The macro RTE_VERIFY always checks a condition. It is optimized with "unlikely" hint. While this macro is well suited for test applications, it is preferred in libraries and examples to enable such check in debug mode. That's why the macro RTE_ASSERT is introduced to call RTE_VERIFY only if built with debug logs enabled. A lot of assert macros were duplicated and enabled with a specific flag. Removing these #ifdef allows to test these code branches more easily and avoid dead code pitfalls. The ENA_ASSERT is kept (in debug mode only) because it has more parameters to log. Signed-off-by: Thomas Monjalon <thomas.monjalon@6wind.com>
600 lines
16 KiB
C
600 lines
16 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2015 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Some portions of this software is derived from the
|
|
* https://github.com/halayli/lthread which carrys the following license.
|
|
*
|
|
* Copyright (C) 2012, Hasan Alayli <halayli@gmail.com>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
#define RTE_MEM 1
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <stddef.h>
|
|
#include <limits.h>
|
|
#include <inttypes.h>
|
|
#include <unistd.h>
|
|
#include <pthread.h>
|
|
#include <fcntl.h>
|
|
#include <sys/time.h>
|
|
#include <sys/mman.h>
|
|
#include <sched.h>
|
|
|
|
#include <rte_prefetch.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_atomic_64.h>
|
|
#include <rte_log.h>
|
|
#include <rte_common.h>
|
|
#include <rte_branch_prediction.h>
|
|
|
|
#include "lthread_api.h"
|
|
#include "lthread_int.h"
|
|
#include "lthread_sched.h"
|
|
#include "lthread_objcache.h"
|
|
#include "lthread_timer.h"
|
|
#include "lthread_mutex.h"
|
|
#include "lthread_cond.h"
|
|
#include "lthread_tls.h"
|
|
#include "lthread_diag.h"
|
|
|
|
/*
|
|
* This file implements the lthread scheduler
|
|
* The scheduler is the function lthread_run()
|
|
* This must be run as the main loop of an EAL thread.
|
|
*
|
|
* Currently once a scheduler is created it cannot be destroyed
|
|
* When a scheduler shuts down it is assumed that the application is terminating
|
|
*/
|
|
|
|
static rte_atomic16_t num_schedulers;
|
|
static rte_atomic16_t active_schedulers;
|
|
|
|
/* one scheduler per lcore */
|
|
RTE_DEFINE_PER_LCORE(struct lthread_sched *, this_sched) = NULL;
|
|
|
|
struct lthread_sched *schedcore[LTHREAD_MAX_LCORES];
|
|
|
|
diag_callback diag_cb;
|
|
|
|
uint64_t diag_mask;
|
|
|
|
|
|
/* constructor */
|
|
void lthread_sched_ctor(void) __attribute__ ((constructor));
|
|
void lthread_sched_ctor(void)
|
|
{
|
|
memset(schedcore, 0, sizeof(schedcore));
|
|
rte_atomic16_init(&num_schedulers);
|
|
rte_atomic16_set(&num_schedulers, 1);
|
|
rte_atomic16_init(&active_schedulers);
|
|
rte_atomic16_set(&active_schedulers, 0);
|
|
diag_cb = NULL;
|
|
}
|
|
|
|
|
|
enum sched_alloc_phase {
|
|
SCHED_ALLOC_OK,
|
|
SCHED_ALLOC_QNODE_POOL,
|
|
SCHED_ALLOC_READY_QUEUE,
|
|
SCHED_ALLOC_PREADY_QUEUE,
|
|
SCHED_ALLOC_LTHREAD_CACHE,
|
|
SCHED_ALLOC_STACK_CACHE,
|
|
SCHED_ALLOC_PERLT_CACHE,
|
|
SCHED_ALLOC_TLS_CACHE,
|
|
SCHED_ALLOC_COND_CACHE,
|
|
SCHED_ALLOC_MUTEX_CACHE,
|
|
};
|
|
|
|
static int
|
|
_lthread_sched_alloc_resources(struct lthread_sched *new_sched)
|
|
{
|
|
int alloc_status;
|
|
|
|
do {
|
|
/* Initialize per scheduler queue node pool */
|
|
alloc_status = SCHED_ALLOC_QNODE_POOL;
|
|
new_sched->qnode_pool =
|
|
_qnode_pool_create("qnode pool", LTHREAD_PREALLOC);
|
|
if (new_sched->qnode_pool == NULL)
|
|
break;
|
|
|
|
/* Initialize per scheduler local ready queue */
|
|
alloc_status = SCHED_ALLOC_READY_QUEUE;
|
|
new_sched->ready = _lthread_queue_create("ready queue");
|
|
if (new_sched->ready == NULL)
|
|
break;
|
|
|
|
/* Initialize per scheduler local peer ready queue */
|
|
alloc_status = SCHED_ALLOC_PREADY_QUEUE;
|
|
new_sched->pready = _lthread_queue_create("pready queue");
|
|
if (new_sched->pready == NULL)
|
|
break;
|
|
|
|
/* Initialize per scheduler local free lthread cache */
|
|
alloc_status = SCHED_ALLOC_LTHREAD_CACHE;
|
|
new_sched->lthread_cache =
|
|
_lthread_objcache_create("lthread cache",
|
|
sizeof(struct lthread),
|
|
LTHREAD_PREALLOC);
|
|
if (new_sched->lthread_cache == NULL)
|
|
break;
|
|
|
|
/* Initialize per scheduler local free stack cache */
|
|
alloc_status = SCHED_ALLOC_STACK_CACHE;
|
|
new_sched->stack_cache =
|
|
_lthread_objcache_create("stack_cache",
|
|
sizeof(struct lthread_stack),
|
|
LTHREAD_PREALLOC);
|
|
if (new_sched->stack_cache == NULL)
|
|
break;
|
|
|
|
/* Initialize per scheduler local free per lthread data cache */
|
|
alloc_status = SCHED_ALLOC_PERLT_CACHE;
|
|
new_sched->per_lthread_cache =
|
|
_lthread_objcache_create("per_lt cache",
|
|
RTE_PER_LTHREAD_SECTION_SIZE,
|
|
LTHREAD_PREALLOC);
|
|
if (new_sched->per_lthread_cache == NULL)
|
|
break;
|
|
|
|
/* Initialize per scheduler local free tls cache */
|
|
alloc_status = SCHED_ALLOC_TLS_CACHE;
|
|
new_sched->tls_cache =
|
|
_lthread_objcache_create("TLS cache",
|
|
sizeof(struct lthread_tls),
|
|
LTHREAD_PREALLOC);
|
|
if (new_sched->tls_cache == NULL)
|
|
break;
|
|
|
|
/* Initialize per scheduler local free cond var cache */
|
|
alloc_status = SCHED_ALLOC_COND_CACHE;
|
|
new_sched->cond_cache =
|
|
_lthread_objcache_create("cond cache",
|
|
sizeof(struct lthread_cond),
|
|
LTHREAD_PREALLOC);
|
|
if (new_sched->cond_cache == NULL)
|
|
break;
|
|
|
|
/* Initialize per scheduler local free mutex cache */
|
|
alloc_status = SCHED_ALLOC_MUTEX_CACHE;
|
|
new_sched->mutex_cache =
|
|
_lthread_objcache_create("mutex cache",
|
|
sizeof(struct lthread_mutex),
|
|
LTHREAD_PREALLOC);
|
|
if (new_sched->mutex_cache == NULL)
|
|
break;
|
|
|
|
alloc_status = SCHED_ALLOC_OK;
|
|
} while (0);
|
|
|
|
/* roll back on any failure */
|
|
switch (alloc_status) {
|
|
case SCHED_ALLOC_MUTEX_CACHE:
|
|
_lthread_objcache_destroy(new_sched->cond_cache);
|
|
/* fall through */
|
|
case SCHED_ALLOC_COND_CACHE:
|
|
_lthread_objcache_destroy(new_sched->tls_cache);
|
|
/* fall through */
|
|
case SCHED_ALLOC_TLS_CACHE:
|
|
_lthread_objcache_destroy(new_sched->per_lthread_cache);
|
|
/* fall through */
|
|
case SCHED_ALLOC_PERLT_CACHE:
|
|
_lthread_objcache_destroy(new_sched->stack_cache);
|
|
/* fall through */
|
|
case SCHED_ALLOC_STACK_CACHE:
|
|
_lthread_objcache_destroy(new_sched->lthread_cache);
|
|
/* fall through */
|
|
case SCHED_ALLOC_LTHREAD_CACHE:
|
|
_lthread_queue_destroy(new_sched->pready);
|
|
/* fall through */
|
|
case SCHED_ALLOC_PREADY_QUEUE:
|
|
_lthread_queue_destroy(new_sched->ready);
|
|
/* fall through */
|
|
case SCHED_ALLOC_READY_QUEUE:
|
|
_qnode_pool_destroy(new_sched->qnode_pool);
|
|
/* fall through */
|
|
case SCHED_ALLOC_QNODE_POOL:
|
|
/* fall through */
|
|
case SCHED_ALLOC_OK:
|
|
break;
|
|
}
|
|
return alloc_status;
|
|
}
|
|
|
|
|
|
/*
|
|
* Create a scheduler on the current lcore
|
|
*/
|
|
struct lthread_sched *_lthread_sched_create(size_t stack_size)
|
|
{
|
|
int status;
|
|
struct lthread_sched *new_sched;
|
|
unsigned lcoreid = rte_lcore_id();
|
|
|
|
RTE_ASSERT(stack_size <= LTHREAD_MAX_STACK_SIZE);
|
|
|
|
if (stack_size == 0)
|
|
stack_size = LTHREAD_MAX_STACK_SIZE;
|
|
|
|
new_sched =
|
|
rte_calloc_socket(NULL, 1, sizeof(struct lthread_sched),
|
|
RTE_CACHE_LINE_SIZE,
|
|
rte_socket_id());
|
|
if (new_sched == NULL) {
|
|
RTE_LOG(CRIT, LTHREAD,
|
|
"Failed to allocate memory for scheduler\n");
|
|
return NULL;
|
|
}
|
|
|
|
_lthread_key_pool_init();
|
|
|
|
new_sched->stack_size = stack_size;
|
|
new_sched->birth = rte_rdtsc();
|
|
THIS_SCHED = new_sched;
|
|
|
|
status = _lthread_sched_alloc_resources(new_sched);
|
|
if (status != SCHED_ALLOC_OK) {
|
|
RTE_LOG(CRIT, LTHREAD,
|
|
"Failed to allocate resources for scheduler code = %d\n",
|
|
status);
|
|
rte_free(new_sched);
|
|
return NULL;
|
|
}
|
|
|
|
bzero(&new_sched->ctx, sizeof(struct ctx));
|
|
|
|
new_sched->lcore_id = lcoreid;
|
|
|
|
schedcore[lcoreid] = new_sched;
|
|
|
|
new_sched->run_flag = 1;
|
|
|
|
DIAG_EVENT(new_sched, LT_DIAG_SCHED_CREATE, rte_lcore_id(), 0);
|
|
|
|
rte_wmb();
|
|
return new_sched;
|
|
}
|
|
|
|
/*
|
|
* Set the number of schedulers in the system
|
|
*/
|
|
int lthread_num_schedulers_set(int num)
|
|
{
|
|
rte_atomic16_set(&num_schedulers, num);
|
|
return (int)rte_atomic16_read(&num_schedulers);
|
|
}
|
|
|
|
/*
|
|
* Return the number of schedulers active
|
|
*/
|
|
int lthread_active_schedulers(void)
|
|
{
|
|
return (int)rte_atomic16_read(&active_schedulers);
|
|
}
|
|
|
|
|
|
/**
|
|
* shutdown the scheduler running on the specified lcore
|
|
*/
|
|
void lthread_scheduler_shutdown(unsigned lcoreid)
|
|
{
|
|
uint64_t coreid = (uint64_t) lcoreid;
|
|
|
|
if (coreid < LTHREAD_MAX_LCORES) {
|
|
if (schedcore[coreid] != NULL)
|
|
schedcore[coreid]->run_flag = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* shutdown all schedulers
|
|
*/
|
|
void lthread_scheduler_shutdown_all(void)
|
|
{
|
|
uint64_t i;
|
|
|
|
/*
|
|
* give time for all schedulers to have started
|
|
* Note we use sched_yield() rather than pthread_yield() to allow
|
|
* for the possibility of a pthread wrapper on lthread_yield(),
|
|
* something that is not possible unless the scheduler is running.
|
|
*/
|
|
while (rte_atomic16_read(&active_schedulers) <
|
|
rte_atomic16_read(&num_schedulers))
|
|
sched_yield();
|
|
|
|
for (i = 0; i < LTHREAD_MAX_LCORES; i++) {
|
|
if (schedcore[i] != NULL)
|
|
schedcore[i]->run_flag = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Resume a suspended lthread
|
|
*/
|
|
static inline void
|
|
_lthread_resume(struct lthread *lt) __attribute__ ((always_inline));
|
|
static inline void _lthread_resume(struct lthread *lt)
|
|
{
|
|
struct lthread_sched *sched = THIS_SCHED;
|
|
struct lthread_stack *s;
|
|
uint64_t state = lt->state;
|
|
#if LTHREAD_DIAG
|
|
int init = 0;
|
|
#endif
|
|
|
|
sched->current_lthread = lt;
|
|
|
|
if (state & (BIT(ST_LT_CANCELLED) | BIT(ST_LT_EXITED))) {
|
|
/* if detached we can free the thread now */
|
|
if (state & BIT(ST_LT_DETACH)) {
|
|
_lthread_free(lt);
|
|
sched->current_lthread = NULL;
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (state & BIT(ST_LT_INIT)) {
|
|
/* first time this thread has been run */
|
|
/* assign thread to this scheduler */
|
|
lt->sched = THIS_SCHED;
|
|
|
|
/* allocate stack */
|
|
s = _stack_alloc();
|
|
|
|
lt->stack_container = s;
|
|
_lthread_set_stack(lt, s->stack, s->stack_size);
|
|
|
|
/* allocate memory for TLS used by this thread */
|
|
_lthread_tls_alloc(lt);
|
|
|
|
lt->state = BIT(ST_LT_READY);
|
|
#if LTHREAD_DIAG
|
|
init = 1;
|
|
#endif
|
|
}
|
|
|
|
DIAG_EVENT(lt, LT_DIAG_LTHREAD_RESUMED, init, lt);
|
|
|
|
/* switch to the new thread */
|
|
ctx_switch(<->ctx, &sched->ctx);
|
|
|
|
/* If posting to a queue that could be read by another lcore
|
|
* we defer the queue write till now to ensure the context has been
|
|
* saved before the other core tries to resume it
|
|
* This applies to blocking on mutex, cond, and to set_affinity
|
|
*/
|
|
if (lt->pending_wr_queue != NULL) {
|
|
struct lthread_queue *dest = lt->pending_wr_queue;
|
|
|
|
lt->pending_wr_queue = NULL;
|
|
|
|
/* queue the current thread to the specified queue */
|
|
_lthread_queue_insert_mp(dest, lt);
|
|
}
|
|
|
|
sched->current_lthread = NULL;
|
|
}
|
|
|
|
/*
|
|
* Handle sleep timer expiry
|
|
*/
|
|
void
|
|
_sched_timer_cb(struct rte_timer *tim, void *arg)
|
|
{
|
|
struct lthread *lt = (struct lthread *) arg;
|
|
uint64_t state = lt->state;
|
|
|
|
DIAG_EVENT(lt, LT_DIAG_LTHREAD_TMR_EXPIRED, <->tim, 0);
|
|
|
|
rte_timer_stop(tim);
|
|
|
|
if (lt->state & BIT(ST_LT_CANCELLED))
|
|
(THIS_SCHED)->nb_blocked_threads--;
|
|
|
|
lt->state = state | BIT(ST_LT_EXPIRED);
|
|
_lthread_resume(lt);
|
|
lt->state = state & CLEARBIT(ST_LT_EXPIRED);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Returns 0 if there is a pending job in scheduler or 1 if done and can exit.
|
|
*/
|
|
static inline int _lthread_sched_isdone(struct lthread_sched *sched)
|
|
{
|
|
return (sched->run_flag == 0) &&
|
|
(_lthread_queue_empty(sched->ready)) &&
|
|
(_lthread_queue_empty(sched->pready)) &&
|
|
(sched->nb_blocked_threads == 0);
|
|
}
|
|
|
|
/*
|
|
* Wait for all schedulers to start
|
|
*/
|
|
static inline void _lthread_schedulers_sync_start(void)
|
|
{
|
|
rte_atomic16_inc(&active_schedulers);
|
|
|
|
/* wait for lthread schedulers
|
|
* Note we use sched_yield() rather than pthread_yield() to allow
|
|
* for the possibility of a pthread wrapper on lthread_yield(),
|
|
* something that is not possible unless the scheduler is running.
|
|
*/
|
|
while (rte_atomic16_read(&active_schedulers) <
|
|
rte_atomic16_read(&num_schedulers))
|
|
sched_yield();
|
|
|
|
}
|
|
|
|
/*
|
|
* Wait for all schedulers to stop
|
|
*/
|
|
static inline void _lthread_schedulers_sync_stop(void)
|
|
{
|
|
rte_atomic16_dec(&active_schedulers);
|
|
rte_atomic16_dec(&num_schedulers);
|
|
|
|
/* wait for schedulers
|
|
* Note we use sched_yield() rather than pthread_yield() to allow
|
|
* for the possibility of a pthread wrapper on lthread_yield(),
|
|
* something that is not possible unless the scheduler is running.
|
|
*/
|
|
while (rte_atomic16_read(&active_schedulers) > 0)
|
|
sched_yield();
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
* Run the lthread scheduler
|
|
* This loop is the heart of the system
|
|
*/
|
|
void lthread_run(void)
|
|
{
|
|
|
|
struct lthread_sched *sched = THIS_SCHED;
|
|
struct lthread *lt = NULL;
|
|
|
|
RTE_LOG(INFO, LTHREAD,
|
|
"starting scheduler %p on lcore %u phys core %u\n",
|
|
sched, rte_lcore_id(),
|
|
rte_lcore_index(rte_lcore_id()));
|
|
|
|
/* if more than one, wait for all schedulers to start */
|
|
_lthread_schedulers_sync_start();
|
|
|
|
|
|
/*
|
|
* This is the main scheduling loop
|
|
* So long as there are tasks in existence we run this loop.
|
|
* We check for:-
|
|
* expired timers,
|
|
* the local ready queue,
|
|
* and the peer ready queue,
|
|
*
|
|
* and resume lthreads ad infinitum.
|
|
*/
|
|
while (!_lthread_sched_isdone(sched)) {
|
|
|
|
rte_timer_manage();
|
|
|
|
lt = _lthread_queue_poll(sched->ready);
|
|
if (lt != NULL)
|
|
_lthread_resume(lt);
|
|
lt = _lthread_queue_poll(sched->pready);
|
|
if (lt != NULL)
|
|
_lthread_resume(lt);
|
|
}
|
|
|
|
|
|
/* if more than one wait for all schedulers to stop */
|
|
_lthread_schedulers_sync_stop();
|
|
|
|
(THIS_SCHED) = NULL;
|
|
|
|
RTE_LOG(INFO, LTHREAD,
|
|
"stopping scheduler %p on lcore %u phys core %u\n",
|
|
sched, rte_lcore_id(),
|
|
rte_lcore_index(rte_lcore_id()));
|
|
fflush(stdout);
|
|
}
|
|
|
|
/*
|
|
* Return the scheduler for this lcore
|
|
*
|
|
*/
|
|
struct lthread_sched *_lthread_sched_get(int lcore_id)
|
|
{
|
|
if (lcore_id > LTHREAD_MAX_LCORES)
|
|
return NULL;
|
|
return schedcore[lcore_id];
|
|
}
|
|
|
|
/*
|
|
* migrate the current thread to another scheduler running
|
|
* on the specified lcore.
|
|
*/
|
|
int lthread_set_affinity(unsigned lcoreid)
|
|
{
|
|
struct lthread *lt = THIS_LTHREAD;
|
|
struct lthread_sched *dest_sched;
|
|
|
|
if (unlikely(lcoreid > LTHREAD_MAX_LCORES))
|
|
return POSIX_ERRNO(EINVAL);
|
|
|
|
|
|
DIAG_EVENT(lt, LT_DIAG_LTHREAD_AFFINITY, lcoreid, 0);
|
|
|
|
dest_sched = schedcore[lcoreid];
|
|
|
|
if (unlikely(dest_sched == NULL))
|
|
return POSIX_ERRNO(EINVAL);
|
|
|
|
if (likely(dest_sched != THIS_SCHED)) {
|
|
lt->sched = dest_sched;
|
|
lt->pending_wr_queue = dest_sched->pready;
|
|
_affinitize();
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|