The macro RTE_VERIFY always checks a condition. It is optimized with "unlikely" hint. While this macro is well suited for test applications, it is preferred in libraries and examples to enable such check in debug mode. That's why the macro RTE_ASSERT is introduced to call RTE_VERIFY only if built with debug logs enabled. A lot of assert macros were duplicated and enabled with a specific flag. Removing these #ifdef allows to test these code branches more easily and avoid dead code pitfalls. The ENA_ASSERT is kept (in debug mode only) because it has more parameters to log. Signed-off-by: Thomas Monjalon <thomas.monjalon@6wind.com>
254 lines
6.0 KiB
C
254 lines
6.0 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2015 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <limits.h>
|
|
#include <inttypes.h>
|
|
#include <unistd.h>
|
|
#include <pthread.h>
|
|
#include <fcntl.h>
|
|
#include <sys/time.h>
|
|
#include <sys/mman.h>
|
|
#include <execinfo.h>
|
|
#include <sched.h>
|
|
|
|
#include <rte_malloc.h>
|
|
#include <rte_log.h>
|
|
#include <rte_ring.h>
|
|
#include <rte_atomic_64.h>
|
|
|
|
#include "lthread_tls.h"
|
|
#include "lthread_queue.h"
|
|
#include "lthread_objcache.h"
|
|
#include "lthread_sched.h"
|
|
|
|
static struct rte_ring *key_pool;
|
|
static uint64_t key_pool_init;
|
|
|
|
/* needed to cause section start and end to be defined */
|
|
RTE_DEFINE_PER_LTHREAD(void *, dummy);
|
|
|
|
static struct lthread_key key_table[LTHREAD_MAX_KEYS];
|
|
|
|
void lthread_tls_ctor(void) __attribute__((constructor));
|
|
|
|
void lthread_tls_ctor(void)
|
|
{
|
|
key_pool = NULL;
|
|
key_pool_init = 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize a pool of keys
|
|
* These are unique tokens that can be obtained by threads
|
|
* calling lthread_key_create()
|
|
*/
|
|
void _lthread_key_pool_init(void)
|
|
{
|
|
static struct rte_ring *pool;
|
|
struct lthread_key *new_key;
|
|
char name[MAX_LTHREAD_NAME_SIZE];
|
|
|
|
bzero(key_table, sizeof(key_table));
|
|
|
|
/* only one lcore should do this */
|
|
if (rte_atomic64_cmpset(&key_pool_init, 0, 1)) {
|
|
|
|
snprintf(name,
|
|
MAX_LTHREAD_NAME_SIZE,
|
|
"lthread_key_pool_%d",
|
|
getpid());
|
|
|
|
pool = rte_ring_create(name,
|
|
LTHREAD_MAX_KEYS, 0, 0);
|
|
RTE_ASSERT(pool);
|
|
|
|
int i;
|
|
|
|
for (i = 1; i < LTHREAD_MAX_KEYS; i++) {
|
|
new_key = &key_table[i];
|
|
rte_ring_mp_enqueue((struct rte_ring *)pool,
|
|
(void *)new_key);
|
|
}
|
|
key_pool = pool;
|
|
}
|
|
/* other lcores wait here till done */
|
|
while (key_pool == NULL) {
|
|
rte_compiler_barrier();
|
|
sched_yield();
|
|
};
|
|
}
|
|
|
|
/*
|
|
* Create a key
|
|
* this means getting a key from the the pool
|
|
*/
|
|
int lthread_key_create(unsigned int *key, tls_destructor_func destructor)
|
|
{
|
|
if (key == NULL)
|
|
return POSIX_ERRNO(EINVAL);
|
|
|
|
struct lthread_key *new_key;
|
|
|
|
if (rte_ring_mc_dequeue((struct rte_ring *)key_pool, (void **)&new_key)
|
|
== 0) {
|
|
new_key->destructor = destructor;
|
|
*key = (new_key - key_table);
|
|
|
|
return 0;
|
|
}
|
|
return POSIX_ERRNO(EAGAIN);
|
|
}
|
|
|
|
|
|
/*
|
|
* Delete a key
|
|
*/
|
|
int lthread_key_delete(unsigned int k)
|
|
{
|
|
struct lthread_key *key;
|
|
|
|
key = (struct lthread_key *) &key_table[k];
|
|
|
|
if (k > LTHREAD_MAX_KEYS)
|
|
return POSIX_ERRNO(EINVAL);
|
|
|
|
key->destructor = NULL;
|
|
rte_ring_mp_enqueue((struct rte_ring *)key_pool,
|
|
(void *)key);
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Break association for all keys in use by this thread
|
|
* invoke the destructor if available.
|
|
* Since a destructor can create keys we could enter an infinite loop
|
|
* therefore we give up after LTHREAD_DESTRUCTOR_ITERATIONS
|
|
* the behavior is modelled on pthread
|
|
*/
|
|
void _lthread_tls_destroy(struct lthread *lt)
|
|
{
|
|
int i, k;
|
|
int nb_keys;
|
|
void *data;
|
|
|
|
for (i = 0; i < LTHREAD_DESTRUCTOR_ITERATIONS; i++) {
|
|
|
|
for (k = 1; k < LTHREAD_MAX_KEYS; k++) {
|
|
|
|
/* no keys in use ? */
|
|
nb_keys = lt->tls->nb_keys_inuse;
|
|
if (nb_keys == 0)
|
|
return;
|
|
|
|
/* this key not in use ? */
|
|
if (lt->tls->data[k] == NULL)
|
|
continue;
|
|
|
|
/* remove this key */
|
|
data = lt->tls->data[k];
|
|
lt->tls->data[k] = NULL;
|
|
lt->tls->nb_keys_inuse = nb_keys-1;
|
|
|
|
/* invoke destructor */
|
|
if (key_table[k].destructor != NULL)
|
|
key_table[k].destructor(data);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return the pointer associated with a key
|
|
* If the key is no longer valid return NULL
|
|
*/
|
|
void
|
|
*lthread_getspecific(unsigned int k)
|
|
{
|
|
|
|
if (k > LTHREAD_MAX_KEYS)
|
|
return NULL;
|
|
|
|
return THIS_LTHREAD->tls->data[k];
|
|
}
|
|
|
|
/*
|
|
* Set a value against a key
|
|
* If the key is no longer valid return an error
|
|
* when storing value
|
|
*/
|
|
int lthread_setspecific(unsigned int k, const void *data)
|
|
{
|
|
if (k > LTHREAD_MAX_KEYS)
|
|
return POSIX_ERRNO(EINVAL);
|
|
|
|
int n = THIS_LTHREAD->tls->nb_keys_inuse;
|
|
|
|
/* discard const qualifier */
|
|
char *p = (char *) (uintptr_t) data;
|
|
|
|
|
|
if (data != NULL) {
|
|
if (THIS_LTHREAD->tls->data[k] == NULL)
|
|
THIS_LTHREAD->tls->nb_keys_inuse = n+1;
|
|
}
|
|
|
|
THIS_LTHREAD->tls->data[k] = (void *) p;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate data for TLS cache
|
|
*/
|
|
void _lthread_tls_alloc(struct lthread *lt)
|
|
{
|
|
struct lthread_tls *tls;
|
|
|
|
tls = _lthread_objcache_alloc((THIS_SCHED)->tls_cache);
|
|
|
|
RTE_ASSERT(tls != NULL);
|
|
|
|
tls->root_sched = (THIS_SCHED);
|
|
lt->tls = tls;
|
|
|
|
/* allocate data for TLS varaiables using RTE_PER_LTHREAD macros */
|
|
if (sizeof(void *) < (uint64_t)RTE_PER_LTHREAD_SECTION_SIZE) {
|
|
lt->per_lthread_data =
|
|
_lthread_objcache_alloc((THIS_SCHED)->per_lthread_cache);
|
|
}
|
|
}
|