numam-dpdk/drivers/crypto/cnxk/cn10k_cryptodev_ops.c
Akhil Goyal 2973dbf93b security: hide session structure
Structure rte_security_session is moved to internal
headers which are not visible to applications.
The only field which should be used by app is opaque_data.
This field can now be accessed via set/get APIs added in this
patch.
Subsequent changes in app and lib are made to compile the code.

Signed-off-by: Akhil Goyal <gakhil@marvell.com>
Tested-by: Gagandeep Singh <g.singh@nxp.com>
Tested-by: David Coyle <david.coyle@intel.com>
Tested-by: Kevin O'Sullivan <kevin.osullivan@intel.com>
2022-10-04 22:37:54 +02:00

1066 lines
27 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 Marvell.
*/
#include <rte_cryptodev.h>
#include <cryptodev_pmd.h>
#include <rte_event_crypto_adapter.h>
#include <rte_ip.h>
#include "cn10k_cryptodev.h"
#include "cn10k_cryptodev_ops.h"
#include "cn10k_ipsec.h"
#include "cn10k_ipsec_la_ops.h"
#include "cnxk_ae.h"
#include "cnxk_cryptodev.h"
#include "cnxk_cryptodev_ops.h"
#include "cnxk_eventdev.h"
#include "cnxk_se.h"
#include "roc_api.h"
#define PKTS_PER_LOOP 32
#define PKTS_PER_STEORL 16
/* Holds information required to send crypto operations in one burst */
struct ops_burst {
struct rte_crypto_op *op[PKTS_PER_LOOP];
uint64_t w2[PKTS_PER_LOOP];
struct cn10k_sso_hws *ws;
struct cnxk_cpt_qp *qp;
uint16_t nb_ops;
};
/* Holds information required to send vector of operations */
struct vec_request {
struct cpt_inflight_req *req;
struct rte_event_vector *vec;
uint64_t w2;
};
static inline struct cnxk_se_sess *
cn10k_cpt_sym_temp_sess_create(struct cnxk_cpt_qp *qp, struct rte_crypto_op *op)
{
struct rte_crypto_sym_op *sym_op = op->sym;
struct rte_cryptodev_sym_session *sess;
struct cnxk_se_sess *priv;
int ret;
/* Create temporary session */
if (rte_mempool_get(qp->sess_mp, (void **)&sess) < 0)
return NULL;
ret = sym_session_configure(qp->lf.roc_cpt, sym_op->xform,
sess);
if (ret) {
rte_mempool_put(qp->sess_mp, (void *)sess);
goto sess_put;
}
priv = (void *)sess->driver_priv_data;
sym_op->session = sess;
return priv;
sess_put:
rte_mempool_put(qp->sess_mp, sess);
return NULL;
}
static __rte_always_inline int __rte_hot
cpt_sec_inst_fill(struct cnxk_cpt_qp *qp, struct rte_crypto_op *op,
struct cn10k_sec_session *sess, struct cpt_inst_s *inst)
{
struct rte_crypto_sym_op *sym_op = op->sym;
struct cn10k_ipsec_sa *sa;
int ret;
if (unlikely(sym_op->m_dst && sym_op->m_dst != sym_op->m_src)) {
plt_dp_err("Out of place is not supported");
return -ENOTSUP;
}
if (unlikely(!rte_pktmbuf_is_contiguous(sym_op->m_src))) {
plt_dp_err("Scatter Gather mode is not supported");
return -ENOTSUP;
}
sa = &sess->sa;
if (sa->is_outbound)
ret = process_outb_sa(&qp->lf, op, sa, inst);
else
ret = process_inb_sa(op, sa, inst);
return ret;
}
static inline int
cn10k_cpt_fill_inst(struct cnxk_cpt_qp *qp, struct rte_crypto_op *ops[],
struct cpt_inst_s inst[], struct cpt_inflight_req *infl_req)
{
struct cn10k_sec_session *sec_sess;
struct rte_crypto_asym_op *asym_op;
struct rte_crypto_sym_op *sym_op;
struct cnxk_ae_sess *ae_sess;
struct cnxk_se_sess *sess;
struct rte_crypto_op *op;
uint64_t w7;
int ret;
const union cpt_res_s res = {
.cn10k.compcode = CPT_COMP_NOT_DONE,
};
op = ops[0];
inst[0].w0.u64 = 0;
inst[0].w2.u64 = 0;
inst[0].w3.u64 = 0;
sym_op = op->sym;
if (op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) {
sec_sess = SECURITY_GET_SESS_PRIV(sym_op->session);
ret = cpt_sec_inst_fill(qp, op, sec_sess, &inst[0]);
if (unlikely(ret))
return 0;
w7 = sec_sess->sa.inst.w7;
} else if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
sess = CRYPTODEV_GET_SYM_SESS_PRIV(sym_op->session);
ret = cpt_sym_inst_fill(qp, op, sess, infl_req,
&inst[0]);
if (unlikely(ret))
return 0;
w7 = sess->cpt_inst_w7;
} else {
sess = cn10k_cpt_sym_temp_sess_create(qp, op);
if (unlikely(sess == NULL)) {
plt_dp_err("Could not create temp session");
return 0;
}
ret = cpt_sym_inst_fill(qp, op, sess, infl_req,
&inst[0]);
if (unlikely(ret)) {
sym_session_clear(op->sym->session);
rte_mempool_put(qp->sess_mp, op->sym->session);
return 0;
}
w7 = sess->cpt_inst_w7;
}
} else if (op->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC) {
if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
asym_op = op->asym;
ae_sess = (struct cnxk_ae_sess *)
asym_op->session->sess_private_data;
ret = cnxk_ae_enqueue(qp, op, infl_req, &inst[0],
ae_sess);
if (unlikely(ret))
return 0;
w7 = ae_sess->cpt_inst_w7;
} else {
plt_dp_err("Not supported Asym op without session");
return 0;
}
} else {
plt_dp_err("Unsupported op type");
return 0;
}
inst[0].res_addr = (uint64_t)&infl_req->res;
__atomic_store_n(&infl_req->res.u64[0], res.u64[0], __ATOMIC_RELAXED);
infl_req->cop = op;
inst[0].w7.u64 = w7;
return 1;
}
static uint16_t
cn10k_cpt_enqueue_burst(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
{
uint64_t lmt_base, lmt_arg, io_addr;
struct cpt_inflight_req *infl_req;
uint16_t nb_allowed, count = 0;
struct cnxk_cpt_qp *qp = qptr;
struct pending_queue *pend_q;
struct cpt_inst_s *inst;
union cpt_fc_write_s fc;
uint64_t *fc_addr;
uint16_t lmt_id;
uint64_t head;
int ret, i;
pend_q = &qp->pend_q;
const uint64_t pq_mask = pend_q->pq_mask;
head = pend_q->head;
nb_allowed = pending_queue_free_cnt(head, pend_q->tail, pq_mask);
nb_ops = RTE_MIN(nb_ops, nb_allowed);
if (unlikely(nb_ops == 0))
return 0;
lmt_base = qp->lmtline.lmt_base;
io_addr = qp->lmtline.io_addr;
fc_addr = qp->lmtline.fc_addr;
const uint32_t fc_thresh = qp->lmtline.fc_thresh;
ROC_LMT_BASE_ID_GET(lmt_base, lmt_id);
inst = (struct cpt_inst_s *)lmt_base;
again:
fc.u64[0] = __atomic_load_n(fc_addr, __ATOMIC_RELAXED);
if (unlikely(fc.s.qsize > fc_thresh)) {
i = 0;
goto pend_q_commit;
}
for (i = 0; i < RTE_MIN(PKTS_PER_LOOP, nb_ops); i++) {
infl_req = &pend_q->req_queue[head];
infl_req->op_flags = 0;
ret = cn10k_cpt_fill_inst(qp, ops + i, &inst[2 * i], infl_req);
if (unlikely(ret != 1)) {
plt_dp_err("Could not process op: %p", ops + i);
if (i == 0)
goto pend_q_commit;
break;
}
pending_queue_advance(&head, pq_mask);
}
if (i > PKTS_PER_STEORL) {
lmt_arg = ROC_CN10K_CPT_LMT_ARG | (PKTS_PER_STEORL - 1) << 12 |
(uint64_t)lmt_id;
roc_lmt_submit_steorl(lmt_arg, io_addr);
lmt_arg = ROC_CN10K_CPT_LMT_ARG |
(i - PKTS_PER_STEORL - 1) << 12 |
(uint64_t)(lmt_id + PKTS_PER_STEORL);
roc_lmt_submit_steorl(lmt_arg, io_addr);
} else {
lmt_arg = ROC_CN10K_CPT_LMT_ARG | (i - 1) << 12 |
(uint64_t)lmt_id;
roc_lmt_submit_steorl(lmt_arg, io_addr);
}
rte_io_wmb();
if (nb_ops - i > 0 && i == PKTS_PER_LOOP) {
nb_ops -= i;
ops += i;
count += i;
goto again;
}
pend_q_commit:
rte_atomic_thread_fence(__ATOMIC_RELEASE);
pend_q->head = head;
pend_q->time_out = rte_get_timer_cycles() +
DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz();
return count + i;
}
static int
cn10k_cpt_crypto_adapter_ev_mdata_set(struct rte_cryptodev *dev __rte_unused,
void *sess,
enum rte_crypto_op_type op_type,
enum rte_crypto_op_sess_type sess_type,
void *mdata)
{
union rte_event_crypto_metadata *ec_mdata = mdata;
struct rte_event *rsp_info;
struct cnxk_cpt_qp *qp;
uint64_t w2, tag_type;
uint8_t cdev_id;
int16_t qp_id;
/* Get queue pair */
cdev_id = ec_mdata->request_info.cdev_id;
qp_id = ec_mdata->request_info.queue_pair_id;
qp = rte_cryptodevs[cdev_id].data->queue_pairs[qp_id];
/* Prepare w2 */
tag_type = qp->ca.vector_sz ? RTE_EVENT_TYPE_CRYPTODEV_VECTOR : RTE_EVENT_TYPE_CRYPTODEV;
rsp_info = &ec_mdata->response_info;
w2 = CNXK_CPT_INST_W2((tag_type << 28) | (rsp_info->sub_event_type << 20) |
rsp_info->flow_id,
rsp_info->sched_type, rsp_info->queue_id, 0);
/* Set meta according to session type */
if (op_type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
if (sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) {
struct cn10k_sec_session *priv;
struct cn10k_ipsec_sa *sa;
priv = SECURITY_GET_SESS_PRIV(sess);
sa = &priv->sa;
sa->qp = qp;
sa->inst.w2 = w2;
} else if (sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
struct cnxk_se_sess *priv;
priv = CRYPTODEV_GET_SYM_SESS_PRIV(sess);
priv->qp = qp;
priv->cpt_inst_w2 = w2;
} else
return -EINVAL;
} else if (op_type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC) {
if (sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
struct rte_cryptodev_asym_session *asym_sess = sess;
struct cnxk_ae_sess *priv;
priv = (struct cnxk_ae_sess *)asym_sess->sess_private_data;
priv->qp = qp;
priv->cpt_inst_w2 = w2;
} else
return -EINVAL;
} else
return -EINVAL;
return 0;
}
static inline int
cn10k_ca_meta_info_extract(struct rte_crypto_op *op,
struct cnxk_cpt_qp **qp, uint64_t *w2)
{
if (op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) {
struct cn10k_sec_session *priv;
struct cn10k_ipsec_sa *sa;
priv = SECURITY_GET_SESS_PRIV(op->sym->session);
sa = &priv->sa;
*qp = sa->qp;
*w2 = sa->inst.w2;
} else if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
struct cnxk_se_sess *priv;
priv = CRYPTODEV_GET_SYM_SESS_PRIV(op->sym->session);
*qp = priv->qp;
*w2 = priv->cpt_inst_w2;
} else {
union rte_event_crypto_metadata *ec_mdata;
struct rte_event *rsp_info;
uint8_t cdev_id;
uint16_t qp_id;
if (unlikely(op->private_data_offset == 0))
return -EINVAL;
ec_mdata = (union rte_event_crypto_metadata *)
((uint8_t *)op + op->private_data_offset);
rsp_info = &ec_mdata->response_info;
cdev_id = ec_mdata->request_info.cdev_id;
qp_id = ec_mdata->request_info.queue_pair_id;
*qp = rte_cryptodevs[cdev_id].data->queue_pairs[qp_id];
*w2 = CNXK_CPT_INST_W2(
(RTE_EVENT_TYPE_CRYPTODEV << 28) | rsp_info->flow_id,
rsp_info->sched_type, rsp_info->queue_id, 0);
}
} else if (op->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC) {
if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
struct rte_cryptodev_asym_session *asym_sess;
struct cnxk_ae_sess *priv;
asym_sess = op->asym->session;
priv = (struct cnxk_ae_sess *)asym_sess->sess_private_data;
*qp = priv->qp;
*w2 = priv->cpt_inst_w2;
} else
return -EINVAL;
} else
return -EINVAL;
return 0;
}
static inline void
cn10k_cpt_vec_inst_fill(struct vec_request *vec_req, struct cpt_inst_s *inst,
struct cnxk_cpt_qp *qp)
{
const union cpt_res_s res = {.cn10k.compcode = CPT_COMP_NOT_DONE};
struct cpt_inflight_req *infl_req = vec_req->req;
const union cpt_inst_w4 w4 = {
.s.opcode_major = ROC_SE_MAJOR_OP_MISC,
.s.opcode_minor = ROC_SE_MISC_MINOR_OP_PASSTHROUGH,
.s.param1 = 1,
.s.param2 = 1,
.s.dlen = 0,
};
infl_req->vec = vec_req->vec;
infl_req->qp = qp;
inst->res_addr = (uint64_t)&infl_req->res;
__atomic_store_n(&infl_req->res.u64[0], res.u64[0], __ATOMIC_RELAXED);
inst->w0.u64 = 0;
inst->w2.u64 = vec_req->w2;
inst->w3.u64 = CNXK_CPT_INST_W3(1, infl_req);
inst->w4.u64 = w4.u64;
inst->w7.u64 = ROC_CPT_DFLT_ENG_GRP_SE << 61;
}
static void
cn10k_cpt_vec_pkt_submission_timeout_handle(void)
{
plt_dp_err("Vector packet submission timedout");
abort();
}
static inline void
cn10k_cpt_vec_submit(struct vec_request vec_tbl[], uint16_t vec_tbl_len, struct cnxk_cpt_qp *qp)
{
uint64_t lmt_base, lmt_arg, lmt_id, io_addr;
union cpt_fc_write_s fc;
struct cpt_inst_s *inst;
uint16_t burst_size;
uint64_t *fc_addr;
int i;
if (vec_tbl_len == 0)
return;
const uint32_t fc_thresh = qp->lmtline.fc_thresh;
/*
* Use 10 mins timeout for the poll. It is not possible to recover from partial submission
* of vector packet. Actual packets for processing are submitted to CPT prior to this
* routine. Hence, any failure for submission of vector packet would indicate an
* unrecoverable error for the application.
*/
const uint64_t timeout = rte_get_timer_cycles() + 10 * 60 * rte_get_timer_hz();
lmt_base = qp->lmtline.lmt_base;
io_addr = qp->lmtline.io_addr;
fc_addr = qp->lmtline.fc_addr;
ROC_LMT_BASE_ID_GET(lmt_base, lmt_id);
inst = (struct cpt_inst_s *)lmt_base;
again:
burst_size = RTE_MIN(PKTS_PER_STEORL, vec_tbl_len);
for (i = 0; i < burst_size; i++)
cn10k_cpt_vec_inst_fill(&vec_tbl[i], &inst[i * 2], qp);
do {
fc.u64[0] = __atomic_load_n(fc_addr, __ATOMIC_RELAXED);
if (likely(fc.s.qsize < fc_thresh))
break;
if (unlikely(rte_get_timer_cycles() > timeout))
cn10k_cpt_vec_pkt_submission_timeout_handle();
} while (true);
lmt_arg = ROC_CN10K_CPT_LMT_ARG | (i - 1) << 12 | lmt_id;
roc_lmt_submit_steorl(lmt_arg, io_addr);
rte_io_wmb();
vec_tbl_len -= i;
if (vec_tbl_len > 0) {
vec_tbl += i;
goto again;
}
}
static inline int
ca_lmtst_vec_submit(struct ops_burst *burst, struct vec_request vec_tbl[], uint16_t *vec_tbl_len)
{
struct cpt_inflight_req *infl_reqs[PKTS_PER_LOOP];
uint64_t lmt_base, lmt_arg, io_addr;
uint16_t lmt_id, len = *vec_tbl_len;
struct cpt_inst_s *inst, *inst_base;
struct cpt_inflight_req *infl_req;
struct rte_event_vector *vec;
union cpt_fc_write_s fc;
struct cnxk_cpt_qp *qp;
uint64_t *fc_addr;
int ret, i, vi;
qp = burst->qp;
lmt_base = qp->lmtline.lmt_base;
io_addr = qp->lmtline.io_addr;
fc_addr = qp->lmtline.fc_addr;
const uint32_t fc_thresh = qp->lmtline.fc_thresh;
ROC_LMT_BASE_ID_GET(lmt_base, lmt_id);
inst_base = (struct cpt_inst_s *)lmt_base;
#ifdef CNXK_CRYPTODEV_DEBUG
if (unlikely(!qp->ca.enabled)) {
rte_errno = EINVAL;
return 0;
}
#endif
/* Perform fc check before putting packets into vectors */
fc.u64[0] = __atomic_load_n(fc_addr, __ATOMIC_RELAXED);
if (unlikely(fc.s.qsize > fc_thresh)) {
rte_errno = EAGAIN;
return 0;
}
if (unlikely(rte_mempool_get_bulk(qp->ca.req_mp, (void **)infl_reqs, burst->nb_ops))) {
rte_errno = ENOMEM;
return 0;
}
for (i = 0; i < burst->nb_ops; i++) {
inst = &inst_base[2 * i];
infl_req = infl_reqs[i];
infl_req->op_flags = 0;
ret = cn10k_cpt_fill_inst(qp, &burst->op[i], inst, infl_req);
if (unlikely(ret != 1)) {
plt_cpt_dbg("Could not process op: %p", burst->op[i]);
if (i != 0)
goto submit;
else
goto put;
}
infl_req->res.cn10k.compcode = CPT_COMP_NOT_DONE;
infl_req->qp = qp;
inst->w3.u64 = 0x1;
/* Lookup for existing vector by w2 */
for (vi = len - 1; vi >= 0; vi--) {
if (vec_tbl[vi].w2 != burst->w2[i])
continue;
vec = vec_tbl[vi].vec;
if (unlikely(vec->nb_elem == qp->ca.vector_sz))
continue;
vec->ptrs[vec->nb_elem++] = infl_req;
goto next_op; /* continue outer loop */
}
/* No available vectors found, allocate a new one */
if (unlikely(rte_mempool_get(qp->ca.vector_mp, (void **)&vec_tbl[len].vec))) {
rte_errno = ENOMEM;
if (i != 0)
goto submit;
else
goto put;
}
/* Also preallocate in-flight request, that will be used to
* submit misc passthrough instruction
*/
if (unlikely(rte_mempool_get(qp->ca.req_mp, (void **)&vec_tbl[len].req))) {
rte_mempool_put(qp->ca.vector_mp, vec_tbl[len].vec);
rte_errno = ENOMEM;
if (i != 0)
goto submit;
else
goto put;
}
vec_tbl[len].w2 = burst->w2[i];
vec_tbl[len].vec->ptrs[0] = infl_req;
vec_tbl[len].vec->nb_elem = 1;
len++;
next_op:;
}
/* Submit operations in burst */
submit:
if (CNXK_TT_FROM_TAG(burst->ws->gw_rdata) == SSO_TT_ORDERED)
roc_sso_hws_head_wait(burst->ws->base);
if (i > PKTS_PER_STEORL) {
lmt_arg = ROC_CN10K_CPT_LMT_ARG | (PKTS_PER_STEORL - 1) << 12 | (uint64_t)lmt_id;
roc_lmt_submit_steorl(lmt_arg, io_addr);
lmt_arg = ROC_CN10K_CPT_LMT_ARG | (i - PKTS_PER_STEORL - 1) << 12 |
(uint64_t)(lmt_id + PKTS_PER_STEORL);
roc_lmt_submit_steorl(lmt_arg, io_addr);
} else {
lmt_arg = ROC_CN10K_CPT_LMT_ARG | (i - 1) << 12 | (uint64_t)lmt_id;
roc_lmt_submit_steorl(lmt_arg, io_addr);
}
rte_io_wmb();
put:
if (i != burst->nb_ops)
rte_mempool_put_bulk(qp->ca.req_mp, (void *)&infl_reqs[i], burst->nb_ops - i);
*vec_tbl_len = len;
return i;
}
static inline uint16_t
ca_lmtst_burst_submit(struct ops_burst *burst)
{
struct cpt_inflight_req *infl_reqs[PKTS_PER_LOOP];
uint64_t lmt_base, lmt_arg, io_addr;
struct cpt_inst_s *inst, *inst_base;
struct cpt_inflight_req *infl_req;
union cpt_fc_write_s fc;
struct cnxk_cpt_qp *qp;
uint64_t *fc_addr;
uint16_t lmt_id;
int ret, i, j;
qp = burst->qp;
lmt_base = qp->lmtline.lmt_base;
io_addr = qp->lmtline.io_addr;
fc_addr = qp->lmtline.fc_addr;
const uint32_t fc_thresh = qp->lmtline.fc_thresh;
ROC_LMT_BASE_ID_GET(lmt_base, lmt_id);
inst_base = (struct cpt_inst_s *)lmt_base;
#ifdef CNXK_CRYPTODEV_DEBUG
if (unlikely(!qp->ca.enabled)) {
rte_errno = EINVAL;
return 0;
}
#endif
if (unlikely(rte_mempool_get_bulk(qp->ca.req_mp, (void **)infl_reqs, burst->nb_ops))) {
rte_errno = ENOMEM;
return 0;
}
for (i = 0; i < burst->nb_ops; i++) {
inst = &inst_base[2 * i];
infl_req = infl_reqs[i];
infl_req->op_flags = 0;
ret = cn10k_cpt_fill_inst(qp, &burst->op[i], inst, infl_req);
if (unlikely(ret != 1)) {
plt_dp_dbg("Could not process op: %p", burst->op[i]);
if (i != 0)
goto submit;
else
goto put;
}
infl_req->res.cn10k.compcode = CPT_COMP_NOT_DONE;
infl_req->qp = qp;
inst->w0.u64 = 0;
inst->res_addr = (uint64_t)&infl_req->res;
inst->w2.u64 = burst->w2[i];
inst->w3.u64 = CNXK_CPT_INST_W3(1, infl_req);
}
fc.u64[0] = __atomic_load_n(fc_addr, __ATOMIC_RELAXED);
if (unlikely(fc.s.qsize > fc_thresh)) {
rte_errno = EAGAIN;
for (j = 0; j < i; j++) {
infl_req = infl_reqs[j];
if (unlikely(infl_req->op_flags & CPT_OP_FLAGS_METABUF))
rte_mempool_put(qp->meta_info.pool, infl_req->mdata);
}
i = 0;
goto put;
}
submit:
if (CNXK_TT_FROM_TAG(burst->ws->gw_rdata) == SSO_TT_ORDERED)
roc_sso_hws_head_wait(burst->ws->base);
if (i > PKTS_PER_STEORL) {
lmt_arg = ROC_CN10K_CPT_LMT_ARG | (PKTS_PER_STEORL - 1) << 12 | (uint64_t)lmt_id;
roc_lmt_submit_steorl(lmt_arg, io_addr);
lmt_arg = ROC_CN10K_CPT_LMT_ARG | (i - PKTS_PER_STEORL - 1) << 12 |
(uint64_t)(lmt_id + PKTS_PER_STEORL);
roc_lmt_submit_steorl(lmt_arg, io_addr);
} else {
lmt_arg = ROC_CN10K_CPT_LMT_ARG | (i - 1) << 12 | (uint64_t)lmt_id;
roc_lmt_submit_steorl(lmt_arg, io_addr);
}
rte_io_wmb();
put:
if (unlikely(i != burst->nb_ops))
rte_mempool_put_bulk(qp->ca.req_mp, (void *)&infl_reqs[i], burst->nb_ops - i);
return i;
}
uint16_t __rte_hot
cn10k_cpt_crypto_adapter_enqueue(void *ws, struct rte_event ev[], uint16_t nb_events)
{
uint16_t submitted, count = 0, vec_tbl_len = 0;
struct vec_request vec_tbl[nb_events];
struct rte_crypto_op *op;
struct ops_burst burst;
struct cnxk_cpt_qp *qp;
bool is_vector = false;
uint64_t w2;
int ret, i;
burst.ws = ws;
burst.qp = NULL;
burst.nb_ops = 0;
for (i = 0; i < nb_events; i++) {
op = ev[i].event_ptr;
ret = cn10k_ca_meta_info_extract(op, &qp, &w2);
if (unlikely(ret)) {
rte_errno = EINVAL;
goto vec_submit;
}
/* Queue pair change check */
if (qp != burst.qp) {
if (burst.nb_ops) {
if (is_vector) {
submitted =
ca_lmtst_vec_submit(&burst, vec_tbl, &vec_tbl_len);
/*
* Vector submission is required on qp change, but not in
* other cases, since we could send several vectors per
* lmtst instruction only for same qp
*/
cn10k_cpt_vec_submit(vec_tbl, vec_tbl_len, burst.qp);
vec_tbl_len = 0;
} else {
submitted = ca_lmtst_burst_submit(&burst);
}
count += submitted;
if (unlikely(submitted != burst.nb_ops))
goto vec_submit;
burst.nb_ops = 0;
}
is_vector = qp->ca.vector_sz;
burst.qp = qp;
}
burst.w2[burst.nb_ops] = w2;
burst.op[burst.nb_ops] = op;
/* Max nb_ops per burst check */
if (++burst.nb_ops == PKTS_PER_LOOP) {
if (is_vector)
submitted = ca_lmtst_vec_submit(&burst, vec_tbl, &vec_tbl_len);
else
submitted = ca_lmtst_burst_submit(&burst);
count += submitted;
if (unlikely(submitted != burst.nb_ops))
goto vec_submit;
burst.nb_ops = 0;
}
}
/* Submit the rest of crypto operations */
if (burst.nb_ops) {
if (is_vector)
count += ca_lmtst_vec_submit(&burst, vec_tbl, &vec_tbl_len);
else
count += ca_lmtst_burst_submit(&burst);
}
vec_submit:
cn10k_cpt_vec_submit(vec_tbl, vec_tbl_len, burst.qp);
return count;
}
static inline void
cn10k_cpt_sec_post_process(struct rte_crypto_op *cop, struct cpt_cn10k_res_s *res)
{
struct rte_mbuf *mbuf = cop->sym->m_src;
const uint16_t m_len = res->rlen;
mbuf->data_len = m_len;
mbuf->pkt_len = m_len;
switch (res->uc_compcode) {
case ROC_IE_OT_UCC_SUCCESS:
break;
case ROC_IE_OT_UCC_SUCCESS_PKT_IP_BADCSUM:
mbuf->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
break;
case ROC_IE_OT_UCC_SUCCESS_PKT_L4_GOODCSUM:
mbuf->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD;
break;
case ROC_IE_OT_UCC_SUCCESS_PKT_L4_BADCSUM:
mbuf->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD;
break;
case ROC_IE_OT_UCC_SUCCESS_PKT_IP_GOODCSUM:
mbuf->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
break;
case ROC_IE_OT_UCC_SUCCESS_SA_SOFTEXP_FIRST:
cop->aux_flags = RTE_CRYPTO_OP_AUX_FLAGS_IPSEC_SOFT_EXPIRY;
break;
default:
plt_dp_err("Success with unknown microcode completion code");
break;
}
}
static inline void
cn10k_cpt_dequeue_post_process(struct cnxk_cpt_qp *qp,
struct rte_crypto_op *cop,
struct cpt_inflight_req *infl_req,
struct cpt_cn10k_res_s *res)
{
const uint8_t uc_compcode = res->uc_compcode;
const uint8_t compcode = res->compcode;
cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
if (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC &&
cop->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) {
if (likely(compcode == CPT_COMP_WARN)) {
/* Success with additional info */
cn10k_cpt_sec_post_process(cop, res);
} else {
cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
plt_dp_info("HW completion code 0x%x", res->compcode);
if (compcode == CPT_COMP_GOOD) {
plt_dp_info(
"Request failed with microcode error");
plt_dp_info("MC completion code 0x%x",
uc_compcode);
}
}
return;
}
if (likely(compcode == CPT_COMP_GOOD || compcode == CPT_COMP_WARN)) {
if (unlikely(uc_compcode)) {
if (uc_compcode == ROC_SE_ERR_GC_ICV_MISCOMPARE)
cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
else
cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
plt_dp_info("Request failed with microcode error");
plt_dp_info("MC completion code 0x%x",
res->uc_compcode);
goto temp_sess_free;
}
if (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
/* Verify authentication data if required */
if (unlikely(infl_req->op_flags &
CPT_OP_FLAGS_AUTH_VERIFY)) {
uintptr_t *rsp = infl_req->mdata;
compl_auth_verify(cop, (uint8_t *)rsp[0],
rsp[1]);
}
} else if (cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC) {
struct rte_crypto_asym_op *op = cop->asym;
uintptr_t *mdata = infl_req->mdata;
struct cnxk_ae_sess *sess;
sess = (struct cnxk_ae_sess *)
op->session->sess_private_data;
cnxk_ae_post_process(cop, sess, (uint8_t *)mdata[0]);
}
} else {
cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
plt_dp_info("HW completion code 0x%x", res->compcode);
switch (compcode) {
case CPT_COMP_INSTERR:
plt_dp_err("Request failed with instruction error");
break;
case CPT_COMP_FAULT:
plt_dp_err("Request failed with DMA fault");
break;
case CPT_COMP_HWERR:
plt_dp_err("Request failed with hardware error");
break;
default:
plt_dp_err(
"Request failed with unknown completion code");
}
}
temp_sess_free:
if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS)) {
if (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
sym_session_clear(cop->sym->session);
rte_mempool_put(qp->sess_mp, cop->sym->session);
cop->sym->session = NULL;
}
}
}
uintptr_t
cn10k_cpt_crypto_adapter_dequeue(uintptr_t get_work1)
{
struct cpt_inflight_req *infl_req;
struct rte_crypto_op *cop;
struct cnxk_cpt_qp *qp;
union cpt_res_s res;
infl_req = (struct cpt_inflight_req *)(get_work1);
cop = infl_req->cop;
qp = infl_req->qp;
res.u64[0] = __atomic_load_n(&infl_req->res.u64[0], __ATOMIC_RELAXED);
cn10k_cpt_dequeue_post_process(qp, infl_req->cop, infl_req, &res.cn10k);
if (unlikely(infl_req->op_flags & CPT_OP_FLAGS_METABUF))
rte_mempool_put(qp->meta_info.pool, infl_req->mdata);
rte_mempool_put(qp->ca.req_mp, infl_req);
return (uintptr_t)cop;
}
uintptr_t
cn10k_cpt_crypto_adapter_vector_dequeue(uintptr_t get_work1)
{
struct cpt_inflight_req *infl_req, *vec_infl_req;
struct rte_mempool *meta_mp, *req_mp;
struct rte_event_vector *vec;
struct rte_crypto_op *cop;
struct cnxk_cpt_qp *qp;
union cpt_res_s res;
int i;
vec_infl_req = (struct cpt_inflight_req *)(get_work1);
vec = vec_infl_req->vec;
qp = vec_infl_req->qp;
meta_mp = qp->meta_info.pool;
req_mp = qp->ca.req_mp;
#ifdef CNXK_CRYPTODEV_DEBUG
res.u64[0] = __atomic_load_n(&vec_infl_req->res.u64[0], __ATOMIC_RELAXED);
PLT_ASSERT(res.cn10k.compcode == CPT_COMP_WARN);
PLT_ASSERT(res.cn10k.uc_compcode == 0);
#endif
for (i = 0; i < vec->nb_elem; i++) {
infl_req = vec->ptrs[i];
cop = infl_req->cop;
res.u64[0] = __atomic_load_n(&infl_req->res.u64[0], __ATOMIC_RELAXED);
cn10k_cpt_dequeue_post_process(qp, cop, infl_req, &res.cn10k);
vec->ptrs[i] = cop;
if (unlikely(infl_req->op_flags & CPT_OP_FLAGS_METABUF))
rte_mempool_put(meta_mp, infl_req->mdata);
rte_mempool_put(req_mp, infl_req);
}
rte_mempool_put(req_mp, vec_infl_req);
return (uintptr_t)vec;
}
static uint16_t
cn10k_cpt_dequeue_burst(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct cpt_inflight_req *infl_req;
struct cnxk_cpt_qp *qp = qptr;
struct pending_queue *pend_q;
uint64_t infl_cnt, pq_tail;
struct rte_crypto_op *cop;
union cpt_res_s res;
int i;
pend_q = &qp->pend_q;
const uint64_t pq_mask = pend_q->pq_mask;
pq_tail = pend_q->tail;
infl_cnt = pending_queue_infl_cnt(pend_q->head, pq_tail, pq_mask);
nb_ops = RTE_MIN(nb_ops, infl_cnt);
/* Ensure infl_cnt isn't read before data lands */
rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
for (i = 0; i < nb_ops; i++) {
infl_req = &pend_q->req_queue[pq_tail];
res.u64[0] = __atomic_load_n(&infl_req->res.u64[0],
__ATOMIC_RELAXED);
if (unlikely(res.cn10k.compcode == CPT_COMP_NOT_DONE)) {
if (unlikely(rte_get_timer_cycles() >
pend_q->time_out)) {
plt_err("Request timed out");
cnxk_cpt_dump_on_err(qp);
pend_q->time_out = rte_get_timer_cycles() +
DEFAULT_COMMAND_TIMEOUT *
rte_get_timer_hz();
}
break;
}
pending_queue_advance(&pq_tail, pq_mask);
cop = infl_req->cop;
ops[i] = cop;
cn10k_cpt_dequeue_post_process(qp, cop, infl_req, &res.cn10k);
if (unlikely(infl_req->op_flags & CPT_OP_FLAGS_METABUF))
rte_mempool_put(qp->meta_info.pool, infl_req->mdata);
}
pend_q->tail = pq_tail;
return i;
}
void
cn10k_cpt_set_enqdeq_fns(struct rte_cryptodev *dev)
{
dev->enqueue_burst = cn10k_cpt_enqueue_burst;
dev->dequeue_burst = cn10k_cpt_dequeue_burst;
rte_mb();
}
static void
cn10k_cpt_dev_info_get(struct rte_cryptodev *dev,
struct rte_cryptodev_info *info)
{
if (info != NULL) {
cnxk_cpt_dev_info_get(dev, info);
info->driver_id = cn10k_cryptodev_driver_id;
}
}
struct rte_cryptodev_ops cn10k_cpt_ops = {
/* Device control ops */
.dev_configure = cnxk_cpt_dev_config,
.dev_start = cnxk_cpt_dev_start,
.dev_stop = cnxk_cpt_dev_stop,
.dev_close = cnxk_cpt_dev_close,
.dev_infos_get = cn10k_cpt_dev_info_get,
.stats_get = NULL,
.stats_reset = NULL,
.queue_pair_setup = cnxk_cpt_queue_pair_setup,
.queue_pair_release = cnxk_cpt_queue_pair_release,
/* Symmetric crypto ops */
.sym_session_get_size = cnxk_cpt_sym_session_get_size,
.sym_session_configure = cnxk_cpt_sym_session_configure,
.sym_session_clear = cnxk_cpt_sym_session_clear,
/* Asymmetric crypto ops */
.asym_session_get_size = cnxk_ae_session_size_get,
.asym_session_configure = cnxk_ae_session_cfg,
.asym_session_clear = cnxk_ae_session_clear,
/* Event crypto ops */
.session_ev_mdata_set = cn10k_cpt_crypto_adapter_ev_mdata_set,
};