4_len;
|
|
}
|
|
else {
|
|
/* if there is a outer UDP cksum
|
|
processed in sw and the inner in hw,
|
|
the outer checksum will be wrong as
|
|
the payload will be modified by the
|
|
hardware */
|
|
m->l2_len = info.outer_l2_len +
|
|
info.outer_l3_len + info.l2_len;
|
|
m->l3_len = info.l3_len;
|
|
m->l4_len = info.l4_len;
|
|
}
|
|
} else {
|
|
/* this is only useful if an offload flag is
|
|
* set, but it does not hurt to fill it in any
|
|
* case */
|
|
m->l2_len = info.l2_len;
|
|
m->l3_len = info.l3_len;
|
|
m->l4_len = info.l4_len;
|
|
}
|
|
m->tso_segsz = info.tso_segsz;
|
|
m->ol_flags = ol_flags;
|
|
|
|
/* Do split & copy for the packet. */
|
|
if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
|
|
p = pkt_copy_split(m);
|
|
if (p != NULL) {
|
|
rte_pktmbuf_free(m);
|
|
m = p;
|
|
pkts_burst[i] = m;
|
|
}
|
|
}
|
|
|
|
/* if verbose mode is enabled, dump debug info */
|
|
if (verbose_level > 0) {
|
|
struct {
|
|
uint64_t flag;
|
|
uint64_t mask;
|
|
} tx_flags[] = {
|
|
{ PKT_TX_IP_CKSUM, PKT_TX_IP_CKSUM },
|
|
{ PKT_TX_UDP_CKSUM, PKT_TX_L4_MASK },
|
|
{ PKT_TX_TCP_CKSUM, PKT_TX_L4_MASK },
|
|
{ PKT_TX_SCTP_CKSUM, PKT_TX_L4_MASK },
|
|
{ PKT_TX_IPV4, PKT_TX_IPV4 },
|
|
{ PKT_TX_IPV6, PKT_TX_IPV6 },
|
|
{ PKT_TX_OUTER_IP_CKSUM, PKT_TX_OUTER_IP_CKSUM },
|
|
{ PKT_TX_OUTER_IPV4, PKT_TX_OUTER_IPV4 },
|
|
{ PKT_TX_OUTER_IPV6, PKT_TX_OUTER_IPV6 },
|
|
{ PKT_TX_TCP_SEG, PKT_TX_TCP_SEG },
|
|
};
|
|
unsigned j;
|
|
const char *name;
|
|
|
|
printf("-----------------\n");
|
|
printf("mbuf=%p, pkt_len=%u, nb_segs=%hhu:\n",
|
|
m, m->pkt_len, m->nb_segs);
|
|
/* dump rx parsed packet info */
|
|
printf("rx: l2_len=%d ethertype=%x l3_len=%d "
|
|
"l4_proto=%d l4_len=%d\n",
|
|
info.l2_len, rte_be_to_cpu_16(info.ethertype),
|
|
info.l3_len, info.l4_proto, info.l4_len);
|
|
if (info.is_tunnel == 1)
|
|
printf("rx: outer_l2_len=%d outer_ethertype=%x "
|
|
"outer_l3_len=%d\n", info.outer_l2_len,
|
|
rte_be_to_cpu_16(info.outer_ethertype),
|
|
info.outer_l3_len);
|
|
/* dump tx packet info */
|
|
if ((testpmd_ol_flags & (TESTPMD_TX_OFFLOAD_IP_CKSUM |
|
|
TESTPMD_TX_OFFLOAD_UDP_CKSUM |
|
|
TESTPMD_TX_OFFLOAD_TCP_CKSUM |
|
|
TESTPMD_TX_OFFLOAD_SCTP_CKSUM)) ||
|
|
info.tso_segsz != 0)
|
|
printf("tx: m->l2_len=%d m->l3_len=%d "
|
|
"m->l4_len=%d\n",
|
|
m->l2_len, m->l3_len, m->l4_len);
|
|
if ((info.is_tunnel == 1) &&
|
|
(testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM))
|
|
printf("tx: m->outer_l2_len=%d m->outer_l3_len=%d\n",
|
|
m->outer_l2_len, m->outer_l3_len);
|
|
if (info.tso_segsz != 0)
|
|
printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
|
|
printf("tx: flags=");
|
|
for (j = 0; j < sizeof(tx_flags)/sizeof(*tx_flags); j++) {
|
|
name = rte_get_tx_ol_flag_name(tx_flags[j].flag);
|
|
if ((m->ol_flags & tx_flags[j].mask) ==
|
|
tx_flags[j].flag)
|
|
printf("%s ", name);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_rx);
|
|
/*
|
|
* Retry if necessary
|
|
*/
|
|
if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
|
|
retry = 0;
|
|
while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
|
|
rte_delay_us(burst_tx_delay_time);
|
|
nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
|
|
&pkts_burst[nb_tx], nb_rx - nb_tx);
|
|
}
|
|
}
|
|
fs->tx_packets += nb_tx;
|
|
fs->rx_bad_ip_csum += rx_bad_ip_csum;
|
|
fs->rx_bad_l4_csum += rx_bad_l4_csum;
|
|
|
|
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
|
|
fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
|
|
#endif
|
|
if (unlikely(nb_tx < nb_rx)) {
|
|
fs->fwd_dropped += (nb_rx - nb_tx);
|
|
do {
|
|
rte_pktmbuf_free(pkts_burst[nb_tx]);
|
|
} while (++nb_tx < nb_rx);
|
|
}
|
|
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
|
|
end_tsc = rte_rdtsc();
|
|
core_cycles = (end_tsc - start_tsc);
|
|
fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
|
|
#endif
|
|
}
|
|
|
|
struct fwd_engine csum_fwd_engine = {
|
|
.fwd_mode_name = "csum",
|
|
.port_fwd_begin = NULL,
|
|
.port_fwd_end = NULL,
|
|
.packet_fwd = pkt_burst_checksum_forward,
|
|
};
|