numam-dpdk/drivers/net/virtio/virtqueue.h
Bruce Richardson 013b4c52c7 replace zero-length arrays with flexible ones
This patch replaces instances of zero-sized arrays i.e. those at the end
of structures with "[0]" with the more standard syntax of "[]".
Replacement was done using coccinelle script, with some revert and
cleanup of whitespace afterwards.

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: Morten Brørup <mb@smartsharesystems.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Hemant Agrawal <hemant.agrawal@nxp.com>
2022-06-07 16:44:21 +02:00

978 lines
27 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#ifndef _VIRTQUEUE_H_
#define _VIRTQUEUE_H_
#include <stdint.h>
#include <rte_atomic.h>
#include <rte_memory.h>
#include <rte_mempool.h>
#include <rte_net.h>
#include "virtio.h"
#include "virtio_ring.h"
#include "virtio_logs.h"
#include "virtio_rxtx.h"
struct rte_mbuf;
#define DEFAULT_TX_FREE_THRESH 32
#define DEFAULT_RX_FREE_THRESH 32
#define VIRTIO_MBUF_BURST_SZ 64
/*
* Per virtio_ring.h in Linux.
* For virtio_pci on SMP, we don't need to order with respect to MMIO
* accesses through relaxed memory I/O windows, so thread_fence is
* sufficient.
*
* For using virtio to talk to real devices (eg. vDPA) we do need real
* barriers.
*/
static inline void
virtio_mb(uint8_t weak_barriers)
{
if (weak_barriers)
rte_atomic_thread_fence(__ATOMIC_SEQ_CST);
else
rte_mb();
}
static inline void
virtio_rmb(uint8_t weak_barriers)
{
if (weak_barriers)
rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
else
rte_io_rmb();
}
static inline void
virtio_wmb(uint8_t weak_barriers)
{
if (weak_barriers)
rte_atomic_thread_fence(__ATOMIC_RELEASE);
else
rte_io_wmb();
}
static inline uint16_t
virtqueue_fetch_flags_packed(struct vring_packed_desc *dp,
uint8_t weak_barriers)
{
uint16_t flags;
if (weak_barriers) {
/* x86 prefers to using rte_io_rmb over __atomic_load_n as it reports
* a better perf(~1.5%), which comes from the saved branch by the compiler.
* The if and else branch are identical on the platforms except Arm.
*/
#ifdef RTE_ARCH_ARM
flags = __atomic_load_n(&dp->flags, __ATOMIC_ACQUIRE);
#else
flags = dp->flags;
rte_io_rmb();
#endif
} else {
flags = dp->flags;
rte_io_rmb();
}
return flags;
}
static inline void
virtqueue_store_flags_packed(struct vring_packed_desc *dp,
uint16_t flags, uint8_t weak_barriers)
{
if (weak_barriers) {
/* x86 prefers to using rte_io_wmb over __atomic_store_n as it reports
* a better perf(~1.5%), which comes from the saved branch by the compiler.
* The if and else branch are identical on the platforms except Arm.
*/
#ifdef RTE_ARCH_ARM
__atomic_store_n(&dp->flags, flags, __ATOMIC_RELEASE);
#else
rte_io_wmb();
dp->flags = flags;
#endif
} else {
rte_io_wmb();
dp->flags = flags;
}
}
#ifdef RTE_PMD_PACKET_PREFETCH
#define rte_packet_prefetch(p) rte_prefetch1(p)
#else
#define rte_packet_prefetch(p) do {} while(0)
#endif
#define VIRTQUEUE_MAX_NAME_SZ 32
/**
* Return the IOVA (or virtual address in case of virtio-user) of mbuf
* data buffer.
*
* The address is firstly casted to the word size (sizeof(uintptr_t))
* before casting it to uint64_t. This is to make it work with different
* combination of word size (64 bit and 32 bit) and virtio device
* (virtio-pci and virtio-user).
*/
#define VIRTIO_MBUF_ADDR(mb, vq) \
((uint64_t)(*(uintptr_t *)((uintptr_t)(mb) + (vq)->mbuf_addr_offset)))
/**
* Return the physical address (or virtual address in case of
* virtio-user) of mbuf data buffer, taking care of mbuf data offset
*/
#define VIRTIO_MBUF_DATA_DMA_ADDR(mb, vq) \
(VIRTIO_MBUF_ADDR(mb, vq) + (mb)->data_off)
#define VTNET_SQ_RQ_QUEUE_IDX 0
#define VTNET_SQ_TQ_QUEUE_IDX 1
#define VTNET_SQ_CQ_QUEUE_IDX 2
enum { VTNET_RQ = 0, VTNET_TQ = 1, VTNET_CQ = 2 };
/**
* The maximum virtqueue size is 2^15. Use that value as the end of
* descriptor chain terminator since it will never be a valid index
* in the descriptor table. This is used to verify we are correctly
* handling vq_free_cnt.
*/
#define VQ_RING_DESC_CHAIN_END 32768
/**
* Control the RX mode, ie. promiscuous, allmulti, etc...
* All commands require an "out" sg entry containing a 1 byte
* state value, zero = disable, non-zero = enable. Commands
* 0 and 1 are supported with the VIRTIO_NET_F_CTRL_RX feature.
* Commands 2-5 are added with VIRTIO_NET_F_CTRL_RX_EXTRA.
*/
#define VIRTIO_NET_CTRL_RX 0
#define VIRTIO_NET_CTRL_RX_PROMISC 0
#define VIRTIO_NET_CTRL_RX_ALLMULTI 1
#define VIRTIO_NET_CTRL_RX_ALLUNI 2
#define VIRTIO_NET_CTRL_RX_NOMULTI 3
#define VIRTIO_NET_CTRL_RX_NOUNI 4
#define VIRTIO_NET_CTRL_RX_NOBCAST 5
/**
* Control the MAC
*
* The MAC filter table is managed by the hypervisor, the guest should
* assume the size is infinite. Filtering should be considered
* non-perfect, ie. based on hypervisor resources, the guest may
* received packets from sources not specified in the filter list.
*
* In addition to the class/cmd header, the TABLE_SET command requires
* two out scatterlists. Each contains a 4 byte count of entries followed
* by a concatenated byte stream of the ETH_ALEN MAC addresses. The
* first sg list contains unicast addresses, the second is for multicast.
* This functionality is present if the VIRTIO_NET_F_CTRL_RX feature
* is available.
*
* The ADDR_SET command requests one out scatterlist, it contains a
* 6 bytes MAC address. This functionality is present if the
* VIRTIO_NET_F_CTRL_MAC_ADDR feature is available.
*/
struct virtio_net_ctrl_mac {
uint32_t entries;
uint8_t macs[][RTE_ETHER_ADDR_LEN];
} __rte_packed;
#define VIRTIO_NET_CTRL_MAC 1
#define VIRTIO_NET_CTRL_MAC_TABLE_SET 0
#define VIRTIO_NET_CTRL_MAC_ADDR_SET 1
/**
* Control VLAN filtering
*
* The VLAN filter table is controlled via a simple ADD/DEL interface.
* VLAN IDs not added may be filtered by the hypervisor. Del is the
* opposite of add. Both commands expect an out entry containing a 2
* byte VLAN ID. VLAN filtering is available with the
* VIRTIO_NET_F_CTRL_VLAN feature bit.
*/
#define VIRTIO_NET_CTRL_VLAN 2
#define VIRTIO_NET_CTRL_VLAN_ADD 0
#define VIRTIO_NET_CTRL_VLAN_DEL 1
/**
* RSS control
*
* The RSS feature configuration message is sent by the driver when
* VIRTIO_NET_F_RSS has been negotiated. It provides the device with
* hash types to use, hash key and indirection table. In this
* implementation, the driver only supports fixed key length (40B)
* and indirection table size (128 entries).
*/
#define VIRTIO_NET_RSS_RETA_SIZE 128
#define VIRTIO_NET_RSS_KEY_SIZE 40
struct virtio_net_ctrl_rss {
uint32_t hash_types;
uint16_t indirection_table_mask;
uint16_t unclassified_queue;
uint16_t indirection_table[VIRTIO_NET_RSS_RETA_SIZE];
uint16_t max_tx_vq;
uint8_t hash_key_length;
uint8_t hash_key_data[VIRTIO_NET_RSS_KEY_SIZE];
};
/*
* Control link announce acknowledgement
*
* The command VIRTIO_NET_CTRL_ANNOUNCE_ACK is used to indicate that
* driver has received the notification; device would clear the
* VIRTIO_NET_S_ANNOUNCE bit in the status field after it receives
* this command.
*/
#define VIRTIO_NET_CTRL_ANNOUNCE 3
#define VIRTIO_NET_CTRL_ANNOUNCE_ACK 0
struct virtio_net_ctrl_hdr {
uint8_t class;
uint8_t cmd;
} __rte_packed;
typedef uint8_t virtio_net_ctrl_ack;
#define VIRTIO_NET_OK 0
#define VIRTIO_NET_ERR 1
#define VIRTIO_MAX_CTRL_DATA 2048
struct virtio_pmd_ctrl {
struct virtio_net_ctrl_hdr hdr;
virtio_net_ctrl_ack status;
uint8_t data[VIRTIO_MAX_CTRL_DATA];
};
struct vq_desc_extra {
void *cookie;
uint16_t ndescs;
uint16_t next;
};
#define virtnet_rxq_to_vq(rxvq) container_of(rxvq, struct virtqueue, rxq)
#define virtnet_txq_to_vq(txvq) container_of(txvq, struct virtqueue, txq)
#define virtnet_cq_to_vq(cvq) container_of(cvq, struct virtqueue, cq)
struct virtqueue {
struct virtio_hw *hw; /**< virtio_hw structure pointer. */
union {
struct {
/**< vring keeping desc, used and avail */
struct vring ring;
} vq_split;
struct {
/**< vring keeping descs and events */
struct vring_packed ring;
bool used_wrap_counter;
uint16_t cached_flags; /**< cached flags for descs */
uint16_t event_flags_shadow;
} vq_packed;
};
uint16_t vq_used_cons_idx; /**< last consumed descriptor */
uint16_t vq_nentries; /**< vring desc numbers */
uint16_t vq_free_cnt; /**< num of desc available */
uint16_t vq_avail_idx; /**< sync until needed */
uint16_t vq_free_thresh; /**< free threshold */
/**
* Head of the free chain in the descriptor table. If
* there are no free descriptors, this will be set to
* VQ_RING_DESC_CHAIN_END.
*/
uint16_t vq_desc_head_idx;
uint16_t vq_desc_tail_idx;
uint16_t vq_queue_index; /**< PCI queue index */
void *vq_ring_virt_mem; /**< linear address of vring*/
unsigned int vq_ring_size;
uint16_t mbuf_addr_offset;
union {
struct virtnet_rx rxq;
struct virtnet_tx txq;
struct virtnet_ctl cq;
};
rte_iova_t vq_ring_mem; /**< physical address of vring,
* or virtual address for virtio_user. */
uint16_t *notify_addr;
struct rte_mbuf **sw_ring; /**< RX software ring. */
struct vq_desc_extra vq_descx[];
};
/* If multiqueue is provided by host, then we support it. */
#define VIRTIO_NET_CTRL_MQ 4
#define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET 0
#define VIRTIO_NET_CTRL_MQ_RSS_CONFIG 1
#define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MIN 1
#define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MAX 0x8000
/**
* This is the first element of the scatter-gather list. If you don't
* specify GSO or CSUM features, you can simply ignore the header.
*/
struct virtio_net_hdr {
#define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /**< Use csum_start,csum_offset*/
#define VIRTIO_NET_HDR_F_DATA_VALID 2 /**< Checksum is valid */
uint8_t flags;
#define VIRTIO_NET_HDR_GSO_NONE 0 /**< Not a GSO frame */
#define VIRTIO_NET_HDR_GSO_TCPV4 1 /**< GSO frame, IPv4 TCP (TSO) */
#define VIRTIO_NET_HDR_GSO_UDP 3 /**< GSO frame, IPv4 UDP (UFO) */
#define VIRTIO_NET_HDR_GSO_TCPV6 4 /**< GSO frame, IPv6 TCP */
#define VIRTIO_NET_HDR_GSO_ECN 0x80 /**< TCP has ECN set */
uint8_t gso_type;
uint16_t hdr_len; /**< Ethernet + IP + tcp/udp hdrs */
uint16_t gso_size; /**< Bytes to append to hdr_len per frame */
uint16_t csum_start; /**< Position to start checksumming from */
uint16_t csum_offset; /**< Offset after that to place checksum */
};
/**
* This is the version of the header to use when the MRG_RXBUF
* feature has been negotiated.
*/
struct virtio_net_hdr_mrg_rxbuf {
struct virtio_net_hdr hdr;
uint16_t num_buffers; /**< Number of merged rx buffers */
};
/* Region reserved to allow for transmit header and indirect ring */
#define VIRTIO_MAX_TX_INDIRECT 8
struct virtio_tx_region {
struct virtio_net_hdr_mrg_rxbuf tx_hdr;
union {
struct vring_desc tx_indir[VIRTIO_MAX_TX_INDIRECT];
struct vring_packed_desc
tx_packed_indir[VIRTIO_MAX_TX_INDIRECT];
} __rte_aligned(16);
};
static inline int
desc_is_used(struct vring_packed_desc *desc, struct virtqueue *vq)
{
uint16_t used, avail, flags;
flags = virtqueue_fetch_flags_packed(desc, vq->hw->weak_barriers);
used = !!(flags & VRING_PACKED_DESC_F_USED);
avail = !!(flags & VRING_PACKED_DESC_F_AVAIL);
return avail == used && used == vq->vq_packed.used_wrap_counter;
}
static inline void
vring_desc_init_packed(struct virtqueue *vq, int n)
{
int i;
for (i = 0; i < n - 1; i++) {
vq->vq_packed.ring.desc[i].id = i;
vq->vq_descx[i].next = i + 1;
}
vq->vq_packed.ring.desc[i].id = i;
vq->vq_descx[i].next = VQ_RING_DESC_CHAIN_END;
}
/* Chain all the descriptors in the ring with an END */
static inline void
vring_desc_init_split(struct vring_desc *dp, uint16_t n)
{
uint16_t i;
for (i = 0; i < n - 1; i++)
dp[i].next = (uint16_t)(i + 1);
dp[i].next = VQ_RING_DESC_CHAIN_END;
}
static inline void
vring_desc_init_indirect_packed(struct vring_packed_desc *dp, int n)
{
int i;
for (i = 0; i < n; i++) {
dp[i].id = (uint16_t)i;
dp[i].flags = VRING_DESC_F_WRITE;
}
}
/**
* Tell the backend not to interrupt us. Implementation for packed virtqueues.
*/
static inline void
virtqueue_disable_intr_packed(struct virtqueue *vq)
{
if (vq->vq_packed.event_flags_shadow != RING_EVENT_FLAGS_DISABLE) {
vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_DISABLE;
vq->vq_packed.ring.driver->desc_event_flags =
vq->vq_packed.event_flags_shadow;
}
}
/**
* Tell the backend not to interrupt us. Implementation for split virtqueues.
*/
static inline void
virtqueue_disable_intr_split(struct virtqueue *vq)
{
vq->vq_split.ring.avail->flags |= VRING_AVAIL_F_NO_INTERRUPT;
}
/**
* Tell the backend not to interrupt us.
*/
static inline void
virtqueue_disable_intr(struct virtqueue *vq)
{
if (virtio_with_packed_queue(vq->hw))
virtqueue_disable_intr_packed(vq);
else
virtqueue_disable_intr_split(vq);
}
/**
* Tell the backend to interrupt. Implementation for packed virtqueues.
*/
static inline void
virtqueue_enable_intr_packed(struct virtqueue *vq)
{
if (vq->vq_packed.event_flags_shadow == RING_EVENT_FLAGS_DISABLE) {
vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_ENABLE;
vq->vq_packed.ring.driver->desc_event_flags =
vq->vq_packed.event_flags_shadow;
}
}
/**
* Tell the backend to interrupt. Implementation for split virtqueues.
*/
static inline void
virtqueue_enable_intr_split(struct virtqueue *vq)
{
vq->vq_split.ring.avail->flags &= (~VRING_AVAIL_F_NO_INTERRUPT);
}
/**
* Tell the backend to interrupt us.
*/
static inline void
virtqueue_enable_intr(struct virtqueue *vq)
{
if (virtio_with_packed_queue(vq->hw))
virtqueue_enable_intr_packed(vq);
else
virtqueue_enable_intr_split(vq);
}
/**
* Dump virtqueue internal structures, for debug purpose only.
*/
void virtqueue_dump(struct virtqueue *vq);
/**
* Get all mbufs to be freed.
*/
struct rte_mbuf *virtqueue_detach_unused(struct virtqueue *vq);
/* Flush the elements in the used ring. */
void virtqueue_rxvq_flush(struct virtqueue *vq);
int virtqueue_rxvq_reset_packed(struct virtqueue *vq);
int virtqueue_txvq_reset_packed(struct virtqueue *vq);
static inline int
virtqueue_full(const struct virtqueue *vq)
{
return vq->vq_free_cnt == 0;
}
static inline int
virtio_get_queue_type(struct virtio_hw *hw, uint16_t vq_idx)
{
if (vq_idx == hw->max_queue_pairs * 2)
return VTNET_CQ;
else if (vq_idx % 2 == 0)
return VTNET_RQ;
else
return VTNET_TQ;
}
/* virtqueue_nused has load-acquire or rte_io_rmb insed */
static inline uint16_t
virtqueue_nused(const struct virtqueue *vq)
{
uint16_t idx;
if (vq->hw->weak_barriers) {
/**
* x86 prefers to using rte_smp_rmb over __atomic_load_n as it
* reports a slightly better perf, which comes from the saved
* branch by the compiler.
* The if and else branches are identical with the smp and io
* barriers both defined as compiler barriers on x86.
*/
#ifdef RTE_ARCH_X86_64
idx = vq->vq_split.ring.used->idx;
rte_smp_rmb();
#else
idx = __atomic_load_n(&(vq)->vq_split.ring.used->idx,
__ATOMIC_ACQUIRE);
#endif
} else {
idx = vq->vq_split.ring.used->idx;
rte_io_rmb();
}
return idx - vq->vq_used_cons_idx;
}
void vq_ring_free_chain(struct virtqueue *vq, uint16_t desc_idx);
void vq_ring_free_chain_packed(struct virtqueue *vq, uint16_t used_idx);
void vq_ring_free_inorder(struct virtqueue *vq, uint16_t desc_idx,
uint16_t num);
static inline void
vq_update_avail_idx(struct virtqueue *vq)
{
if (vq->hw->weak_barriers) {
/* x86 prefers to using rte_smp_wmb over __atomic_store_n as
* it reports a slightly better perf, which comes from the
* saved branch by the compiler.
* The if and else branches are identical with the smp and
* io barriers both defined as compiler barriers on x86.
*/
#ifdef RTE_ARCH_X86_64
rte_smp_wmb();
vq->vq_split.ring.avail->idx = vq->vq_avail_idx;
#else
__atomic_store_n(&vq->vq_split.ring.avail->idx,
vq->vq_avail_idx, __ATOMIC_RELEASE);
#endif
} else {
rte_io_wmb();
vq->vq_split.ring.avail->idx = vq->vq_avail_idx;
}
}
static inline void
vq_update_avail_ring(struct virtqueue *vq, uint16_t desc_idx)
{
uint16_t avail_idx;
/*
* Place the head of the descriptor chain into the next slot and make
* it usable to the host. The chain is made available now rather than
* deferring to virtqueue_notify() in the hopes that if the host is
* currently running on another CPU, we can keep it processing the new
* descriptor.
*/
avail_idx = (uint16_t)(vq->vq_avail_idx & (vq->vq_nentries - 1));
if (unlikely(vq->vq_split.ring.avail->ring[avail_idx] != desc_idx))
vq->vq_split.ring.avail->ring[avail_idx] = desc_idx;
vq->vq_avail_idx++;
}
static inline int
virtqueue_kick_prepare(struct virtqueue *vq)
{
/*
* Ensure updated avail->idx is visible to vhost before reading
* the used->flags.
*/
virtio_mb(vq->hw->weak_barriers);
return !(vq->vq_split.ring.used->flags & VRING_USED_F_NO_NOTIFY);
}
static inline int
virtqueue_kick_prepare_packed(struct virtqueue *vq)
{
uint16_t flags;
/*
* Ensure updated data is visible to vhost before reading the flags.
*/
virtio_mb(vq->hw->weak_barriers);
flags = vq->vq_packed.ring.device->desc_event_flags;
return flags != RING_EVENT_FLAGS_DISABLE;
}
/*
* virtqueue_kick_prepare*() or the virtio_wmb() should be called
* before this function to be sure that all the data is visible to vhost.
*/
static inline void
virtqueue_notify(struct virtqueue *vq)
{
VIRTIO_OPS(vq->hw)->notify_queue(vq->hw, vq);
}
#ifdef RTE_LIBRTE_VIRTIO_DEBUG_DUMP
#define VIRTQUEUE_DUMP(vq) do { \
uint16_t used_idx, nused; \
used_idx = __atomic_load_n(&(vq)->vq_split.ring.used->idx, \
__ATOMIC_RELAXED); \
nused = (uint16_t)(used_idx - (vq)->vq_used_cons_idx); \
if (virtio_with_packed_queue((vq)->hw)) { \
PMD_INIT_LOG(DEBUG, \
"VQ: - size=%d; free=%d; used_cons_idx=%d; avail_idx=%d;" \
" cached_flags=0x%x; used_wrap_counter=%d", \
(vq)->vq_nentries, (vq)->vq_free_cnt, (vq)->vq_used_cons_idx, \
(vq)->vq_avail_idx, (vq)->vq_packed.cached_flags, \
(vq)->vq_packed.used_wrap_counter); \
break; \
} \
PMD_INIT_LOG(DEBUG, \
"VQ: - size=%d; free=%d; used=%d; desc_head_idx=%d;" \
" avail.idx=%d; used_cons_idx=%d; used.idx=%d;" \
" avail.flags=0x%x; used.flags=0x%x", \
(vq)->vq_nentries, (vq)->vq_free_cnt, nused, (vq)->vq_desc_head_idx, \
(vq)->vq_split.ring.avail->idx, (vq)->vq_used_cons_idx, \
__atomic_load_n(&(vq)->vq_split.ring.used->idx, __ATOMIC_RELAXED), \
(vq)->vq_split.ring.avail->flags, (vq)->vq_split.ring.used->flags); \
} while (0)
#else
#define VIRTQUEUE_DUMP(vq) do { } while (0)
#endif
/* avoid write operation when necessary, to lessen cache issues */
#define ASSIGN_UNLESS_EQUAL(var, val) do { \
typeof(var) *const var_ = &(var); \
typeof(val) const val_ = (val); \
if (*var_ != val_) \
*var_ = val_; \
} while (0)
#define virtqueue_clear_net_hdr(hdr) do { \
typeof(hdr) hdr_ = (hdr); \
ASSIGN_UNLESS_EQUAL((hdr_)->csum_start, 0); \
ASSIGN_UNLESS_EQUAL((hdr_)->csum_offset, 0); \
ASSIGN_UNLESS_EQUAL((hdr_)->flags, 0); \
ASSIGN_UNLESS_EQUAL((hdr_)->gso_type, 0); \
ASSIGN_UNLESS_EQUAL((hdr_)->gso_size, 0); \
ASSIGN_UNLESS_EQUAL((hdr_)->hdr_len, 0); \
} while (0)
static inline void
virtqueue_xmit_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *cookie)
{
uint64_t csum_l4 = cookie->ol_flags & RTE_MBUF_F_TX_L4_MASK;
uint16_t o_l23_len = (cookie->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
cookie->outer_l2_len + cookie->outer_l3_len : 0;
if (cookie->ol_flags & RTE_MBUF_F_TX_TCP_SEG)
csum_l4 |= RTE_MBUF_F_TX_TCP_CKSUM;
switch (csum_l4) {
case RTE_MBUF_F_TX_UDP_CKSUM:
hdr->csum_start = o_l23_len + cookie->l2_len + cookie->l3_len;
hdr->csum_offset = offsetof(struct rte_udp_hdr, dgram_cksum);
hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
break;
case RTE_MBUF_F_TX_TCP_CKSUM:
hdr->csum_start = o_l23_len + cookie->l2_len + cookie->l3_len;
hdr->csum_offset = offsetof(struct rte_tcp_hdr, cksum);
hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
break;
default:
ASSIGN_UNLESS_EQUAL(hdr->csum_start, 0);
ASSIGN_UNLESS_EQUAL(hdr->csum_offset, 0);
ASSIGN_UNLESS_EQUAL(hdr->flags, 0);
break;
}
/* TCP Segmentation Offload */
if (cookie->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
hdr->gso_type = (cookie->ol_flags & RTE_MBUF_F_TX_IPV6) ?
VIRTIO_NET_HDR_GSO_TCPV6 :
VIRTIO_NET_HDR_GSO_TCPV4;
hdr->gso_size = cookie->tso_segsz;
hdr->hdr_len = o_l23_len + cookie->l2_len + cookie->l3_len +
cookie->l4_len;
} else {
ASSIGN_UNLESS_EQUAL(hdr->gso_type, 0);
ASSIGN_UNLESS_EQUAL(hdr->gso_size, 0);
ASSIGN_UNLESS_EQUAL(hdr->hdr_len, 0);
}
}
static inline void
virtqueue_enqueue_xmit_packed(struct virtnet_tx *txvq, struct rte_mbuf *cookie,
uint16_t needed, int use_indirect, int can_push,
int in_order)
{
struct virtio_tx_region *txr = txvq->virtio_net_hdr_mz->addr;
struct vq_desc_extra *dxp;
struct virtqueue *vq = virtnet_txq_to_vq(txvq);
struct vring_packed_desc *start_dp, *head_dp;
uint16_t idx, id, head_idx, head_flags;
int16_t head_size = vq->hw->vtnet_hdr_size;
struct virtio_net_hdr *hdr;
uint16_t prev;
bool prepend_header = false;
uint16_t seg_num = cookie->nb_segs;
id = in_order ? vq->vq_avail_idx : vq->vq_desc_head_idx;
dxp = &vq->vq_descx[id];
dxp->ndescs = needed;
dxp->cookie = cookie;
head_idx = vq->vq_avail_idx;
idx = head_idx;
prev = head_idx;
start_dp = vq->vq_packed.ring.desc;
head_dp = &vq->vq_packed.ring.desc[idx];
head_flags = cookie->next ? VRING_DESC_F_NEXT : 0;
head_flags |= vq->vq_packed.cached_flags;
if (can_push) {
/* prepend cannot fail, checked by caller */
hdr = rte_pktmbuf_mtod_offset(cookie, struct virtio_net_hdr *,
-head_size);
prepend_header = true;
/* if offload disabled, it is not zeroed below, do it now */
if (!vq->hw->has_tx_offload)
virtqueue_clear_net_hdr(hdr);
} else if (use_indirect) {
/* setup tx ring slot to point to indirect
* descriptor list stored in reserved region.
*
* the first slot in indirect ring is already preset
* to point to the header in reserved region
*/
start_dp[idx].addr = txvq->virtio_net_hdr_mem +
RTE_PTR_DIFF(&txr[idx].tx_packed_indir, txr);
start_dp[idx].len = (seg_num + 1) *
sizeof(struct vring_packed_desc);
/* Packed descriptor id needs to be restored when inorder. */
if (in_order)
start_dp[idx].id = idx;
/* reset flags for indirect desc */
head_flags = VRING_DESC_F_INDIRECT;
head_flags |= vq->vq_packed.cached_flags;
hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr;
/* loop below will fill in rest of the indirect elements */
start_dp = txr[idx].tx_packed_indir;
idx = 1;
} else {
/* setup first tx ring slot to point to header
* stored in reserved region.
*/
start_dp[idx].addr = txvq->virtio_net_hdr_mem +
RTE_PTR_DIFF(&txr[idx].tx_hdr, txr);
start_dp[idx].len = vq->hw->vtnet_hdr_size;
hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr;
idx++;
if (idx >= vq->vq_nentries) {
idx -= vq->vq_nentries;
vq->vq_packed.cached_flags ^=
VRING_PACKED_DESC_F_AVAIL_USED;
}
}
if (vq->hw->has_tx_offload)
virtqueue_xmit_offload(hdr, cookie);
do {
uint16_t flags;
start_dp[idx].addr = VIRTIO_MBUF_DATA_DMA_ADDR(cookie, vq);
start_dp[idx].len = cookie->data_len;
if (prepend_header) {
start_dp[idx].addr -= head_size;
start_dp[idx].len += head_size;
prepend_header = false;
}
if (likely(idx != head_idx)) {
flags = cookie->next ? VRING_DESC_F_NEXT : 0;
flags |= vq->vq_packed.cached_flags;
start_dp[idx].flags = flags;
}
prev = idx;
idx++;
if (idx >= vq->vq_nentries) {
idx -= vq->vq_nentries;
vq->vq_packed.cached_flags ^=
VRING_PACKED_DESC_F_AVAIL_USED;
}
} while ((cookie = cookie->next) != NULL);
start_dp[prev].id = id;
if (use_indirect) {
idx = head_idx;
if (++idx >= vq->vq_nentries) {
idx -= vq->vq_nentries;
vq->vq_packed.cached_flags ^=
VRING_PACKED_DESC_F_AVAIL_USED;
}
}
vq->vq_free_cnt = (uint16_t)(vq->vq_free_cnt - needed);
vq->vq_avail_idx = idx;
if (!in_order) {
vq->vq_desc_head_idx = dxp->next;
if (vq->vq_desc_head_idx == VQ_RING_DESC_CHAIN_END)
vq->vq_desc_tail_idx = VQ_RING_DESC_CHAIN_END;
}
virtqueue_store_flags_packed(head_dp, head_flags,
vq->hw->weak_barriers);
}
static void
vq_ring_free_id_packed(struct virtqueue *vq, uint16_t id)
{
struct vq_desc_extra *dxp;
dxp = &vq->vq_descx[id];
vq->vq_free_cnt += dxp->ndescs;
if (vq->vq_desc_tail_idx == VQ_RING_DESC_CHAIN_END)
vq->vq_desc_head_idx = id;
else
vq->vq_descx[vq->vq_desc_tail_idx].next = id;
vq->vq_desc_tail_idx = id;
dxp->next = VQ_RING_DESC_CHAIN_END;
}
static void
virtio_xmit_cleanup_inorder_packed(struct virtqueue *vq, uint16_t num)
{
uint16_t used_idx, id, curr_id, free_cnt = 0;
uint16_t size = vq->vq_nentries;
struct vring_packed_desc *desc = vq->vq_packed.ring.desc;
struct vq_desc_extra *dxp;
int nb = num;
used_idx = vq->vq_used_cons_idx;
/* desc_is_used has a load-acquire or rte_io_rmb inside
* and wait for used desc in virtqueue.
*/
while (nb > 0 && desc_is_used(&desc[used_idx], vq)) {
id = desc[used_idx].id;
do {
curr_id = used_idx;
dxp = &vq->vq_descx[used_idx];
used_idx += dxp->ndescs;
free_cnt += dxp->ndescs;
nb -= dxp->ndescs;
if (used_idx >= size) {
used_idx -= size;
vq->vq_packed.used_wrap_counter ^= 1;
}
if (dxp->cookie != NULL) {
rte_pktmbuf_free(dxp->cookie);
dxp->cookie = NULL;
}
} while (curr_id != id);
}
vq->vq_used_cons_idx = used_idx;
vq->vq_free_cnt += free_cnt;
}
static void
virtio_xmit_cleanup_normal_packed(struct virtqueue *vq, uint16_t num)
{
uint16_t used_idx, id;
uint16_t size = vq->vq_nentries;
struct vring_packed_desc *desc = vq->vq_packed.ring.desc;
struct vq_desc_extra *dxp;
used_idx = vq->vq_used_cons_idx;
/* desc_is_used has a load-acquire or rte_io_rmb inside
* and wait for used desc in virtqueue.
*/
while (num-- && desc_is_used(&desc[used_idx], vq)) {
id = desc[used_idx].id;
dxp = &vq->vq_descx[id];
vq->vq_used_cons_idx += dxp->ndescs;
if (vq->vq_used_cons_idx >= size) {
vq->vq_used_cons_idx -= size;
vq->vq_packed.used_wrap_counter ^= 1;
}
vq_ring_free_id_packed(vq, id);
if (dxp->cookie != NULL) {
rte_pktmbuf_free(dxp->cookie);
dxp->cookie = NULL;
}
used_idx = vq->vq_used_cons_idx;
}
}
/* Cleanup from completed transmits. */
static inline void
virtio_xmit_cleanup_packed(struct virtqueue *vq, uint16_t num, int in_order)
{
if (in_order)
virtio_xmit_cleanup_inorder_packed(vq, num);
else
virtio_xmit_cleanup_normal_packed(vq, num);
}
static inline void
virtio_xmit_cleanup(struct virtqueue *vq, uint16_t num)
{
uint16_t i, used_idx, desc_idx;
for (i = 0; i < num; i++) {
struct vring_used_elem *uep;
struct vq_desc_extra *dxp;
used_idx = (uint16_t)(vq->vq_used_cons_idx &
(vq->vq_nentries - 1));
uep = &vq->vq_split.ring.used->ring[used_idx];
desc_idx = (uint16_t)uep->id;
dxp = &vq->vq_descx[desc_idx];
vq->vq_used_cons_idx++;
vq_ring_free_chain(vq, desc_idx);
if (dxp->cookie != NULL) {
rte_pktmbuf_free(dxp->cookie);
dxp->cookie = NULL;
}
}
}
/* Cleanup from completed inorder transmits. */
static __rte_always_inline void
virtio_xmit_cleanup_inorder(struct virtqueue *vq, uint16_t num)
{
uint16_t i, idx = vq->vq_used_cons_idx;
int16_t free_cnt = 0;
struct vq_desc_extra *dxp = NULL;
if (unlikely(num == 0))
return;
for (i = 0; i < num; i++) {
dxp = &vq->vq_descx[idx++ & (vq->vq_nentries - 1)];
free_cnt += dxp->ndescs;
if (dxp->cookie != NULL) {
rte_pktmbuf_free(dxp->cookie);
dxp->cookie = NULL;
}
}
vq->vq_free_cnt += free_cnt;
vq->vq_used_cons_idx = idx;
}
#endif /* _VIRTQUEUE_H_ */