numam-dpdk/drivers/net/szedata2/rte_eth_szedata2.c
Jan Viktorin 53c3c30c11 pci: allow to override sysfs path
The SYSFS_PCI_DEVICES is a constant that makes the PCI testing
difficult as it points to an absolute path. We remove using this
constant and introducing a function pci_get_sysfs_path that gives
the same value. However, the user can pass a SYSFS_PCI_DEVICES env
variable to override the path. It is now possible to create a fake
sysfs hierarchy for testing.

Signed-off-by: Jan Viktorin <viktorin@rehivetech.com>
2016-06-13 21:08:48 +02:00

1605 lines
41 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) 2015 - 2016 CESNET
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of CESNET nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <unistd.h>
#include <stdbool.h>
#include <err.h>
#include <sys/types.h>
#include <dirent.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <libsze2.h>
#include <rte_mbuf.h>
#include <rte_ethdev.h>
#include <rte_malloc.h>
#include <rte_memcpy.h>
#include <rte_kvargs.h>
#include <rte_dev.h>
#include <rte_atomic.h>
#include "rte_eth_szedata2.h"
#define RTE_ETH_SZEDATA2_MAX_RX_QUEUES 32
#define RTE_ETH_SZEDATA2_MAX_TX_QUEUES 32
#define RTE_ETH_SZEDATA2_TX_LOCK_SIZE (32 * 1024 * 1024)
/**
* size of szedata2_packet header with alignment
*/
#define RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED 8
#define RTE_SZEDATA2_DRIVER_NAME "rte_szedata2_pmd"
#define RTE_SZEDATA2_PCI_DRIVER_NAME "rte_szedata2_pmd"
#define SZEDATA2_DEV_PATH_FMT "/dev/szedataII%u"
struct szedata2_rx_queue {
struct szedata *sze;
uint8_t rx_channel;
uint8_t in_port;
struct rte_mempool *mb_pool;
volatile uint64_t rx_pkts;
volatile uint64_t rx_bytes;
volatile uint64_t err_pkts;
};
struct szedata2_tx_queue {
struct szedata *sze;
uint8_t tx_channel;
volatile uint64_t tx_pkts;
volatile uint64_t tx_bytes;
volatile uint64_t err_pkts;
};
struct pmd_internals {
struct szedata2_rx_queue rx_queue[RTE_ETH_SZEDATA2_MAX_RX_QUEUES];
struct szedata2_tx_queue tx_queue[RTE_ETH_SZEDATA2_MAX_TX_QUEUES];
uint16_t max_rx_queues;
uint16_t max_tx_queues;
char sze_dev[PATH_MAX];
};
static struct ether_addr eth_addr = {
.addr_bytes = { 0x00, 0x11, 0x17, 0x00, 0x00, 0x00 }
};
static uint16_t
eth_szedata2_rx(void *queue,
struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
unsigned int i;
struct rte_mbuf *mbuf;
struct szedata2_rx_queue *sze_q = queue;
struct rte_pktmbuf_pool_private *mbp_priv;
uint16_t num_rx = 0;
uint16_t buf_size;
uint16_t sg_size;
uint16_t hw_size;
uint16_t packet_size;
uint64_t num_bytes = 0;
struct szedata *sze = sze_q->sze;
uint8_t *header_ptr = NULL; /* header of packet */
uint8_t *packet_ptr1 = NULL;
uint8_t *packet_ptr2 = NULL;
uint16_t packet_len1 = 0;
uint16_t packet_len2 = 0;
uint16_t hw_data_align;
if (unlikely(sze_q->sze == NULL || nb_pkts == 0))
return 0;
/*
* Reads the given number of packets from szedata2 channel given
* by queue and copies the packet data into a newly allocated mbuf
* to return.
*/
for (i = 0; i < nb_pkts; i++) {
mbuf = rte_pktmbuf_alloc(sze_q->mb_pool);
if (unlikely(mbuf == NULL))
break;
/* get the next sze packet */
if (sze->ct_rx_lck != NULL && !sze->ct_rx_rem_bytes &&
sze->ct_rx_lck->next == NULL) {
/* unlock old data */
szedata_rx_unlock_data(sze_q->sze, sze->ct_rx_lck_orig);
sze->ct_rx_lck_orig = NULL;
sze->ct_rx_lck = NULL;
}
if (!sze->ct_rx_rem_bytes && sze->ct_rx_lck_orig == NULL) {
/* nothing to read, lock new data */
sze->ct_rx_lck = szedata_rx_lock_data(sze_q->sze, ~0U);
sze->ct_rx_lck_orig = sze->ct_rx_lck;
if (sze->ct_rx_lck == NULL) {
/* nothing to lock */
rte_pktmbuf_free(mbuf);
break;
}
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len;
if (!sze->ct_rx_rem_bytes) {
rte_pktmbuf_free(mbuf);
break;
}
}
if (sze->ct_rx_rem_bytes < RTE_SZE2_PACKET_HEADER_SIZE) {
/*
* cut in header
* copy parts of header to merge buffer
*/
if (sze->ct_rx_lck->next == NULL) {
rte_pktmbuf_free(mbuf);
break;
}
/* copy first part of header */
rte_memcpy(sze->ct_rx_buffer, sze->ct_rx_cur_ptr,
sze->ct_rx_rem_bytes);
/* copy second part of header */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
rte_memcpy(sze->ct_rx_buffer + sze->ct_rx_rem_bytes,
sze->ct_rx_cur_ptr,
RTE_SZE2_PACKET_HEADER_SIZE -
sze->ct_rx_rem_bytes);
sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE -
sze->ct_rx_rem_bytes;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
RTE_SZE2_PACKET_HEADER_SIZE +
sze->ct_rx_rem_bytes;
header_ptr = (uint8_t *)sze->ct_rx_buffer;
} else {
/* not cut */
header_ptr = (uint8_t *)sze->ct_rx_cur_ptr;
sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE;
sze->ct_rx_rem_bytes -= RTE_SZE2_PACKET_HEADER_SIZE;
}
sg_size = le16toh(*((uint16_t *)header_ptr));
hw_size = le16toh(*(((uint16_t *)header_ptr) + 1));
packet_size = sg_size -
RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size);
/* checks if packet all right */
if (!sg_size)
errx(5, "Zero segsize");
/* check sg_size and hwsize */
if (hw_size > sg_size - RTE_SZE2_PACKET_HEADER_SIZE) {
errx(10, "Hwsize bigger than expected. Segsize: %d, "
"hwsize: %d", sg_size, hw_size);
}
hw_data_align =
RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size) -
RTE_SZE2_PACKET_HEADER_SIZE;
if (sze->ct_rx_rem_bytes >=
(uint16_t)(sg_size -
RTE_SZE2_PACKET_HEADER_SIZE)) {
/* no cut */
/* one packet ready - go to another */
packet_ptr1 = sze->ct_rx_cur_ptr + hw_data_align;
packet_len1 = packet_size;
packet_ptr2 = NULL;
packet_len2 = 0;
sze->ct_rx_cur_ptr += RTE_SZE2_ALIGN8(sg_size) -
RTE_SZE2_PACKET_HEADER_SIZE;
sze->ct_rx_rem_bytes -= RTE_SZE2_ALIGN8(sg_size) -
RTE_SZE2_PACKET_HEADER_SIZE;
} else {
/* cut in data */
if (sze->ct_rx_lck->next == NULL) {
errx(6, "Need \"next\" lock, "
"but it is missing: %u",
sze->ct_rx_rem_bytes);
}
/* skip hw data */
if (sze->ct_rx_rem_bytes <= hw_data_align) {
uint16_t rem_size = hw_data_align -
sze->ct_rx_rem_bytes;
/* MOVE to next lock */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr =
(void *)(((uint8_t *)
(sze->ct_rx_lck->start)) + rem_size);
packet_ptr1 = sze->ct_rx_cur_ptr;
packet_len1 = packet_size;
packet_ptr2 = NULL;
packet_len2 = 0;
sze->ct_rx_cur_ptr +=
RTE_SZE2_ALIGN8(packet_size);
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
rem_size - RTE_SZE2_ALIGN8(packet_size);
} else {
/* get pointer and length from first part */
packet_ptr1 = sze->ct_rx_cur_ptr +
hw_data_align;
packet_len1 = sze->ct_rx_rem_bytes -
hw_data_align;
/* MOVE to next lock */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
/* get pointer and length from second part */
packet_ptr2 = sze->ct_rx_cur_ptr;
packet_len2 = packet_size - packet_len1;
sze->ct_rx_cur_ptr +=
RTE_SZE2_ALIGN8(packet_size) -
packet_len1;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
(RTE_SZE2_ALIGN8(packet_size) -
packet_len1);
}
}
if (unlikely(packet_ptr1 == NULL)) {
rte_pktmbuf_free(mbuf);
break;
}
/* get the space available for data in the mbuf */
mbp_priv = rte_mempool_get_priv(sze_q->mb_pool);
buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
if (packet_size <= buf_size) {
/* sze packet will fit in one mbuf, go ahead and copy */
rte_memcpy(rte_pktmbuf_mtod(mbuf, void *),
packet_ptr1, packet_len1);
if (packet_ptr2 != NULL) {
rte_memcpy((void *)(rte_pktmbuf_mtod(mbuf,
uint8_t *) + packet_len1),
packet_ptr2, packet_len2);
}
mbuf->data_len = (uint16_t)packet_size;
mbuf->pkt_len = packet_size;
mbuf->port = sze_q->in_port;
bufs[num_rx] = mbuf;
num_rx++;
num_bytes += packet_size;
} else {
/*
* sze packet will not fit in one mbuf,
* scattered mode is not enabled, drop packet
*/
RTE_LOG(ERR, PMD,
"SZE segment %d bytes will not fit in one mbuf "
"(%d bytes), scattered mode is not enabled, "
"drop packet!!\n",
packet_size, buf_size);
rte_pktmbuf_free(mbuf);
}
}
sze_q->rx_pkts += num_rx;
sze_q->rx_bytes += num_bytes;
return num_rx;
}
static uint16_t
eth_szedata2_rx_scattered(void *queue,
struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
unsigned int i;
struct rte_mbuf *mbuf;
struct szedata2_rx_queue *sze_q = queue;
struct rte_pktmbuf_pool_private *mbp_priv;
uint16_t num_rx = 0;
uint16_t buf_size;
uint16_t sg_size;
uint16_t hw_size;
uint16_t packet_size;
uint64_t num_bytes = 0;
struct szedata *sze = sze_q->sze;
uint8_t *header_ptr = NULL; /* header of packet */
uint8_t *packet_ptr1 = NULL;
uint8_t *packet_ptr2 = NULL;
uint16_t packet_len1 = 0;
uint16_t packet_len2 = 0;
uint16_t hw_data_align;
if (unlikely(sze_q->sze == NULL || nb_pkts == 0))
return 0;
/*
* Reads the given number of packets from szedata2 channel given
* by queue and copies the packet data into a newly allocated mbuf
* to return.
*/
for (i = 0; i < nb_pkts; i++) {
const struct szedata_lock *ct_rx_lck_backup;
unsigned int ct_rx_rem_bytes_backup;
unsigned char *ct_rx_cur_ptr_backup;
/* get the next sze packet */
if (sze->ct_rx_lck != NULL && !sze->ct_rx_rem_bytes &&
sze->ct_rx_lck->next == NULL) {
/* unlock old data */
szedata_rx_unlock_data(sze_q->sze, sze->ct_rx_lck_orig);
sze->ct_rx_lck_orig = NULL;
sze->ct_rx_lck = NULL;
}
/*
* Store items from sze structure which can be changed
* before mbuf allocating. Use these items in case of mbuf
* allocating failure.
*/
ct_rx_lck_backup = sze->ct_rx_lck;
ct_rx_rem_bytes_backup = sze->ct_rx_rem_bytes;
ct_rx_cur_ptr_backup = sze->ct_rx_cur_ptr;
if (!sze->ct_rx_rem_bytes && sze->ct_rx_lck_orig == NULL) {
/* nothing to read, lock new data */
sze->ct_rx_lck = szedata_rx_lock_data(sze_q->sze, ~0U);
sze->ct_rx_lck_orig = sze->ct_rx_lck;
/*
* Backup items from sze structure must be updated
* after locking to contain pointers to new locks.
*/
ct_rx_lck_backup = sze->ct_rx_lck;
ct_rx_rem_bytes_backup = sze->ct_rx_rem_bytes;
ct_rx_cur_ptr_backup = sze->ct_rx_cur_ptr;
if (sze->ct_rx_lck == NULL)
/* nothing to lock */
break;
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len;
if (!sze->ct_rx_rem_bytes)
break;
}
if (sze->ct_rx_rem_bytes < RTE_SZE2_PACKET_HEADER_SIZE) {
/*
* cut in header - copy parts of header to merge buffer
*/
if (sze->ct_rx_lck->next == NULL)
break;
/* copy first part of header */
rte_memcpy(sze->ct_rx_buffer, sze->ct_rx_cur_ptr,
sze->ct_rx_rem_bytes);
/* copy second part of header */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
rte_memcpy(sze->ct_rx_buffer + sze->ct_rx_rem_bytes,
sze->ct_rx_cur_ptr,
RTE_SZE2_PACKET_HEADER_SIZE -
sze->ct_rx_rem_bytes);
sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE -
sze->ct_rx_rem_bytes;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
RTE_SZE2_PACKET_HEADER_SIZE +
sze->ct_rx_rem_bytes;
header_ptr = (uint8_t *)sze->ct_rx_buffer;
} else {
/* not cut */
header_ptr = (uint8_t *)sze->ct_rx_cur_ptr;
sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE;
sze->ct_rx_rem_bytes -= RTE_SZE2_PACKET_HEADER_SIZE;
}
sg_size = le16toh(*((uint16_t *)header_ptr));
hw_size = le16toh(*(((uint16_t *)header_ptr) + 1));
packet_size = sg_size -
RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size);
/* checks if packet all right */
if (!sg_size)
errx(5, "Zero segsize");
/* check sg_size and hwsize */
if (hw_size > sg_size - RTE_SZE2_PACKET_HEADER_SIZE) {
errx(10, "Hwsize bigger than expected. Segsize: %d, "
"hwsize: %d", sg_size, hw_size);
}
hw_data_align =
RTE_SZE2_ALIGN8((RTE_SZE2_PACKET_HEADER_SIZE +
hw_size)) - RTE_SZE2_PACKET_HEADER_SIZE;
if (sze->ct_rx_rem_bytes >=
(uint16_t)(sg_size -
RTE_SZE2_PACKET_HEADER_SIZE)) {
/* no cut */
/* one packet ready - go to another */
packet_ptr1 = sze->ct_rx_cur_ptr + hw_data_align;
packet_len1 = packet_size;
packet_ptr2 = NULL;
packet_len2 = 0;
sze->ct_rx_cur_ptr += RTE_SZE2_ALIGN8(sg_size) -
RTE_SZE2_PACKET_HEADER_SIZE;
sze->ct_rx_rem_bytes -= RTE_SZE2_ALIGN8(sg_size) -
RTE_SZE2_PACKET_HEADER_SIZE;
} else {
/* cut in data */
if (sze->ct_rx_lck->next == NULL) {
errx(6, "Need \"next\" lock, but it is "
"missing: %u", sze->ct_rx_rem_bytes);
}
/* skip hw data */
if (sze->ct_rx_rem_bytes <= hw_data_align) {
uint16_t rem_size = hw_data_align -
sze->ct_rx_rem_bytes;
/* MOVE to next lock */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr =
(void *)(((uint8_t *)
(sze->ct_rx_lck->start)) + rem_size);
packet_ptr1 = sze->ct_rx_cur_ptr;
packet_len1 = packet_size;
packet_ptr2 = NULL;
packet_len2 = 0;
sze->ct_rx_cur_ptr +=
RTE_SZE2_ALIGN8(packet_size);
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
rem_size - RTE_SZE2_ALIGN8(packet_size);
} else {
/* get pointer and length from first part */
packet_ptr1 = sze->ct_rx_cur_ptr +
hw_data_align;
packet_len1 = sze->ct_rx_rem_bytes -
hw_data_align;
/* MOVE to next lock */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
/* get pointer and length from second part */
packet_ptr2 = sze->ct_rx_cur_ptr;
packet_len2 = packet_size - packet_len1;
sze->ct_rx_cur_ptr +=
RTE_SZE2_ALIGN8(packet_size) -
packet_len1;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
(RTE_SZE2_ALIGN8(packet_size) -
packet_len1);
}
}
if (unlikely(packet_ptr1 == NULL))
break;
mbuf = rte_pktmbuf_alloc(sze_q->mb_pool);
if (unlikely(mbuf == NULL)) {
/*
* Restore items from sze structure to state after
* unlocking (eventually locking).
*/
sze->ct_rx_lck = ct_rx_lck_backup;
sze->ct_rx_rem_bytes = ct_rx_rem_bytes_backup;
sze->ct_rx_cur_ptr = ct_rx_cur_ptr_backup;
break;
}
/* get the space available for data in the mbuf */
mbp_priv = rte_mempool_get_priv(sze_q->mb_pool);
buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
if (packet_size <= buf_size) {
/* sze packet will fit in one mbuf, go ahead and copy */
rte_memcpy(rte_pktmbuf_mtod(mbuf, void *),
packet_ptr1, packet_len1);
if (packet_ptr2 != NULL) {
rte_memcpy((void *)
(rte_pktmbuf_mtod(mbuf, uint8_t *) +
packet_len1), packet_ptr2, packet_len2);
}
mbuf->data_len = (uint16_t)packet_size;
} else {
/*
* sze packet will not fit in one mbuf,
* scatter packet into more mbufs
*/
struct rte_mbuf *m = mbuf;
uint16_t len = rte_pktmbuf_tailroom(mbuf);
/* copy first part of packet */
/* fill first mbuf */
rte_memcpy(rte_pktmbuf_append(mbuf, len), packet_ptr1,
len);
packet_len1 -= len;
packet_ptr1 = ((uint8_t *)packet_ptr1) + len;
while (packet_len1 > 0) {
/* fill new mbufs */
m->next = rte_pktmbuf_alloc(sze_q->mb_pool);
if (unlikely(m->next == NULL)) {
rte_pktmbuf_free(mbuf);
/*
* Restore items from sze structure
* to state after unlocking (eventually
* locking).
*/
sze->ct_rx_lck = ct_rx_lck_backup;
sze->ct_rx_rem_bytes =
ct_rx_rem_bytes_backup;
sze->ct_rx_cur_ptr =
ct_rx_cur_ptr_backup;
goto finish;
}
m = m->next;
len = RTE_MIN(rte_pktmbuf_tailroom(m),
packet_len1);
rte_memcpy(rte_pktmbuf_append(mbuf, len),
packet_ptr1, len);
(mbuf->nb_segs)++;
packet_len1 -= len;
packet_ptr1 = ((uint8_t *)packet_ptr1) + len;
}
if (packet_ptr2 != NULL) {
/* copy second part of packet, if exists */
/* fill the rest of currently last mbuf */
len = rte_pktmbuf_tailroom(m);
rte_memcpy(rte_pktmbuf_append(mbuf, len),
packet_ptr2, len);
packet_len2 -= len;
packet_ptr2 = ((uint8_t *)packet_ptr2) + len;
while (packet_len2 > 0) {
/* fill new mbufs */
m->next = rte_pktmbuf_alloc(
sze_q->mb_pool);
if (unlikely(m->next == NULL)) {
rte_pktmbuf_free(mbuf);
/*
* Restore items from sze
* structure to state after
* unlocking (eventually
* locking).
*/
sze->ct_rx_lck =
ct_rx_lck_backup;
sze->ct_rx_rem_bytes =
ct_rx_rem_bytes_backup;
sze->ct_rx_cur_ptr =
ct_rx_cur_ptr_backup;
goto finish;
}
m = m->next;
len = RTE_MIN(rte_pktmbuf_tailroom(m),
packet_len2);
rte_memcpy(
rte_pktmbuf_append(mbuf, len),
packet_ptr2, len);
(mbuf->nb_segs)++;
packet_len2 -= len;
packet_ptr2 = ((uint8_t *)packet_ptr2) +
len;
}
}
}
mbuf->pkt_len = packet_size;
mbuf->port = sze_q->in_port;
bufs[num_rx] = mbuf;
num_rx++;
num_bytes += packet_size;
}
finish:
sze_q->rx_pkts += num_rx;
sze_q->rx_bytes += num_bytes;
return num_rx;
}
static uint16_t
eth_szedata2_tx(void *queue,
struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
struct rte_mbuf *mbuf;
struct szedata2_tx_queue *sze_q = queue;
uint16_t num_tx = 0;
uint64_t num_bytes = 0;
const struct szedata_lock *lck;
uint32_t lock_size;
uint32_t lock_size2;
void *dst;
uint32_t pkt_len;
uint32_t hwpkt_len;
uint32_t unlock_size;
uint32_t rem_len;
uint8_t mbuf_segs;
uint16_t pkt_left = nb_pkts;
if (sze_q->sze == NULL || nb_pkts == 0)
return 0;
while (pkt_left > 0) {
unlock_size = 0;
lck = szedata_tx_lock_data(sze_q->sze,
RTE_ETH_SZEDATA2_TX_LOCK_SIZE,
sze_q->tx_channel);
if (lck == NULL)
continue;
dst = lck->start;
lock_size = lck->len;
lock_size2 = lck->next ? lck->next->len : 0;
next_packet:
mbuf = bufs[nb_pkts - pkt_left];
pkt_len = mbuf->pkt_len;
mbuf_segs = mbuf->nb_segs;
hwpkt_len = RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
RTE_SZE2_ALIGN8(pkt_len);
if (lock_size + lock_size2 < hwpkt_len) {
szedata_tx_unlock_data(sze_q->sze, lck, unlock_size);
continue;
}
num_bytes += pkt_len;
if (lock_size > hwpkt_len) {
void *tmp_dst;
rem_len = 0;
/* write packet length at first 2 bytes in 8B header */
*((uint16_t *)dst) = htole16(
RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
pkt_len);
*(((uint16_t *)dst) + 1) = htole16(0);
/* copy packet from mbuf */
tmp_dst = ((uint8_t *)(dst)) +
RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
if (mbuf_segs == 1) {
/*
* non-scattered packet,
* transmit from one mbuf
*/
rte_memcpy(tmp_dst,
rte_pktmbuf_mtod(mbuf, const void *),
pkt_len);
} else {
/* scattered packet, transmit from more mbufs */
struct rte_mbuf *m = mbuf;
while (m) {
rte_memcpy(tmp_dst,
rte_pktmbuf_mtod(m,
const void *),
m->data_len);
tmp_dst = ((uint8_t *)(tmp_dst)) +
m->data_len;
m = m->next;
}
}
dst = ((uint8_t *)dst) + hwpkt_len;
unlock_size += hwpkt_len;
lock_size -= hwpkt_len;
rte_pktmbuf_free(mbuf);
num_tx++;
pkt_left--;
if (pkt_left == 0) {
szedata_tx_unlock_data(sze_q->sze, lck,
unlock_size);
break;
}
goto next_packet;
} else if (lock_size + lock_size2 >= hwpkt_len) {
void *tmp_dst;
uint16_t write_len;
/* write packet length at first 2 bytes in 8B header */
*((uint16_t *)dst) =
htole16(RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
pkt_len);
*(((uint16_t *)dst) + 1) = htole16(0);
/*
* If the raw packet (pkt_len) is smaller than lock_size
* get the correct length for memcpy
*/
write_len =
pkt_len < lock_size -
RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED ?
pkt_len :
lock_size - RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
rem_len = hwpkt_len - lock_size;
tmp_dst = ((uint8_t *)(dst)) +
RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
if (mbuf_segs == 1) {
/*
* non-scattered packet,
* transmit from one mbuf
*/
/* copy part of packet to first area */
rte_memcpy(tmp_dst,
rte_pktmbuf_mtod(mbuf, const void *),
write_len);
if (lck->next)
dst = lck->next->start;
/* copy part of packet to second area */
rte_memcpy(dst,
(const void *)(rte_pktmbuf_mtod(mbuf,
const uint8_t *) +
write_len), pkt_len - write_len);
} else {
/* scattered packet, transmit from more mbufs */
struct rte_mbuf *m = mbuf;
uint16_t written = 0;
uint16_t to_write = 0;
bool new_mbuf = true;
uint16_t write_off = 0;
/* copy part of packet to first area */
while (m && written < write_len) {
to_write = RTE_MIN(m->data_len,
write_len - written);
rte_memcpy(tmp_dst,
rte_pktmbuf_mtod(m,
const void *),
to_write);
tmp_dst = ((uint8_t *)(tmp_dst)) +
to_write;
if (m->data_len <= write_len -
written) {
m = m->next;
new_mbuf = true;
} else {
new_mbuf = false;
}
written += to_write;
}
if (lck->next)
dst = lck->next->start;
tmp_dst = dst;
written = 0;
write_off = new_mbuf ? 0 : to_write;
/* copy part of packet to second area */
while (m && written < pkt_len - write_len) {
rte_memcpy(tmp_dst, (const void *)
(rte_pktmbuf_mtod(m,
uint8_t *) + write_off),
m->data_len - write_off);
tmp_dst = ((uint8_t *)(tmp_dst)) +
(m->data_len - write_off);
written += m->data_len - write_off;
m = m->next;
write_off = 0;
}
}
dst = ((uint8_t *)dst) + rem_len;
unlock_size += hwpkt_len;
lock_size = lock_size2 - rem_len;
lock_size2 = 0;
rte_pktmbuf_free(mbuf);
num_tx++;
}
szedata_tx_unlock_data(sze_q->sze, lck, unlock_size);
pkt_left--;
}
sze_q->tx_pkts += num_tx;
sze_q->err_pkts += nb_pkts - num_tx;
sze_q->tx_bytes += num_bytes;
return num_tx;
}
static int
eth_rx_queue_start(struct rte_eth_dev *dev, uint16_t rxq_id)
{
struct szedata2_rx_queue *rxq = dev->data->rx_queues[rxq_id];
int ret;
struct pmd_internals *internals = (struct pmd_internals *)
dev->data->dev_private;
if (rxq->sze == NULL) {
uint32_t rx = 1 << rxq->rx_channel;
uint32_t tx = 0;
rxq->sze = szedata_open(internals->sze_dev);
if (rxq->sze == NULL)
return -EINVAL;
ret = szedata_subscribe3(rxq->sze, &rx, &tx);
if (ret != 0 || rx == 0)
goto err;
}
ret = szedata_start(rxq->sze);
if (ret != 0)
goto err;
dev->data->rx_queue_state[rxq_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
err:
szedata_close(rxq->sze);
rxq->sze = NULL;
return -EINVAL;
}
static int
eth_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rxq_id)
{
struct szedata2_rx_queue *rxq = dev->data->rx_queues[rxq_id];
if (rxq->sze != NULL) {
szedata_close(rxq->sze);
rxq->sze = NULL;
}
dev->data->rx_queue_state[rxq_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static int
eth_tx_queue_start(struct rte_eth_dev *dev, uint16_t txq_id)
{
struct szedata2_tx_queue *txq = dev->data->tx_queues[txq_id];
int ret;
struct pmd_internals *internals = (struct pmd_internals *)
dev->data->dev_private;
if (txq->sze == NULL) {
uint32_t rx = 0;
uint32_t tx = 1 << txq->tx_channel;
txq->sze = szedata_open(internals->sze_dev);
if (txq->sze == NULL)
return -EINVAL;
ret = szedata_subscribe3(txq->sze, &rx, &tx);
if (ret != 0 || tx == 0)
goto err;
}
ret = szedata_start(txq->sze);
if (ret != 0)
goto err;
dev->data->tx_queue_state[txq_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
err:
szedata_close(txq->sze);
txq->sze = NULL;
return -EINVAL;
}
static int
eth_tx_queue_stop(struct rte_eth_dev *dev, uint16_t txq_id)
{
struct szedata2_tx_queue *txq = dev->data->tx_queues[txq_id];
if (txq->sze != NULL) {
szedata_close(txq->sze);
txq->sze = NULL;
}
dev->data->tx_queue_state[txq_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static int
eth_dev_start(struct rte_eth_dev *dev)
{
int ret;
uint16_t i;
uint16_t nb_rx = dev->data->nb_rx_queues;
uint16_t nb_tx = dev->data->nb_tx_queues;
for (i = 0; i < nb_rx; i++) {
ret = eth_rx_queue_start(dev, i);
if (ret != 0)
goto err_rx;
}
for (i = 0; i < nb_tx; i++) {
ret = eth_tx_queue_start(dev, i);
if (ret != 0)
goto err_tx;
}
return 0;
err_tx:
for (i = 0; i < nb_tx; i++)
eth_tx_queue_stop(dev, i);
err_rx:
for (i = 0; i < nb_rx; i++)
eth_rx_queue_stop(dev, i);
return ret;
}
static void
eth_dev_stop(struct rte_eth_dev *dev)
{
uint16_t i;
uint16_t nb_rx = dev->data->nb_rx_queues;
uint16_t nb_tx = dev->data->nb_tx_queues;
for (i = 0; i < nb_tx; i++)
eth_tx_queue_stop(dev, i);
for (i = 0; i < nb_rx; i++)
eth_rx_queue_stop(dev, i);
}
static int
eth_dev_configure(struct rte_eth_dev *dev)
{
struct rte_eth_dev_data *data = dev->data;
if (data->dev_conf.rxmode.enable_scatter == 1) {
dev->rx_pkt_burst = eth_szedata2_rx_scattered;
data->scattered_rx = 1;
} else {
dev->rx_pkt_burst = eth_szedata2_rx;
data->scattered_rx = 0;
}
return 0;
}
static void
eth_dev_info(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
struct pmd_internals *internals = dev->data->dev_private;
dev_info->if_index = 0;
dev_info->max_mac_addrs = 1;
dev_info->max_rx_pktlen = (uint32_t)-1;
dev_info->max_rx_queues = internals->max_rx_queues;
dev_info->max_tx_queues = internals->max_tx_queues;
dev_info->min_rx_bufsize = 0;
dev_info->speed_capa = ETH_LINK_SPEED_100G;
}
static void
eth_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats)
{
uint16_t i;
uint16_t nb_rx = dev->data->nb_rx_queues;
uint16_t nb_tx = dev->data->nb_tx_queues;
uint64_t rx_total = 0;
uint64_t tx_total = 0;
uint64_t tx_err_total = 0;
uint64_t rx_total_bytes = 0;
uint64_t tx_total_bytes = 0;
const struct pmd_internals *internals = dev->data->dev_private;
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS && i < nb_rx; i++) {
stats->q_ipackets[i] = internals->rx_queue[i].rx_pkts;
stats->q_ibytes[i] = internals->rx_queue[i].rx_bytes;
rx_total += stats->q_ipackets[i];
rx_total_bytes += stats->q_ibytes[i];
}
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS && i < nb_tx; i++) {
stats->q_opackets[i] = internals->tx_queue[i].tx_pkts;
stats->q_obytes[i] = internals->tx_queue[i].tx_bytes;
stats->q_errors[i] = internals->tx_queue[i].err_pkts;
tx_total += stats->q_opackets[i];
tx_total_bytes += stats->q_obytes[i];
tx_err_total += stats->q_errors[i];
}
stats->ipackets = rx_total;
stats->opackets = tx_total;
stats->ibytes = rx_total_bytes;
stats->obytes = tx_total_bytes;
stats->oerrors = tx_err_total;
}
static void
eth_stats_reset(struct rte_eth_dev *dev)
{
uint16_t i;
uint16_t nb_rx = dev->data->nb_rx_queues;
uint16_t nb_tx = dev->data->nb_tx_queues;
struct pmd_internals *internals = dev->data->dev_private;
for (i = 0; i < nb_rx; i++) {
internals->rx_queue[i].rx_pkts = 0;
internals->rx_queue[i].rx_bytes = 0;
internals->rx_queue[i].err_pkts = 0;
}
for (i = 0; i < nb_tx; i++) {
internals->tx_queue[i].tx_pkts = 0;
internals->tx_queue[i].tx_bytes = 0;
internals->tx_queue[i].err_pkts = 0;
}
}
static void
eth_rx_queue_release(void *q)
{
struct szedata2_rx_queue *rxq = (struct szedata2_rx_queue *)q;
if (rxq->sze != NULL) {
szedata_close(rxq->sze);
rxq->sze = NULL;
}
}
static void
eth_tx_queue_release(void *q)
{
struct szedata2_tx_queue *txq = (struct szedata2_tx_queue *)q;
if (txq->sze != NULL) {
szedata_close(txq->sze);
txq->sze = NULL;
}
}
static void
eth_dev_close(struct rte_eth_dev *dev)
{
uint16_t i;
uint16_t nb_rx = dev->data->nb_rx_queues;
uint16_t nb_tx = dev->data->nb_tx_queues;
eth_dev_stop(dev);
for (i = 0; i < nb_rx; i++) {
eth_rx_queue_release(dev->data->rx_queues[i]);
dev->data->rx_queues[i] = NULL;
}
dev->data->nb_rx_queues = 0;
for (i = 0; i < nb_tx; i++) {
eth_tx_queue_release(dev->data->tx_queues[i]);
dev->data->tx_queues[i] = NULL;
}
dev->data->nb_tx_queues = 0;
}
static int
eth_link_update(struct rte_eth_dev *dev,
int wait_to_complete __rte_unused)
{
struct rte_eth_link link;
struct rte_eth_link *link_ptr = &link;
struct rte_eth_link *dev_link = &dev->data->dev_link;
volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
volatile struct szedata2_cgmii_ibuf *);
switch (cgmii_link_speed(ibuf)) {
case SZEDATA2_LINK_SPEED_10G:
link.link_speed = ETH_SPEED_NUM_10G;
break;
case SZEDATA2_LINK_SPEED_40G:
link.link_speed = ETH_SPEED_NUM_40G;
break;
case SZEDATA2_LINK_SPEED_100G:
link.link_speed = ETH_SPEED_NUM_100G;
break;
default:
link.link_speed = ETH_SPEED_NUM_10G;
break;
}
/* szedata2 uses only full duplex */
link.link_duplex = ETH_LINK_FULL_DUPLEX;
link.link_status = (cgmii_ibuf_is_enabled(ibuf) &&
cgmii_ibuf_is_link_up(ibuf)) ? ETH_LINK_UP : ETH_LINK_DOWN;
link.link_autoneg = ETH_LINK_SPEED_FIXED;
rte_atomic64_cmpset((uint64_t *)dev_link, *(uint64_t *)dev_link,
*(uint64_t *)link_ptr);
return 0;
}
static int
eth_dev_set_link_up(struct rte_eth_dev *dev)
{
volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
volatile struct szedata2_cgmii_ibuf *);
volatile struct szedata2_cgmii_obuf *obuf = SZEDATA2_PCI_RESOURCE_PTR(
dev, SZEDATA2_CGMII_OBUF_BASE_OFF,
volatile struct szedata2_cgmii_obuf *);
cgmii_ibuf_enable(ibuf);
cgmii_obuf_enable(obuf);
return 0;
}
static int
eth_dev_set_link_down(struct rte_eth_dev *dev)
{
volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
volatile struct szedata2_cgmii_ibuf *);
volatile struct szedata2_cgmii_obuf *obuf = SZEDATA2_PCI_RESOURCE_PTR(
dev, SZEDATA2_CGMII_OBUF_BASE_OFF,
volatile struct szedata2_cgmii_obuf *);
cgmii_ibuf_disable(ibuf);
cgmii_obuf_disable(obuf);
return 0;
}
static int
eth_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t rx_queue_id,
uint16_t nb_rx_desc __rte_unused,
unsigned int socket_id __rte_unused,
const struct rte_eth_rxconf *rx_conf __rte_unused,
struct rte_mempool *mb_pool)
{
struct pmd_internals *internals = dev->data->dev_private;
struct szedata2_rx_queue *rxq = &internals->rx_queue[rx_queue_id];
int ret;
uint32_t rx = 1 << rx_queue_id;
uint32_t tx = 0;
rxq->sze = szedata_open(internals->sze_dev);
if (rxq->sze == NULL)
return -EINVAL;
ret = szedata_subscribe3(rxq->sze, &rx, &tx);
if (ret != 0 || rx == 0) {
szedata_close(rxq->sze);
rxq->sze = NULL;
return -EINVAL;
}
rxq->rx_channel = rx_queue_id;
rxq->in_port = dev->data->port_id;
rxq->mb_pool = mb_pool;
rxq->rx_pkts = 0;
rxq->rx_bytes = 0;
rxq->err_pkts = 0;
dev->data->rx_queues[rx_queue_id] = rxq;
return 0;
}
static int
eth_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t tx_queue_id,
uint16_t nb_tx_desc __rte_unused,
unsigned int socket_id __rte_unused,
const struct rte_eth_txconf *tx_conf __rte_unused)
{
struct pmd_internals *internals = dev->data->dev_private;
struct szedata2_tx_queue *txq = &internals->tx_queue[tx_queue_id];
int ret;
uint32_t rx = 0;
uint32_t tx = 1 << tx_queue_id;
txq->sze = szedata_open(internals->sze_dev);
if (txq->sze == NULL)
return -EINVAL;
ret = szedata_subscribe3(txq->sze, &rx, &tx);
if (ret != 0 || tx == 0) {
szedata_close(txq->sze);
txq->sze = NULL;
return -EINVAL;
}
txq->tx_channel = tx_queue_id;
txq->tx_pkts = 0;
txq->tx_bytes = 0;
txq->err_pkts = 0;
dev->data->tx_queues[tx_queue_id] = txq;
return 0;
}
static void
eth_mac_addr_set(struct rte_eth_dev *dev __rte_unused,
struct ether_addr *mac_addr __rte_unused)
{
}
static void
eth_promiscuous_enable(struct rte_eth_dev *dev)
{
volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
volatile struct szedata2_cgmii_ibuf *);
cgmii_ibuf_mac_mode_write(ibuf, SZEDATA2_MAC_CHMODE_PROMISC);
}
static void
eth_promiscuous_disable(struct rte_eth_dev *dev)
{
volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
volatile struct szedata2_cgmii_ibuf *);
cgmii_ibuf_mac_mode_write(ibuf, SZEDATA2_MAC_CHMODE_ONLY_VALID);
}
static void
eth_allmulticast_enable(struct rte_eth_dev *dev)
{
volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
volatile struct szedata2_cgmii_ibuf *);
cgmii_ibuf_mac_mode_write(ibuf, SZEDATA2_MAC_CHMODE_ALL_MULTICAST);
}
static void
eth_allmulticast_disable(struct rte_eth_dev *dev)
{
volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
volatile struct szedata2_cgmii_ibuf *);
cgmii_ibuf_mac_mode_write(ibuf, SZEDATA2_MAC_CHMODE_ONLY_VALID);
}
static const struct eth_dev_ops ops = {
.dev_start = eth_dev_start,
.dev_stop = eth_dev_stop,
.dev_set_link_up = eth_dev_set_link_up,
.dev_set_link_down = eth_dev_set_link_down,
.dev_close = eth_dev_close,
.dev_configure = eth_dev_configure,
.dev_infos_get = eth_dev_info,
.promiscuous_enable = eth_promiscuous_enable,
.promiscuous_disable = eth_promiscuous_disable,
.allmulticast_enable = eth_allmulticast_enable,
.allmulticast_disable = eth_allmulticast_disable,
.rx_queue_start = eth_rx_queue_start,
.rx_queue_stop = eth_rx_queue_stop,
.tx_queue_start = eth_tx_queue_start,
.tx_queue_stop = eth_tx_queue_stop,
.rx_queue_setup = eth_rx_queue_setup,
.tx_queue_setup = eth_tx_queue_setup,
.rx_queue_release = eth_rx_queue_release,
.tx_queue_release = eth_tx_queue_release,
.link_update = eth_link_update,
.stats_get = eth_stats_get,
.stats_reset = eth_stats_reset,
.mac_addr_set = eth_mac_addr_set,
};
/*
* This function goes through sysfs and looks for an index of szedata2
* device file (/dev/szedataIIX, where X is the index).
*
* @return
* 0 on success
* -1 on error
*/
static int
get_szedata2_index(struct rte_eth_dev *dev, uint32_t *index)
{
DIR *dir;
struct dirent *entry;
int ret;
uint32_t tmp_index;
FILE *fd;
char pcislot_path[PATH_MAX];
struct rte_pci_addr pcislot_addr = dev->pci_dev->addr;
uint32_t domain;
uint32_t bus;
uint32_t devid;
uint32_t function;
dir = opendir("/sys/class/combo");
if (dir == NULL)
return -1;
/*
* Iterate through all combosixX directories.
* When the value in /sys/class/combo/combosixX/device/pcislot
* file is the location of the ethernet device dev, "X" is the
* index of the device.
*/
while ((entry = readdir(dir)) != NULL) {
ret = sscanf(entry->d_name, "combosix%u", &tmp_index);
if (ret != 1)
continue;
snprintf(pcislot_path, PATH_MAX,
"/sys/class/combo/combosix%u/device/pcislot",
tmp_index);
fd = fopen(pcislot_path, "r");
if (fd == NULL)
continue;
ret = fscanf(fd, "%4" PRIx16 ":%2" PRIx8 ":%2" PRIx8 ".%" PRIx8,
&domain, &bus, &devid, &function);
fclose(fd);
if (ret != 4)
continue;
if (pcislot_addr.domain == domain &&
pcislot_addr.bus == bus &&
pcislot_addr.devid == devid &&
pcislot_addr.function == function) {
*index = tmp_index;
closedir(dir);
return 0;
}
}
closedir(dir);
return -1;
}
static int
rte_szedata2_eth_dev_init(struct rte_eth_dev *dev)
{
struct rte_eth_dev_data *data = dev->data;
struct pmd_internals *internals = (struct pmd_internals *)
data->dev_private;
struct szedata *szedata_temp;
int ret;
uint32_t szedata2_index;
struct rte_pci_addr *pci_addr = &dev->pci_dev->addr;
struct rte_pci_resource *pci_rsc =
&dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER];
char rsc_filename[PATH_MAX];
void *pci_resource_ptr = NULL;
int fd;
RTE_LOG(INFO, PMD, "Initializing szedata2 device (" PCI_PRI_FMT ")\n",
pci_addr->domain, pci_addr->bus, pci_addr->devid,
pci_addr->function);
/* Get index of szedata2 device file and create path to device file */
ret = get_szedata2_index(dev, &szedata2_index);
if (ret != 0) {
RTE_LOG(ERR, PMD, "Failed to get szedata2 device index!\n");
return -ENODEV;
}
snprintf(internals->sze_dev, PATH_MAX, SZEDATA2_DEV_PATH_FMT,
szedata2_index);
RTE_LOG(INFO, PMD, "SZEDATA2 path: %s\n", internals->sze_dev);
/*
* Get number of available DMA RX and TX channels, which is maximum
* number of queues that can be created and store it in private device
* data structure.
*/
szedata_temp = szedata_open(internals->sze_dev);
if (szedata_temp == NULL) {
RTE_LOG(ERR, PMD, "szedata_open(): failed to open %s",
internals->sze_dev);
return -EINVAL;
}
internals->max_rx_queues = szedata_ifaces_available(szedata_temp,
SZE2_DIR_RX);
internals->max_tx_queues = szedata_ifaces_available(szedata_temp,
SZE2_DIR_TX);
szedata_close(szedata_temp);
RTE_LOG(INFO, PMD, "Available DMA channels RX: %u TX: %u\n",
internals->max_rx_queues, internals->max_tx_queues);
/* Set rx, tx burst functions */
if (data->dev_conf.rxmode.enable_scatter == 1 ||
data->scattered_rx == 1) {
dev->rx_pkt_burst = eth_szedata2_rx_scattered;
data->scattered_rx = 1;
} else {
dev->rx_pkt_burst = eth_szedata2_rx;
data->scattered_rx = 0;
}
dev->tx_pkt_burst = eth_szedata2_tx;
/* Set function callbacks for Ethernet API */
dev->dev_ops = &ops;
rte_eth_copy_pci_info(dev, dev->pci_dev);
/* mmap pci resource0 file to rte_pci_resource structure */
if (dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].phys_addr ==
0) {
RTE_LOG(ERR, PMD, "Missing resource%u file\n",
PCI_RESOURCE_NUMBER);
return -EINVAL;
}
snprintf(rsc_filename, PATH_MAX,
"%s/" PCI_PRI_FMT "/resource%u", pci_get_sysfs_path(),
pci_addr->domain, pci_addr->bus,
pci_addr->devid, pci_addr->function, PCI_RESOURCE_NUMBER);
fd = open(rsc_filename, O_RDWR);
if (fd < 0) {
RTE_LOG(ERR, PMD, "Could not open file %s\n", rsc_filename);
return -EINVAL;
}
pci_resource_ptr = mmap(0,
dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].len,
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
close(fd);
if (pci_resource_ptr == NULL) {
RTE_LOG(ERR, PMD, "Could not mmap file %s (fd = %d)\n",
rsc_filename, fd);
return -EINVAL;
}
dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr =
pci_resource_ptr;
RTE_LOG(DEBUG, PMD, "resource%u phys_addr = 0x%llx len = %llu "
"virt addr = %llx\n", PCI_RESOURCE_NUMBER,
(unsigned long long)pci_rsc->phys_addr,
(unsigned long long)pci_rsc->len,
(unsigned long long)pci_rsc->addr);
/* Get link state */
eth_link_update(dev, 0);
/* Allocate space for one mac address */
data->mac_addrs = rte_zmalloc(data->name, sizeof(struct ether_addr),
RTE_CACHE_LINE_SIZE);
if (data->mac_addrs == NULL) {
RTE_LOG(ERR, PMD, "Could not alloc space for MAC address!\n");
munmap(dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr,
dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].len);
return -EINVAL;
}
ether_addr_copy(&eth_addr, data->mac_addrs);
/* At initial state COMBO card is in promiscuous mode so disable it */
eth_promiscuous_disable(dev);
RTE_LOG(INFO, PMD, "szedata2 device ("
PCI_PRI_FMT ") successfully initialized\n",
pci_addr->domain, pci_addr->bus, pci_addr->devid,
pci_addr->function);
return 0;
}
static int
rte_szedata2_eth_dev_uninit(struct rte_eth_dev *dev)
{
struct rte_pci_addr *pci_addr = &dev->pci_dev->addr;
rte_free(dev->data->mac_addrs);
dev->data->mac_addrs = NULL;
munmap(dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr,
dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].len);
RTE_LOG(INFO, PMD, "szedata2 device ("
PCI_PRI_FMT ") successfully uninitialized\n",
pci_addr->domain, pci_addr->bus, pci_addr->devid,
pci_addr->function);
return 0;
}
static const struct rte_pci_id rte_szedata2_pci_id_table[] = {
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
PCI_DEVICE_ID_NETCOPE_COMBO80G)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
PCI_DEVICE_ID_NETCOPE_COMBO100G)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
PCI_DEVICE_ID_NETCOPE_COMBO100G2)
},
{
.vendor_id = 0,
}
};
static struct eth_driver szedata2_eth_driver = {
.pci_drv = {
.name = RTE_SZEDATA2_PCI_DRIVER_NAME,
.id_table = rte_szedata2_pci_id_table,
},
.eth_dev_init = rte_szedata2_eth_dev_init,
.eth_dev_uninit = rte_szedata2_eth_dev_uninit,
.dev_private_size = sizeof(struct pmd_internals),
};
static int
rte_szedata2_init(const char *name __rte_unused,
const char *args __rte_unused)
{
rte_eth_driver_register(&szedata2_eth_driver);
return 0;
}
static int
rte_szedata2_uninit(const char *name __rte_unused)
{
return 0;
}
static struct rte_driver rte_szedata2_driver = {
.type = PMD_PDEV,
.name = RTE_SZEDATA2_DRIVER_NAME,
.init = rte_szedata2_init,
.uninit = rte_szedata2_uninit,
};
PMD_REGISTER_DRIVER(rte_szedata2_driver);