26ae839d06
This patch adds LLDP and DCBX capabilities to the qede PMD. Signed-off-by: Harish Patil <harish.patil@qlogic.com> Signed-off-by: Rasesh Mody <rasesh.mody@qlogic.com> Signed-off-by: Sony Chacko <sony.chacko@qlogic.com>
3598 lines
99 KiB
C
3598 lines
99 KiB
C
/*
|
|
* Copyright (c) 2016 QLogic Corporation.
|
|
* All rights reserved.
|
|
* www.qlogic.com
|
|
*
|
|
* See LICENSE.qede_pmd for copyright and licensing details.
|
|
*/
|
|
|
|
#include "bcm_osal.h"
|
|
#include "reg_addr.h"
|
|
#include "ecore_gtt_reg_addr.h"
|
|
#include "ecore.h"
|
|
#include "ecore_chain.h"
|
|
#include "ecore_status.h"
|
|
#include "ecore_hw.h"
|
|
#include "ecore_rt_defs.h"
|
|
#include "ecore_init_ops.h"
|
|
#include "ecore_int.h"
|
|
#include "ecore_cxt.h"
|
|
#include "ecore_spq.h"
|
|
#include "ecore_init_fw_funcs.h"
|
|
#include "ecore_sp_commands.h"
|
|
#include "ecore_dev_api.h"
|
|
#include "ecore_sriov.h"
|
|
#include "ecore_vf.h"
|
|
#include "ecore_mcp.h"
|
|
#include "ecore_hw_defs.h"
|
|
#include "mcp_public.h"
|
|
#include "ecore_iro.h"
|
|
#include "nvm_cfg.h"
|
|
#include "ecore_dev_api.h"
|
|
#include "ecore_attn_values.h"
|
|
#include "ecore_dcbx.h"
|
|
|
|
/* Configurable */
|
|
#define ECORE_MIN_DPIS (4) /* The minimal number of DPIs required
|
|
* load the driver. The number was
|
|
* arbitrarily set.
|
|
*/
|
|
|
|
/* Derived */
|
|
#define ECORE_MIN_PWM_REGION ((ECORE_WID_SIZE) * (ECORE_MIN_DPIS))
|
|
|
|
enum BAR_ID {
|
|
BAR_ID_0, /* used for GRC */
|
|
BAR_ID_1 /* Used for doorbells */
|
|
};
|
|
|
|
static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn, enum BAR_ID bar_id)
|
|
{
|
|
u32 bar_reg = (bar_id == BAR_ID_0 ?
|
|
PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
|
|
u32 val = ecore_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
|
|
|
|
/* The above registers were updated in the past only in CMT mode. Since
|
|
* they were found to be useful MFW started updating them from 8.7.7.0.
|
|
* In older MFW versions they are set to 0 which means disabled.
|
|
*/
|
|
if (!val) {
|
|
if (p_hwfn->p_dev->num_hwfns > 1) {
|
|
DP_NOTICE(p_hwfn, false,
|
|
"BAR size not configured. Assuming BAR"
|
|
" size of 256kB for GRC and 512kB for DB\n");
|
|
return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
|
|
}
|
|
|
|
DP_NOTICE(p_hwfn, false,
|
|
"BAR size not configured. Assuming BAR"
|
|
" size of 512kB for GRC and 512kB for DB\n");
|
|
return 512 * 1024;
|
|
}
|
|
|
|
return 1 << (val + 15);
|
|
}
|
|
|
|
void ecore_init_dp(struct ecore_dev *p_dev,
|
|
u32 dp_module, u8 dp_level, void *dp_ctx)
|
|
{
|
|
u32 i;
|
|
|
|
p_dev->dp_level = dp_level;
|
|
p_dev->dp_module = dp_module;
|
|
p_dev->dp_ctx = dp_ctx;
|
|
for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
|
|
|
|
p_hwfn->dp_level = dp_level;
|
|
p_hwfn->dp_module = dp_module;
|
|
p_hwfn->dp_ctx = dp_ctx;
|
|
}
|
|
}
|
|
|
|
void ecore_init_struct(struct ecore_dev *p_dev)
|
|
{
|
|
u8 i;
|
|
|
|
for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
|
|
|
|
p_hwfn->p_dev = p_dev;
|
|
p_hwfn->my_id = i;
|
|
p_hwfn->b_active = false;
|
|
|
|
OSAL_MUTEX_ALLOC(p_hwfn, &p_hwfn->dmae_info.mutex);
|
|
OSAL_MUTEX_INIT(&p_hwfn->dmae_info.mutex);
|
|
}
|
|
|
|
/* hwfn 0 is always active */
|
|
p_dev->hwfns[0].b_active = true;
|
|
|
|
/* set the default cache alignment to 128 (may be overridden later) */
|
|
p_dev->cache_shift = 7;
|
|
}
|
|
|
|
static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
|
|
{
|
|
struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
|
|
|
|
OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
|
|
qm_info->qm_pq_params = OSAL_NULL;
|
|
OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
|
|
qm_info->qm_vport_params = OSAL_NULL;
|
|
OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
|
|
qm_info->qm_port_params = OSAL_NULL;
|
|
OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
|
|
qm_info->wfq_data = OSAL_NULL;
|
|
}
|
|
|
|
void ecore_resc_free(struct ecore_dev *p_dev)
|
|
{
|
|
int i;
|
|
|
|
if (IS_VF(p_dev))
|
|
return;
|
|
|
|
OSAL_FREE(p_dev, p_dev->fw_data);
|
|
p_dev->fw_data = OSAL_NULL;
|
|
|
|
OSAL_FREE(p_dev, p_dev->reset_stats);
|
|
|
|
for_each_hwfn(p_dev, i) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
|
|
|
|
OSAL_FREE(p_dev, p_hwfn->p_tx_cids);
|
|
p_hwfn->p_tx_cids = OSAL_NULL;
|
|
OSAL_FREE(p_dev, p_hwfn->p_rx_cids);
|
|
p_hwfn->p_rx_cids = OSAL_NULL;
|
|
}
|
|
|
|
for_each_hwfn(p_dev, i) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
|
|
|
|
ecore_cxt_mngr_free(p_hwfn);
|
|
ecore_qm_info_free(p_hwfn);
|
|
ecore_spq_free(p_hwfn);
|
|
ecore_eq_free(p_hwfn, p_hwfn->p_eq);
|
|
ecore_consq_free(p_hwfn, p_hwfn->p_consq);
|
|
ecore_int_free(p_hwfn);
|
|
ecore_iov_free(p_hwfn);
|
|
ecore_dmae_info_free(p_hwfn);
|
|
ecore_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
|
|
/* @@@TBD Flush work-queue ? */
|
|
}
|
|
}
|
|
|
|
static enum _ecore_status_t ecore_init_qm_info(struct ecore_hwfn *p_hwfn,
|
|
bool b_sleepable)
|
|
{
|
|
u8 num_vports, vf_offset = 0, i, vport_id, num_ports;
|
|
struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
|
|
struct init_qm_port_params *p_qm_port;
|
|
u16 num_pqs, multi_cos_tcs = 1;
|
|
#ifdef CONFIG_ECORE_SRIOV
|
|
u16 num_vfs = p_hwfn->p_dev->sriov_info.total_vfs;
|
|
#else
|
|
u16 num_vfs = 0;
|
|
#endif
|
|
|
|
OSAL_MEM_ZERO(qm_info, sizeof(*qm_info));
|
|
|
|
#ifndef ASIC_ONLY
|
|
/* @TMP - Don't allocate QM queues for VFs on emulation */
|
|
if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
|
|
DP_NOTICE(p_hwfn, false,
|
|
"Emulation - skip configuring QM queues for VFs\n");
|
|
num_vfs = 0;
|
|
}
|
|
#endif
|
|
|
|
num_pqs = multi_cos_tcs + num_vfs + 1; /* The '1' is for pure-LB */
|
|
num_vports = (u8)RESC_NUM(p_hwfn, ECORE_VPORT);
|
|
|
|
/* Sanity checking that setup requires legal number of resources */
|
|
if (num_pqs > RESC_NUM(p_hwfn, ECORE_PQ)) {
|
|
DP_ERR(p_hwfn,
|
|
"Need too many Physical queues - 0x%04x when"
|
|
" only %04x are available\n",
|
|
num_pqs, RESC_NUM(p_hwfn, ECORE_PQ));
|
|
return ECORE_INVAL;
|
|
}
|
|
|
|
/* PQs will be arranged as follows: First per-TC PQ, then pure-LB queue,
|
|
* then special queues, then per-VF PQ.
|
|
*/
|
|
qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev,
|
|
b_sleepable ? GFP_KERNEL :
|
|
GFP_ATOMIC,
|
|
sizeof(struct init_qm_pq_params) *
|
|
num_pqs);
|
|
if (!qm_info->qm_pq_params)
|
|
goto alloc_err;
|
|
|
|
qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev,
|
|
b_sleepable ? GFP_KERNEL :
|
|
GFP_ATOMIC,
|
|
sizeof(struct
|
|
init_qm_vport_params) *
|
|
num_vports);
|
|
if (!qm_info->qm_vport_params)
|
|
goto alloc_err;
|
|
|
|
qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev,
|
|
b_sleepable ? GFP_KERNEL :
|
|
GFP_ATOMIC,
|
|
sizeof(struct init_qm_port_params)
|
|
* MAX_NUM_PORTS);
|
|
if (!qm_info->qm_port_params)
|
|
goto alloc_err;
|
|
|
|
qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev,
|
|
b_sleepable ? GFP_KERNEL :
|
|
GFP_ATOMIC,
|
|
sizeof(struct ecore_wfq_data) *
|
|
num_vports);
|
|
|
|
if (!qm_info->wfq_data)
|
|
goto alloc_err;
|
|
|
|
vport_id = (u8)RESC_START(p_hwfn, ECORE_VPORT);
|
|
|
|
/* First init per-TC PQs */
|
|
for (i = 0; i < multi_cos_tcs; i++) {
|
|
struct init_qm_pq_params *params = &qm_info->qm_pq_params[i];
|
|
|
|
if (p_hwfn->hw_info.personality == ECORE_PCI_ETH) {
|
|
params->vport_id = vport_id;
|
|
params->tc_id = p_hwfn->hw_info.non_offload_tc;
|
|
params->wrr_group = 1; /* @@@TBD ECORE_WRR_MEDIUM */
|
|
} else {
|
|
params->vport_id = vport_id;
|
|
params->tc_id = p_hwfn->hw_info.offload_tc;
|
|
params->wrr_group = 1; /* @@@TBD ECORE_WRR_MEDIUM */
|
|
}
|
|
}
|
|
|
|
/* Then init pure-LB PQ */
|
|
qm_info->pure_lb_pq = i;
|
|
qm_info->qm_pq_params[i].vport_id =
|
|
(u8)RESC_START(p_hwfn, ECORE_VPORT);
|
|
qm_info->qm_pq_params[i].tc_id = PURE_LB_TC;
|
|
qm_info->qm_pq_params[i].wrr_group = 1;
|
|
i++;
|
|
|
|
/* Then init per-VF PQs */
|
|
vf_offset = i;
|
|
for (i = 0; i < num_vfs; i++) {
|
|
/* First vport is used by the PF */
|
|
qm_info->qm_pq_params[vf_offset + i].vport_id = vport_id +
|
|
i + 1;
|
|
qm_info->qm_pq_params[vf_offset + i].tc_id =
|
|
p_hwfn->hw_info.non_offload_tc;
|
|
qm_info->qm_pq_params[vf_offset + i].wrr_group = 1;
|
|
};
|
|
|
|
qm_info->vf_queues_offset = vf_offset;
|
|
qm_info->num_pqs = num_pqs;
|
|
qm_info->num_vports = num_vports;
|
|
|
|
/* Initialize qm port parameters */
|
|
num_ports = p_hwfn->p_dev->num_ports_in_engines;
|
|
for (i = 0; i < num_ports; i++) {
|
|
p_qm_port = &qm_info->qm_port_params[i];
|
|
p_qm_port->active = 1;
|
|
/* @@@TMP - was NUM_OF_PHYS_TCS; Changed until dcbx will
|
|
* be in place
|
|
*/
|
|
if (num_ports == 4)
|
|
p_qm_port->num_active_phys_tcs = 2;
|
|
else
|
|
p_qm_port->num_active_phys_tcs = 5;
|
|
p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
|
|
p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
|
|
}
|
|
|
|
if (ECORE_IS_AH(p_hwfn->p_dev) && (num_ports == 4))
|
|
qm_info->max_phys_tcs_per_port = NUM_PHYS_TCS_4PORT_K2;
|
|
else
|
|
qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
|
|
|
|
qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
|
|
|
|
qm_info->num_vf_pqs = num_vfs;
|
|
qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
|
|
|
|
for (i = 0; i < qm_info->num_vports; i++)
|
|
qm_info->qm_vport_params[i].vport_wfq = 1;
|
|
|
|
qm_info->pf_wfq = 0;
|
|
qm_info->pf_rl = 0;
|
|
qm_info->vport_rl_en = 1;
|
|
qm_info->vport_wfq_en = 1;
|
|
|
|
return ECORE_SUCCESS;
|
|
|
|
alloc_err:
|
|
DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
|
|
ecore_qm_info_free(p_hwfn);
|
|
return ECORE_NOMEM;
|
|
}
|
|
|
|
/* This function reconfigures the QM pf on the fly.
|
|
* For this purpose we:
|
|
* 1. reconfigure the QM database
|
|
* 2. set new values to runtime arrat
|
|
* 3. send an sdm_qm_cmd through the rbc interface to stop the QM
|
|
* 4. activate init tool in QM_PF stage
|
|
* 5. send an sdm_qm_cmd through rbc interface to release the QM
|
|
*/
|
|
enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt)
|
|
{
|
|
struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
|
|
enum _ecore_status_t rc;
|
|
bool b_rc;
|
|
|
|
/* qm_info is allocated in ecore_init_qm_info() which is already called
|
|
* from ecore_resc_alloc() or previous call of ecore_qm_reconf().
|
|
* The allocated size may change each init, so we free it before next
|
|
* allocation.
|
|
*/
|
|
ecore_qm_info_free(p_hwfn);
|
|
|
|
/* initialize ecore's qm data structure */
|
|
rc = ecore_init_qm_info(p_hwfn, false);
|
|
if (rc != ECORE_SUCCESS)
|
|
return rc;
|
|
|
|
/* stop PF's qm queues */
|
|
b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
|
|
qm_info->start_pq, qm_info->num_pqs);
|
|
if (!b_rc)
|
|
return ECORE_INVAL;
|
|
|
|
/* clear the QM_PF runtime phase leftovers from previous init */
|
|
ecore_init_clear_rt_data(p_hwfn);
|
|
|
|
/* prepare QM portion of runtime array */
|
|
ecore_qm_init_pf(p_hwfn);
|
|
|
|
/* activate init tool on runtime array */
|
|
rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
|
|
p_hwfn->hw_info.hw_mode);
|
|
if (rc != ECORE_SUCCESS)
|
|
return rc;
|
|
|
|
/* start PF's qm queues */
|
|
b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
|
|
qm_info->start_pq, qm_info->num_pqs);
|
|
if (!rc)
|
|
return ECORE_INVAL;
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
|
|
{
|
|
enum _ecore_status_t rc = ECORE_SUCCESS;
|
|
struct ecore_consq *p_consq;
|
|
struct ecore_eq *p_eq;
|
|
int i;
|
|
|
|
if (IS_VF(p_dev))
|
|
return rc;
|
|
|
|
p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
|
|
sizeof(struct ecore_fw_data));
|
|
if (!p_dev->fw_data)
|
|
return ECORE_NOMEM;
|
|
|
|
/* Allocate Memory for the Queue->CID mapping */
|
|
for_each_hwfn(p_dev, i) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
|
|
|
|
/* @@@TMP - resc management, change to actual required size */
|
|
int tx_size = sizeof(struct ecore_hw_cid_data) *
|
|
RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
|
|
int rx_size = sizeof(struct ecore_hw_cid_data) *
|
|
RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
|
|
|
|
p_hwfn->p_tx_cids = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
|
|
tx_size);
|
|
if (!p_hwfn->p_tx_cids) {
|
|
DP_NOTICE(p_hwfn, true,
|
|
"Failed to allocate memory for Tx Cids\n");
|
|
goto alloc_no_mem;
|
|
}
|
|
|
|
p_hwfn->p_rx_cids = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
|
|
rx_size);
|
|
if (!p_hwfn->p_rx_cids) {
|
|
DP_NOTICE(p_hwfn, true,
|
|
"Failed to allocate memory for Rx Cids\n");
|
|
goto alloc_no_mem;
|
|
}
|
|
}
|
|
|
|
for_each_hwfn(p_dev, i) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
|
|
|
|
/* First allocate the context manager structure */
|
|
rc = ecore_cxt_mngr_alloc(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
/* Set the HW cid/tid numbers (in the contest manager)
|
|
* Must be done prior to any further computations.
|
|
*/
|
|
rc = ecore_cxt_set_pf_params(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
/* Prepare and process QM requirements */
|
|
rc = ecore_init_qm_info(p_hwfn, true);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
/* Compute the ILT client partition */
|
|
rc = ecore_cxt_cfg_ilt_compute(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
/* CID map / ILT shadow table / T2
|
|
* The talbes sizes are determined by the computations above
|
|
*/
|
|
rc = ecore_cxt_tables_alloc(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
/* SPQ, must follow ILT because initializes SPQ context */
|
|
rc = ecore_spq_alloc(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
/* SP status block allocation */
|
|
p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
|
|
RESERVED_PTT_DPC);
|
|
|
|
rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
rc = ecore_iov_alloc(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
/* EQ */
|
|
p_eq = ecore_eq_alloc(p_hwfn, 256);
|
|
if (!p_eq)
|
|
goto alloc_no_mem;
|
|
p_hwfn->p_eq = p_eq;
|
|
|
|
p_consq = ecore_consq_alloc(p_hwfn);
|
|
if (!p_consq)
|
|
goto alloc_no_mem;
|
|
p_hwfn->p_consq = p_consq;
|
|
|
|
/* DMA info initialization */
|
|
rc = ecore_dmae_info_alloc(p_hwfn);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn, true,
|
|
"Failed to allocate memory for"
|
|
" dmae_info structure\n");
|
|
goto alloc_err;
|
|
}
|
|
|
|
/* DCBX initialization */
|
|
rc = ecore_dcbx_info_alloc(p_hwfn);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn, true,
|
|
"Failed to allocate memory for dcbxstruct\n");
|
|
goto alloc_err;
|
|
}
|
|
}
|
|
|
|
p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
|
|
sizeof(struct ecore_eth_stats));
|
|
if (!p_dev->reset_stats) {
|
|
DP_NOTICE(p_dev, true, "Failed to allocate reset statistics\n");
|
|
goto alloc_no_mem;
|
|
}
|
|
|
|
return ECORE_SUCCESS;
|
|
|
|
alloc_no_mem:
|
|
rc = ECORE_NOMEM;
|
|
alloc_err:
|
|
ecore_resc_free(p_dev);
|
|
return rc;
|
|
}
|
|
|
|
void ecore_resc_setup(struct ecore_dev *p_dev)
|
|
{
|
|
int i;
|
|
|
|
if (IS_VF(p_dev))
|
|
return;
|
|
|
|
for_each_hwfn(p_dev, i) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
|
|
|
|
ecore_cxt_mngr_setup(p_hwfn);
|
|
ecore_spq_setup(p_hwfn);
|
|
ecore_eq_setup(p_hwfn, p_hwfn->p_eq);
|
|
ecore_consq_setup(p_hwfn, p_hwfn->p_consq);
|
|
|
|
/* Read shadow of current MFW mailbox */
|
|
ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
|
|
OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
|
|
p_hwfn->mcp_info->mfw_mb_cur,
|
|
p_hwfn->mcp_info->mfw_mb_length);
|
|
|
|
ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
|
|
|
|
ecore_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
|
|
}
|
|
}
|
|
|
|
#define FINAL_CLEANUP_POLL_CNT (100)
|
|
#define FINAL_CLEANUP_POLL_TIME (10)
|
|
enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
u16 id, bool is_vf)
|
|
{
|
|
u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
|
|
enum _ecore_status_t rc = ECORE_TIMEOUT;
|
|
|
|
#ifndef ASIC_ONLY
|
|
if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
|
|
CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
|
|
DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
|
|
return ECORE_SUCCESS;
|
|
}
|
|
#endif
|
|
|
|
addr = GTT_BAR0_MAP_REG_USDM_RAM +
|
|
USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
|
|
|
|
if (is_vf)
|
|
id += 0x10;
|
|
|
|
command |= X_FINAL_CLEANUP_AGG_INT <<
|
|
SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
|
|
command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
|
|
command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
|
|
command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
|
|
|
|
/* Make sure notification is not set before initiating final cleanup */
|
|
if (REG_RD(p_hwfn, addr)) {
|
|
DP_NOTICE(p_hwfn, false,
|
|
"Unexpected; Found final cleanup notification "
|
|
"before initiating final cleanup\n");
|
|
REG_WR(p_hwfn, addr, 0);
|
|
}
|
|
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
|
|
"Sending final cleanup for PFVF[%d] [Command %08x\n]",
|
|
id, OSAL_CPU_TO_LE32(command));
|
|
|
|
ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN,
|
|
OSAL_CPU_TO_LE32(command));
|
|
|
|
/* Poll until completion */
|
|
while (!REG_RD(p_hwfn, addr) && count--)
|
|
OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
|
|
|
|
if (REG_RD(p_hwfn, addr))
|
|
rc = ECORE_SUCCESS;
|
|
else
|
|
DP_NOTICE(p_hwfn, true,
|
|
"Failed to receive FW final cleanup notification\n");
|
|
|
|
/* Cleanup afterwards */
|
|
REG_WR(p_hwfn, addr, 0);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
|
|
{
|
|
int hw_mode = 0;
|
|
|
|
switch (ECORE_GET_TYPE(p_hwfn->p_dev)) {
|
|
case CHIP_BB_A0:
|
|
hw_mode |= 1 << MODE_BB_A0;
|
|
break;
|
|
case CHIP_BB_B0:
|
|
hw_mode |= 1 << MODE_BB_B0;
|
|
break;
|
|
case CHIP_K2:
|
|
hw_mode |= 1 << MODE_K2;
|
|
break;
|
|
default:
|
|
DP_NOTICE(p_hwfn, true, "Can't initialize chip ID %d\n",
|
|
ECORE_GET_TYPE(p_hwfn->p_dev));
|
|
return;
|
|
}
|
|
|
|
/* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE */
|
|
switch (p_hwfn->p_dev->num_ports_in_engines) {
|
|
case 1:
|
|
hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
|
|
break;
|
|
case 2:
|
|
hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
|
|
break;
|
|
case 4:
|
|
hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
|
|
break;
|
|
default:
|
|
DP_NOTICE(p_hwfn, true,
|
|
"num_ports_in_engine = %d not supported\n",
|
|
p_hwfn->p_dev->num_ports_in_engines);
|
|
return;
|
|
}
|
|
|
|
switch (p_hwfn->p_dev->mf_mode) {
|
|
case ECORE_MF_DEFAULT:
|
|
case ECORE_MF_NPAR:
|
|
hw_mode |= 1 << MODE_MF_SI;
|
|
break;
|
|
case ECORE_MF_OVLAN:
|
|
hw_mode |= 1 << MODE_MF_SD;
|
|
break;
|
|
default:
|
|
DP_NOTICE(p_hwfn, true,
|
|
"Unsupported MF mode, init as DEFAULT\n");
|
|
hw_mode |= 1 << MODE_MF_SI;
|
|
}
|
|
|
|
#ifndef ASIC_ONLY
|
|
if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
|
|
if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
|
|
hw_mode |= 1 << MODE_FPGA;
|
|
} else {
|
|
if (p_hwfn->p_dev->b_is_emul_full)
|
|
hw_mode |= 1 << MODE_EMUL_FULL;
|
|
else
|
|
hw_mode |= 1 << MODE_EMUL_REDUCED;
|
|
}
|
|
} else
|
|
#endif
|
|
hw_mode |= 1 << MODE_ASIC;
|
|
|
|
if (ENABLE_EAGLE_ENG1_WORKAROUND(p_hwfn))
|
|
hw_mode |= 1 << MODE_EAGLE_ENG1_WORKAROUND;
|
|
|
|
if (p_hwfn->p_dev->num_hwfns > 1)
|
|
hw_mode |= 1 << MODE_100G;
|
|
|
|
p_hwfn->hw_info.hw_mode = hw_mode;
|
|
|
|
DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
|
|
"Configuring function for hw_mode: 0x%08x\n",
|
|
p_hwfn->hw_info.hw_mode);
|
|
}
|
|
|
|
#ifndef ASIC_ONLY
|
|
/* MFW-replacement initializations for non-ASIC */
|
|
static void ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt)
|
|
{
|
|
u32 pl_hv = 1;
|
|
int i;
|
|
|
|
if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev))
|
|
pl_hv |= 0x600;
|
|
|
|
ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
|
|
|
|
if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev))
|
|
ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2, 0x3ffffff);
|
|
|
|
/* initialize interrupt masks */
|
|
for (i = 0;
|
|
i <
|
|
attn_blocks[BLOCK_MISCS].chip_regs[ECORE_GET_TYPE(p_hwfn->p_dev)].
|
|
num_of_int_regs; i++)
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
attn_blocks[BLOCK_MISCS].
|
|
chip_regs[ECORE_GET_TYPE(p_hwfn->p_dev)].int_regs[i]->
|
|
mask_addr, 0);
|
|
|
|
if (!CHIP_REV_IS_EMUL(p_hwfn->p_dev) || !ECORE_IS_AH(p_hwfn->p_dev))
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
attn_blocks[BLOCK_CNIG].
|
|
chip_regs[ECORE_GET_TYPE(p_hwfn->p_dev)].int_regs[0]->
|
|
mask_addr, 0);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
attn_blocks[BLOCK_PGLCS].
|
|
chip_regs[ECORE_GET_TYPE(p_hwfn->p_dev)].int_regs[0]->
|
|
mask_addr, 0);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
attn_blocks[BLOCK_CPMU].
|
|
chip_regs[ECORE_GET_TYPE(p_hwfn->p_dev)].int_regs[0]->
|
|
mask_addr, 0);
|
|
/* Currently A0 and B0 interrupt bits are the same in pglue_b;
|
|
* If this changes, need to set this according to chip type. <14/09/23>
|
|
*/
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
attn_blocks[BLOCK_PGLUE_B].
|
|
chip_regs[ECORE_GET_TYPE(p_hwfn->p_dev)].int_regs[0]->
|
|
mask_addr, 0x80000);
|
|
|
|
/* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
|
|
/* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
|
|
if (!CHIP_REV_IS_EMUL(p_hwfn->p_dev) || !ECORE_IS_AH(p_hwfn->p_dev))
|
|
ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB_B0, 4);
|
|
|
|
if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
|
|
/* 2 for 4-port, 1 for 2-port, 0 for 1-port */
|
|
ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
|
|
(p_hwfn->p_dev->num_ports_in_engines >> 1));
|
|
|
|
ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
|
|
p_hwfn->p_dev->num_ports_in_engines == 4 ? 0 : 3);
|
|
}
|
|
|
|
/* Poll on RBC */
|
|
ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
|
|
for (i = 0; i < 100; i++) {
|
|
OSAL_UDELAY(50);
|
|
if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
|
|
break;
|
|
}
|
|
if (i == 100)
|
|
DP_NOTICE(p_hwfn, true,
|
|
"RBC done failed to complete in PSWRQ2\n");
|
|
}
|
|
#endif
|
|
|
|
/* Init run time data for all PFs and their VFs on an engine.
|
|
* TBD - for VFs - Once we have parent PF info for each VF in
|
|
* shmem available as CAU requires knowledge of parent PF for each VF.
|
|
*/
|
|
static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
|
|
{
|
|
u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
|
|
int i, sb_id;
|
|
|
|
for_each_hwfn(p_dev, i) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
|
|
struct ecore_igu_info *p_igu_info;
|
|
struct ecore_igu_block *p_block;
|
|
struct cau_sb_entry sb_entry;
|
|
|
|
p_igu_info = p_hwfn->hw_info.p_igu_info;
|
|
|
|
for (sb_id = 0; sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
|
|
sb_id++) {
|
|
p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
|
|
|
|
if (!p_block->is_pf)
|
|
continue;
|
|
|
|
ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
|
|
p_block->function_id, 0, 0);
|
|
STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2, sb_entry);
|
|
}
|
|
}
|
|
}
|
|
|
|
static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
int hw_mode)
|
|
{
|
|
struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
|
|
enum _ecore_status_t rc = ECORE_SUCCESS;
|
|
struct ecore_dev *p_dev = p_hwfn->p_dev;
|
|
u8 vf_id, max_num_vfs;
|
|
u16 num_pfs, pf_id;
|
|
u32 concrete_fid;
|
|
|
|
ecore_init_cau_rt_data(p_dev);
|
|
|
|
/* Program GTT windows */
|
|
ecore_gtt_init(p_hwfn);
|
|
|
|
#ifndef ASIC_ONLY
|
|
if (CHIP_REV_IS_EMUL(p_hwfn->p_dev))
|
|
ecore_hw_init_chip(p_hwfn, p_hwfn->p_main_ptt);
|
|
#endif
|
|
|
|
if (p_hwfn->mcp_info) {
|
|
if (p_hwfn->mcp_info->func_info.bandwidth_max)
|
|
qm_info->pf_rl_en = 1;
|
|
if (p_hwfn->mcp_info->func_info.bandwidth_min)
|
|
qm_info->pf_wfq_en = 1;
|
|
}
|
|
|
|
ecore_qm_common_rt_init(p_hwfn,
|
|
p_hwfn->p_dev->num_ports_in_engines,
|
|
qm_info->max_phys_tcs_per_port,
|
|
qm_info->pf_rl_en, qm_info->pf_wfq_en,
|
|
qm_info->vport_rl_en, qm_info->vport_wfq_en,
|
|
qm_info->qm_port_params);
|
|
|
|
ecore_cxt_hw_init_common(p_hwfn);
|
|
|
|
/* Close gate from NIG to BRB/Storm; By default they are open, but
|
|
* we close them to prevent NIG from passing data to reset blocks.
|
|
* Should have been done in the ENGINE phase, but init-tool lacks
|
|
* proper port-pretend capabilities.
|
|
*/
|
|
ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
|
|
ecore_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
|
|
ecore_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
|
|
ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
|
|
ecore_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
|
|
ecore_port_unpretend(p_hwfn, p_ptt);
|
|
|
|
rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
|
|
if (rc != ECORE_SUCCESS)
|
|
return rc;
|
|
|
|
/* @@TBD MichalK - should add VALIDATE_VFID to init tool...
|
|
* need to decide with which value, maybe runtime
|
|
*/
|
|
ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
|
|
ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
|
|
|
|
if (ECORE_IS_BB(p_hwfn->p_dev)) {
|
|
num_pfs = NUM_OF_ENG_PFS(p_hwfn->p_dev);
|
|
if (num_pfs == 1)
|
|
return rc;
|
|
/* pretend to original PF */
|
|
ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
|
|
}
|
|
|
|
/* Workaround for avoiding CCFC execution error when getting packets
|
|
* with CRC errors, and allowing instead the invoking of the FW error
|
|
* handler.
|
|
* This is not done inside the init tool since it currently can't
|
|
* perform a pretending to VFs.
|
|
*/
|
|
max_num_vfs = ECORE_IS_AH(p_hwfn->p_dev) ? MAX_NUM_VFS_K2
|
|
: MAX_NUM_VFS_BB;
|
|
for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
|
|
concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
|
|
ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
|
|
ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
|
|
}
|
|
/* pretend to original PF */
|
|
ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
|
|
|
|
return rc;
|
|
}
|
|
|
|
#ifndef ASIC_ONLY
|
|
#define MISC_REG_RESET_REG_2_XMAC_BIT (1 << 4)
|
|
#define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1 << 5)
|
|
|
|
#define PMEG_IF_BYTE_COUNT 8
|
|
|
|
static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
u32 addr, u64 data, u8 reg_type, u8 port)
|
|
{
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
|
|
"CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
|
|
ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0) |
|
|
(8 << PMEG_IF_BYTE_COUNT),
|
|
(reg_type << 25) | (addr << 8) | port,
|
|
(u32)((data >> 32) & 0xffffffff),
|
|
(u32)(data & 0xffffffff));
|
|
|
|
ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0,
|
|
(ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0) &
|
|
0xffff00fe) | (8 << PMEG_IF_BYTE_COUNT));
|
|
ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB_B0,
|
|
(reg_type << 25) | (addr << 8) | port);
|
|
ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB_B0,
|
|
data & 0xffffffff);
|
|
ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB_B0,
|
|
(data >> 32) & 0xffffffff);
|
|
}
|
|
|
|
#define XLPORT_MODE_REG (0x20a)
|
|
#define XLPORT_MAC_CONTROL (0x210)
|
|
#define XLPORT_FLOW_CONTROL_CONFIG (0x207)
|
|
#define XLPORT_ENABLE_REG (0x20b)
|
|
|
|
#define XLMAC_CTRL (0x600)
|
|
#define XLMAC_MODE (0x601)
|
|
#define XLMAC_RX_MAX_SIZE (0x608)
|
|
#define XLMAC_TX_CTRL (0x604)
|
|
#define XLMAC_PAUSE_CTRL (0x60d)
|
|
#define XLMAC_PFC_CTRL (0x60e)
|
|
|
|
static void ecore_emul_link_init_ah(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt)
|
|
{
|
|
u8 port = p_hwfn->port_id;
|
|
u32 mac_base = NWM_REG_MAC0 + (port << 2) * NWM_REG_MAC0_SIZE;
|
|
|
|
ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2 + (port << 2),
|
|
(1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_SHIFT) |
|
|
(port << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_SHIFT)
|
|
| (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_SHIFT));
|
|
|
|
ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE,
|
|
1 << ETH_MAC_REG_XIF_MODE_XGMII_SHIFT);
|
|
|
|
ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH,
|
|
9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_SHIFT);
|
|
|
|
ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH,
|
|
0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_SHIFT);
|
|
|
|
ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS,
|
|
8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_SHIFT);
|
|
|
|
ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS,
|
|
(0xA << ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_SHIFT) |
|
|
(8 << ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_SHIFT));
|
|
|
|
ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG, 0xa853);
|
|
}
|
|
|
|
static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt)
|
|
{
|
|
u8 loopback = 0, port = p_hwfn->port_id * 2;
|
|
|
|
DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
|
|
|
|
if (ECORE_IS_AH(p_hwfn->p_dev)) {
|
|
ecore_emul_link_init_ah(p_hwfn, p_ptt);
|
|
return;
|
|
}
|
|
|
|
ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG, (0x4 << 4) | 0x4, 1,
|
|
port);
|
|
ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
|
|
ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x40, 0, port);
|
|
ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE, 0x40, 0, port);
|
|
ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE, 0x3fff, 0, port);
|
|
ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
|
|
0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
|
|
0, port);
|
|
ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL, 0x7c000, 0, port);
|
|
ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
|
|
0x30ffffc000ULL, 0, port);
|
|
ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2), 0,
|
|
port);
|
|
ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x1003 | (loopback << 2),
|
|
0, port);
|
|
ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG, 1, 0, port);
|
|
ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG, 0xf, 1, port);
|
|
}
|
|
|
|
static void ecore_link_init(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt, u8 port)
|
|
{
|
|
int port_offset = port ? 0x800 : 0;
|
|
u32 xmac_rxctrl = 0;
|
|
|
|
/* Reset of XMAC */
|
|
/* FIXME: move to common start */
|
|
ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
|
|
MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */
|
|
OSAL_MSLEEP(1);
|
|
ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
|
|
MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */
|
|
|
|
ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE, 1);
|
|
|
|
/* Set the number of ports on the Warp Core to 10G */
|
|
ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE, 3);
|
|
|
|
/* Soft reset of XMAC */
|
|
ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
|
|
MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
|
|
OSAL_MSLEEP(1);
|
|
ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
|
|
MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
|
|
|
|
/* FIXME: move to common end */
|
|
if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
|
|
ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE + port_offset, 0x20);
|
|
|
|
/* Set Max packet size: initialize XMAC block register for port 0 */
|
|
ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE + port_offset, 0x2710);
|
|
|
|
/* CRC append for Tx packets: init XMAC block register for port 1 */
|
|
ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO + port_offset, 0xC800);
|
|
|
|
/* Enable TX and RX: initialize XMAC block register for port 1 */
|
|
ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL + port_offset,
|
|
XMAC_REG_CTRL_TX_EN | XMAC_REG_CTRL_RX_EN);
|
|
xmac_rxctrl = ecore_rd(p_hwfn, p_ptt, XMAC_REG_RX_CTRL + port_offset);
|
|
xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE;
|
|
ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL + port_offset, xmac_rxctrl);
|
|
}
|
|
#endif
|
|
|
|
static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
int hw_mode)
|
|
{
|
|
enum _ecore_status_t rc = ECORE_SUCCESS;
|
|
|
|
/* Init sequence */
|
|
rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
|
|
hw_mode);
|
|
if (rc != ECORE_SUCCESS)
|
|
return rc;
|
|
|
|
#ifndef ASIC_ONLY
|
|
if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
|
|
return ECORE_SUCCESS;
|
|
|
|
if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
|
|
if (ECORE_IS_AH(p_hwfn->p_dev))
|
|
return ECORE_SUCCESS;
|
|
ecore_link_init(p_hwfn, p_ptt, p_hwfn->port_id);
|
|
} else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
|
|
if (p_hwfn->p_dev->num_hwfns > 1) {
|
|
/* Activate OPTE in CMT */
|
|
u32 val;
|
|
|
|
val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
|
|
val |= 0x10;
|
|
ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
|
|
ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
|
|
ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
|
|
ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
|
|
0x55555555);
|
|
}
|
|
|
|
ecore_emul_link_init(p_hwfn, p_ptt);
|
|
} else {
|
|
DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
|
|
}
|
|
#endif
|
|
|
|
return rc;
|
|
}
|
|
|
|
static enum _ecore_status_t
|
|
ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt)
|
|
{
|
|
u32 pwm_regsize, norm_regsize;
|
|
u32 non_pwm_conn, min_addr_reg1;
|
|
u32 db_bar_size, n_cpus;
|
|
u32 pf_dems_shift;
|
|
int rc = ECORE_SUCCESS;
|
|
|
|
db_bar_size = ecore_hw_bar_size(p_hwfn, BAR_ID_1);
|
|
if (p_hwfn->p_dev->num_hwfns > 1)
|
|
db_bar_size /= 2;
|
|
|
|
/* Calculate doorbell regions
|
|
* -----------------------------------
|
|
* The doorbell BAR is made of two regions. The first is called normal
|
|
* region and the second is called PWM region. In the normal region
|
|
* each ICID has its own set of addresses so that writing to that
|
|
* specific address identifies the ICID. In the Process Window Mode
|
|
* region the ICID is given in the data written to the doorbell. The
|
|
* above per PF register denotes the offset in the doorbell BAR in which
|
|
* the PWM region begins.
|
|
* The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
|
|
* non-PWM connection. The calculation below computes the total non-PWM
|
|
* connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
|
|
* in units of 4,096 bytes.
|
|
*/
|
|
non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
|
|
ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
|
|
OSAL_NULL) +
|
|
ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, OSAL_NULL);
|
|
norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, 4096);
|
|
min_addr_reg1 = norm_regsize / 4096;
|
|
pwm_regsize = db_bar_size - norm_regsize;
|
|
|
|
/* Check that the normal and PWM sizes are valid */
|
|
if (db_bar_size < norm_regsize) {
|
|
DP_ERR(p_hwfn->p_dev,
|
|
"Doorbell BAR size 0x%x is too"
|
|
" small (normal region is 0x%0x )\n",
|
|
db_bar_size, norm_regsize);
|
|
return ECORE_NORESOURCES;
|
|
}
|
|
if (pwm_regsize < ECORE_MIN_PWM_REGION) {
|
|
DP_ERR(p_hwfn->p_dev,
|
|
"PWM region size 0x%0x is too small."
|
|
" Should be at least 0x%0x (Doorbell BAR size"
|
|
" is 0x%x and normal region size is 0x%0x)\n",
|
|
pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
|
|
norm_regsize);
|
|
return ECORE_NORESOURCES;
|
|
}
|
|
|
|
/* Update hwfn */
|
|
p_hwfn->dpi_start_offset = norm_regsize; /* this is later used to
|
|
* calculate the doorbell
|
|
* address
|
|
*/
|
|
|
|
/* Update registers */
|
|
/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
|
|
pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
|
|
ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
|
|
ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
|
|
|
|
DP_INFO(p_hwfn,
|
|
"Doorbell size 0x%x, Normal region 0x%x, PWM region 0x%x\n",
|
|
db_bar_size, norm_regsize, pwm_regsize);
|
|
DP_INFO(p_hwfn, "DPI size 0x%x, DPI count 0x%x\n", p_hwfn->dpi_size,
|
|
p_hwfn->dpi_count);
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
static enum _ecore_status_t
|
|
ecore_hw_init_pf(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
struct ecore_tunn_start_params *p_tunn,
|
|
int hw_mode,
|
|
bool b_hw_start,
|
|
enum ecore_int_mode int_mode, bool allow_npar_tx_switch)
|
|
{
|
|
enum _ecore_status_t rc = ECORE_SUCCESS;
|
|
u8 rel_pf_id = p_hwfn->rel_pf_id;
|
|
u32 prs_reg;
|
|
u16 ctrl;
|
|
int pos;
|
|
|
|
/* ILT/DQ/CM/QM */
|
|
if (p_hwfn->mcp_info) {
|
|
struct ecore_mcp_function_info *p_info;
|
|
|
|
p_info = &p_hwfn->mcp_info->func_info;
|
|
if (p_info->bandwidth_min)
|
|
p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
|
|
|
|
/* Update rate limit once we'll actually have a link */
|
|
p_hwfn->qm_info.pf_rl = 100;
|
|
}
|
|
ecore_cxt_hw_init_pf(p_hwfn);
|
|
|
|
ecore_int_igu_init_rt(p_hwfn); /* @@@TBD TODO MichalS multi hwfn ?? */
|
|
|
|
/* Set VLAN in NIG if needed */
|
|
if (hw_mode & (1 << MODE_MF_SD)) {
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
|
|
STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
|
|
STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
|
|
p_hwfn->hw_info.ovlan);
|
|
}
|
|
|
|
/* Enable classification by MAC if needed */
|
|
if (hw_mode & (1 << MODE_MF_SI)) {
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
|
|
"Configuring TAGMAC_CLS_TYPE\n");
|
|
STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET,
|
|
1);
|
|
}
|
|
|
|
/* Protocl Configuration - @@@TBD - should we set 0 otherwise? */
|
|
STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET, 0);
|
|
|
|
/* perform debug configuration when chip is out of reset */
|
|
OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
|
|
|
|
/* Cleanup chip from previous driver if such remains exist */
|
|
rc = ecore_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
|
|
if (rc != ECORE_SUCCESS) {
|
|
ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_RAMROD_FAIL);
|
|
return rc;
|
|
}
|
|
|
|
/* PF Init sequence */
|
|
rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
|
|
rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Pure runtime initializations - directly to the HW */
|
|
ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
|
|
|
|
/* PCI relaxed ordering causes a decrease in the performance on some
|
|
* systems. Till a root cause is found, disable this attribute in the
|
|
* PCI config space.
|
|
*/
|
|
/* Not in use @DPDK
|
|
* pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
|
|
* if (!pos) {
|
|
* DP_NOTICE(p_hwfn, true,
|
|
* "Failed to find the PCI Express"
|
|
* " Capability structure in the PCI config space\n");
|
|
* return ECORE_IO;
|
|
* }
|
|
* OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL,
|
|
* &ctrl);
|
|
* ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
|
|
* OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL,
|
|
* &ctrl);
|
|
*/
|
|
|
|
#ifndef ASIC_ONLY
|
|
/*@@TMP - On B0 build 1, need to mask the datapath_registers parity */
|
|
if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev) &&
|
|
(p_hwfn->p_dev->chip_metal == 1)) {
|
|
u32 reg_addr, tmp;
|
|
|
|
reg_addr =
|
|
attn_blocks[BLOCK_PGLUE_B].
|
|
chip_regs[ECORE_GET_TYPE(p_hwfn->p_dev)].prty_regs[0]->
|
|
mask_addr;
|
|
DP_NOTICE(p_hwfn, false,
|
|
"Masking datapath registers parity on"
|
|
" B0 emulation [build 1]\n");
|
|
tmp = ecore_rd(p_hwfn, p_ptt, reg_addr);
|
|
tmp |= (1 << 0); /* Was PRTY_MASK_DATAPATH_REGISTERS */
|
|
ecore_wr(p_hwfn, p_ptt, reg_addr, tmp);
|
|
}
|
|
#endif
|
|
|
|
rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (b_hw_start) {
|
|
/* enable interrupts */
|
|
ecore_int_igu_enable(p_hwfn, p_ptt, int_mode);
|
|
|
|
/* send function start command */
|
|
rc = ecore_sp_pf_start(p_hwfn, p_tunn, p_hwfn->p_dev->mf_mode,
|
|
allow_npar_tx_switch);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn, true,
|
|
"Function start ramrod failed\n");
|
|
} else {
|
|
prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
|
|
"PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
|
|
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
|
|
"PRS_REG_SEARCH register after start PFn\n");
|
|
prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
|
|
"PRS_REG_SEARCH_TCP: %x\n", prs_reg);
|
|
prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
|
|
"PRS_REG_SEARCH_UDP: %x\n", prs_reg);
|
|
prs_reg = ecore_rd(p_hwfn, p_ptt,
|
|
PRS_REG_SEARCH_TCP_FIRST_FRAG);
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
|
|
"PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
|
|
prs_reg);
|
|
prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
|
|
"PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static enum _ecore_status_t
|
|
ecore_change_pci_hwfn(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt, u8 enable)
|
|
{
|
|
u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
|
|
|
|
/* Change PF in PXP */
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
|
|
|
|
/* wait until value is set - try for 1 second every 50us */
|
|
for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
|
|
val = ecore_rd(p_hwfn, p_ptt,
|
|
PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
|
|
if (val == set_val)
|
|
break;
|
|
|
|
OSAL_UDELAY(50);
|
|
}
|
|
|
|
if (val != set_val) {
|
|
DP_NOTICE(p_hwfn, true,
|
|
"PFID_ENABLE_MASTER wasn't changed after a second\n");
|
|
return ECORE_UNKNOWN_ERROR;
|
|
}
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_main_ptt)
|
|
{
|
|
/* Read shadow of current MFW mailbox */
|
|
ecore_mcp_read_mb(p_hwfn, p_main_ptt);
|
|
OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
|
|
p_hwfn->mcp_info->mfw_mb_cur,
|
|
p_hwfn->mcp_info->mfw_mb_length);
|
|
}
|
|
|
|
enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
|
|
struct ecore_tunn_start_params *p_tunn,
|
|
bool b_hw_start,
|
|
enum ecore_int_mode int_mode,
|
|
bool allow_npar_tx_switch,
|
|
const u8 *bin_fw_data)
|
|
{
|
|
enum _ecore_status_t rc, mfw_rc;
|
|
u32 load_code, param;
|
|
int i, j;
|
|
|
|
if (IS_PF(p_dev)) {
|
|
rc = ecore_init_fw_data(p_dev, bin_fw_data);
|
|
if (rc != ECORE_SUCCESS)
|
|
return rc;
|
|
}
|
|
|
|
for_each_hwfn(p_dev, i) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
|
|
|
|
if (IS_VF(p_dev)) {
|
|
rc = ecore_vf_pf_init(p_hwfn);
|
|
if (rc)
|
|
return rc;
|
|
continue;
|
|
}
|
|
|
|
/* Enable DMAE in PXP */
|
|
rc = ecore_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
|
|
|
|
ecore_calc_hw_mode(p_hwfn);
|
|
/* @@@TBD need to add here:
|
|
* Check for fan failure
|
|
* Prev_unload
|
|
*/
|
|
rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, &load_code);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn, true,
|
|
"Failed sending LOAD_REQ command\n");
|
|
return rc;
|
|
}
|
|
|
|
/* CQ75580:
|
|
* When coming back from hiberbate state, the registers from
|
|
* which shadow is read initially are not initialized. It turns
|
|
* out that these registers get initialized during the call to
|
|
* ecore_mcp_load_req request. So we need to reread them here
|
|
* to get the proper shadow register value.
|
|
* Note: This is a workaround for the missinginig MFW
|
|
* initialization. It may be removed once the implementation
|
|
* is done.
|
|
*/
|
|
ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
|
|
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
|
|
"Load request was sent.Resp:0x%x, Load code: 0x%x\n",
|
|
rc, load_code);
|
|
|
|
/* Only relevant for recovery:
|
|
* Clear the indication after the LOAD_REQ command is responded
|
|
* by the MFW.
|
|
*/
|
|
p_dev->recov_in_prog = false;
|
|
|
|
p_hwfn->first_on_engine = (load_code ==
|
|
FW_MSG_CODE_DRV_LOAD_ENGINE);
|
|
|
|
switch (load_code) {
|
|
case FW_MSG_CODE_DRV_LOAD_ENGINE:
|
|
rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
|
|
p_hwfn->hw_info.hw_mode);
|
|
if (rc)
|
|
break;
|
|
/* Fall into */
|
|
case FW_MSG_CODE_DRV_LOAD_PORT:
|
|
rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
|
|
p_hwfn->hw_info.hw_mode);
|
|
if (rc)
|
|
break;
|
|
|
|
if (ENABLE_EAGLE_ENG1_WORKAROUND(p_hwfn)) {
|
|
struct init_nig_pri_tc_map_req tc_map;
|
|
|
|
OSAL_MEM_ZERO(&tc_map, sizeof(tc_map));
|
|
|
|
/* remove this once flow control is
|
|
* implemented
|
|
*/
|
|
for (j = 0; j < NUM_OF_VLAN_PRIORITIES; j++) {
|
|
tc_map.pri[j].tc_id = 0;
|
|
tc_map.pri[j].valid = 1;
|
|
}
|
|
ecore_init_nig_pri_tc_map(p_hwfn,
|
|
p_hwfn->p_main_ptt,
|
|
&tc_map);
|
|
}
|
|
/* fallthrough */
|
|
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
|
|
rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
|
|
p_tunn, p_hwfn->hw_info.hw_mode,
|
|
b_hw_start, int_mode,
|
|
allow_npar_tx_switch);
|
|
break;
|
|
default:
|
|
rc = ECORE_NOTIMPL;
|
|
break;
|
|
}
|
|
|
|
if (rc != ECORE_SUCCESS)
|
|
DP_NOTICE(p_hwfn, true,
|
|
"init phase failed loadcode 0x%x (rc %d)\n",
|
|
load_code, rc);
|
|
|
|
/* ACK mfw regardless of success or failure of initialization */
|
|
mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
|
|
DRV_MSG_CODE_LOAD_DONE,
|
|
0, &load_code, ¶m);
|
|
if (rc != ECORE_SUCCESS)
|
|
return rc;
|
|
if (mfw_rc != ECORE_SUCCESS) {
|
|
DP_NOTICE(p_hwfn, true,
|
|
"Failed sending LOAD_DONE command\n");
|
|
return mfw_rc;
|
|
}
|
|
|
|
/* send DCBX attention request command */
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
|
|
"sending phony dcbx set command to trigger DCBx"
|
|
" attention handling\n");
|
|
mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
|
|
DRV_MSG_CODE_SET_DCBX,
|
|
1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
|
|
&load_code, ¶m);
|
|
if (mfw_rc != ECORE_SUCCESS) {
|
|
DP_NOTICE(p_hwfn, true,
|
|
"Failed to send DCBX attention request\n");
|
|
return mfw_rc;
|
|
}
|
|
|
|
p_hwfn->hw_init_done = true;
|
|
}
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
#define ECORE_HW_STOP_RETRY_LIMIT (10)
|
|
static OSAL_INLINE void ecore_hw_timers_stop(struct ecore_dev *p_dev,
|
|
struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt)
|
|
{
|
|
int i;
|
|
|
|
/* close timers */
|
|
ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
|
|
ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
|
|
for (i = 0; i < ECORE_HW_STOP_RETRY_LIMIT &&
|
|
!p_dev->recov_in_prog; i++) {
|
|
if ((!ecore_rd(p_hwfn, p_ptt,
|
|
TM_REG_PF_SCAN_ACTIVE_CONN)) &&
|
|
(!ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
|
|
break;
|
|
|
|
/* Dependent on number of connection/tasks, possibly
|
|
* 1ms sleep is required between polls
|
|
*/
|
|
OSAL_MSLEEP(1);
|
|
}
|
|
if (i == ECORE_HW_STOP_RETRY_LIMIT)
|
|
DP_NOTICE(p_hwfn, true,
|
|
"Timers linear scans are not over"
|
|
" [Connection %02x Tasks %02x]\n",
|
|
(u8)ecore_rd(p_hwfn, p_ptt,
|
|
TM_REG_PF_SCAN_ACTIVE_CONN),
|
|
(u8)ecore_rd(p_hwfn, p_ptt,
|
|
TM_REG_PF_SCAN_ACTIVE_TASK));
|
|
}
|
|
|
|
void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
|
|
{
|
|
int j;
|
|
|
|
for_each_hwfn(p_dev, j) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
|
|
struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
|
|
|
|
ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
|
|
}
|
|
}
|
|
|
|
enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
|
|
{
|
|
enum _ecore_status_t rc = ECORE_SUCCESS, t_rc;
|
|
int j;
|
|
|
|
for_each_hwfn(p_dev, j) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
|
|
struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
|
|
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
|
|
|
|
if (IS_VF(p_dev)) {
|
|
ecore_vf_pf_int_cleanup(p_hwfn);
|
|
continue;
|
|
}
|
|
|
|
/* mark the hw as uninitialized... */
|
|
p_hwfn->hw_init_done = false;
|
|
|
|
rc = ecore_sp_pf_stop(p_hwfn);
|
|
if (rc)
|
|
DP_NOTICE(p_hwfn, true,
|
|
"Failed to close PF against FW. Continue to"
|
|
" stop HW to prevent illegal host access"
|
|
" by the device\n");
|
|
|
|
/* perform debug action after PF stop was sent */
|
|
OSAL_AFTER_PF_STOP((void *)p_hwfn->p_dev, p_hwfn->my_id);
|
|
|
|
/* close NIG to BRB gate */
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
|
|
|
|
/* close parser */
|
|
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
|
|
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
|
|
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
|
|
|
|
/* @@@TBD - clean transmission queues (5.b) */
|
|
/* @@@TBD - clean BTB (5.c) */
|
|
|
|
ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
|
|
|
|
/* @@@TBD - verify DMAE requests are done (8) */
|
|
|
|
/* Disable Attention Generation */
|
|
ecore_int_igu_disable_int(p_hwfn, p_ptt);
|
|
ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
|
|
ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
|
|
ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
|
|
/* Need to wait 1ms to guarantee SBs are cleared */
|
|
OSAL_MSLEEP(1);
|
|
}
|
|
|
|
if (IS_PF(p_dev)) {
|
|
/* Disable DMAE in PXP - in CMT, this should only be done for
|
|
* first hw-function, and only after all transactions have
|
|
* stopped for all active hw-functions.
|
|
*/
|
|
t_rc = ecore_change_pci_hwfn(&p_dev->hwfns[0],
|
|
p_dev->hwfns[0].p_main_ptt, false);
|
|
if (t_rc != ECORE_SUCCESS)
|
|
rc = t_rc;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
void ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
|
|
{
|
|
int j;
|
|
|
|
for_each_hwfn(p_dev, j) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
|
|
struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
|
|
|
|
if (IS_VF(p_dev)) {
|
|
ecore_vf_pf_int_cleanup(p_hwfn);
|
|
continue;
|
|
}
|
|
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
|
|
"Shutting down the fastpath\n");
|
|
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
|
|
|
|
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
|
|
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
|
|
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
|
|
|
|
/* @@@TBD - clean transmission queues (5.b) */
|
|
/* @@@TBD - clean BTB (5.c) */
|
|
|
|
/* @@@TBD - verify DMAE requests are done (8) */
|
|
|
|
ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
|
|
/* Need to wait 1ms to guarantee SBs are cleared */
|
|
OSAL_MSLEEP(1);
|
|
}
|
|
}
|
|
|
|
void ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
|
|
{
|
|
struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
|
|
|
|
if (IS_VF(p_hwfn->p_dev))
|
|
return;
|
|
|
|
/* Re-open incoming traffic */
|
|
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
|
|
}
|
|
|
|
static enum _ecore_status_t ecore_reg_assert(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt, u32 reg,
|
|
bool expected)
|
|
{
|
|
u32 assert_val = ecore_rd(p_hwfn, p_ptt, reg);
|
|
|
|
if (assert_val != expected) {
|
|
DP_NOTICE(p_hwfn, true, "Value at address 0x%08x != 0x%08x\n",
|
|
reg, expected);
|
|
return ECORE_UNKNOWN_ERROR;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
enum _ecore_status_t ecore_hw_reset(struct ecore_dev *p_dev)
|
|
{
|
|
enum _ecore_status_t rc = ECORE_SUCCESS;
|
|
u32 unload_resp, unload_param;
|
|
int i;
|
|
|
|
for_each_hwfn(p_dev, i) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
|
|
|
|
if (IS_VF(p_dev)) {
|
|
rc = ecore_vf_pf_reset(p_hwfn);
|
|
if (rc)
|
|
return rc;
|
|
continue;
|
|
}
|
|
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Resetting hw/fw\n");
|
|
|
|
/* Check for incorrect states */
|
|
if (!p_dev->recov_in_prog) {
|
|
ecore_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
|
|
QM_REG_USG_CNT_PF_TX, 0);
|
|
ecore_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
|
|
QM_REG_USG_CNT_PF_OTHER, 0);
|
|
/* @@@TBD - assert on incorrect xCFC values (10.b) */
|
|
}
|
|
|
|
/* Disable PF in HW blocks */
|
|
ecore_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
|
|
ecore_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
|
|
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
TCFC_REG_STRONG_ENABLE_PF, 0);
|
|
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
CCFC_REG_STRONG_ENABLE_PF, 0);
|
|
|
|
if (p_dev->recov_in_prog) {
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
|
|
"Recovery is in progress -> skip "
|
|
"sending unload_req/done\n");
|
|
break;
|
|
}
|
|
|
|
/* Send unload command to MCP */
|
|
rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
|
|
DRV_MSG_CODE_UNLOAD_REQ,
|
|
DRV_MB_PARAM_UNLOAD_WOL_MCP,
|
|
&unload_resp, &unload_param);
|
|
if (rc != ECORE_SUCCESS) {
|
|
DP_NOTICE(p_hwfn, true,
|
|
"ecore_hw_reset: UNLOAD_REQ failed\n");
|
|
/* @@TBD - what to do? for now, assume ENG. */
|
|
unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
|
|
}
|
|
|
|
rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
|
|
DRV_MSG_CODE_UNLOAD_DONE,
|
|
0, &unload_resp, &unload_param);
|
|
if (rc != ECORE_SUCCESS) {
|
|
DP_NOTICE(p_hwfn,
|
|
true, "ecore_hw_reset: UNLOAD_DONE failed\n");
|
|
/* @@@TBD - Should it really ASSERT here ? */
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Free hwfn memory and resources acquired in hw_hwfn_prepare */
|
|
static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
|
|
{
|
|
ecore_ptt_pool_free(p_hwfn);
|
|
OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
|
|
}
|
|
|
|
/* Setup bar access */
|
|
static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
|
|
{
|
|
/* clear indirect access */
|
|
ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_88_F0, 0);
|
|
ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
|
|
ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_90_F0, 0);
|
|
ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_94_F0, 0);
|
|
|
|
/* Clean Previous errors if such exist */
|
|
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id);
|
|
|
|
/* enable internal target-read */
|
|
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
|
|
}
|
|
|
|
static void get_function_id(struct ecore_hwfn *p_hwfn)
|
|
{
|
|
/* ME Register */
|
|
p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn,
|
|
PXP_PF_ME_OPAQUE_ADDR);
|
|
|
|
p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
|
|
|
|
/* Bits 16-19 from the ME registers are the pf_num */
|
|
/* @@ @TBD - check, may be wrong after B0 implementation for CMT */
|
|
p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
|
|
p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
|
|
PXP_CONCRETE_FID_PFID);
|
|
p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
|
|
PXP_CONCRETE_FID_PORT);
|
|
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
|
|
"Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
|
|
p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
|
|
}
|
|
|
|
static void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
|
|
{
|
|
u32 *feat_num = p_hwfn->hw_info.feat_num;
|
|
int num_features = 1;
|
|
|
|
/* L2 Queues require each: 1 status block. 1 L2 queue */
|
|
feat_num[ECORE_PF_L2_QUE] =
|
|
OSAL_MIN_T(u32,
|
|
RESC_NUM(p_hwfn, ECORE_SB) / num_features,
|
|
RESC_NUM(p_hwfn, ECORE_L2_QUEUE));
|
|
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
|
|
"#PF_L2_QUEUES=%d #SBS=%d num_features=%d\n",
|
|
feat_num[ECORE_PF_L2_QUE],
|
|
RESC_NUM(p_hwfn, ECORE_SB), num_features);
|
|
}
|
|
|
|
/* @@@TBD MK RESC: This info is currently hard code and set as if we were MF
|
|
* need to read it from shmem...
|
|
*/
|
|
static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn)
|
|
{
|
|
u32 *resc_start = p_hwfn->hw_info.resc_start;
|
|
u8 num_funcs = p_hwfn->num_funcs_on_engine;
|
|
u32 *resc_num = p_hwfn->hw_info.resc_num;
|
|
int i, max_vf_vlan_filters;
|
|
struct ecore_sb_cnt_info sb_cnt_info;
|
|
bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
|
|
|
|
OSAL_MEM_ZERO(&sb_cnt_info, sizeof(sb_cnt_info));
|
|
|
|
#ifdef CONFIG_ECORE_SRIOV
|
|
max_vf_vlan_filters = ECORE_ETH_MAX_VF_NUM_VLAN_FILTERS;
|
|
#else
|
|
max_vf_vlan_filters = 0;
|
|
#endif
|
|
|
|
ecore_int_get_num_sbs(p_hwfn, &sb_cnt_info);
|
|
resc_num[ECORE_SB] = OSAL_MIN_T(u32,
|
|
(MAX_SB_PER_PATH_BB / num_funcs),
|
|
sb_cnt_info.sb_cnt);
|
|
|
|
resc_num[ECORE_L2_QUEUE] = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
|
|
MAX_NUM_L2_QUEUES_BB) / num_funcs;
|
|
resc_num[ECORE_VPORT] = (b_ah ? MAX_NUM_VPORTS_K2 :
|
|
MAX_NUM_VPORTS_BB) / num_funcs;
|
|
resc_num[ECORE_RSS_ENG] = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
|
|
ETH_RSS_ENGINE_NUM_BB) / num_funcs;
|
|
resc_num[ECORE_PQ] = (b_ah ? MAX_QM_TX_QUEUES_K2 :
|
|
MAX_QM_TX_QUEUES_BB) / num_funcs;
|
|
resc_num[ECORE_RL] = 8;
|
|
resc_num[ECORE_MAC] = ETH_NUM_MAC_FILTERS / num_funcs;
|
|
resc_num[ECORE_VLAN] = (ETH_NUM_VLAN_FILTERS -
|
|
max_vf_vlan_filters +
|
|
1 /*For vlan0 */) / num_funcs;
|
|
|
|
/* TODO - there will be a problem in AH - there are only 11k lines */
|
|
resc_num[ECORE_ILT] = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
|
|
PXP_NUM_ILT_RECORDS_BB) / num_funcs;
|
|
|
|
#ifndef ASIC_ONLY
|
|
if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
|
|
/* Reduced build contains less PQs */
|
|
if (!(p_hwfn->p_dev->b_is_emul_full))
|
|
resc_num[ECORE_PQ] = 32;
|
|
|
|
/* For AH emulation, since we have a possible maximal number of
|
|
* 16 enabled PFs, in case there are not enough ILT lines -
|
|
* allocate only first PF as RoCE and have all the other ETH
|
|
* only with less ILT lines.
|
|
*/
|
|
if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
|
|
resc_num[ECORE_ILT] = resc_num[ECORE_ILT];
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < ECORE_MAX_RESC; i++)
|
|
resc_start[i] = resc_num[i] * p_hwfn->rel_pf_id;
|
|
|
|
#ifndef ASIC_ONLY
|
|
/* Correct the common ILT calculation if PF0 has more */
|
|
if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
|
|
p_hwfn->p_dev->b_is_emul_full &&
|
|
p_hwfn->rel_pf_id && resc_num[ECORE_ILT])
|
|
resc_start[ECORE_ILT] += resc_num[ECORE_ILT];
|
|
#endif
|
|
|
|
/* Sanity for ILT */
|
|
if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
|
|
(!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
|
|
DP_NOTICE(p_hwfn, true,
|
|
"Can't assign ILT pages [%08x,...,%08x]\n",
|
|
RESC_START(p_hwfn, ECORE_ILT), RESC_END(p_hwfn,
|
|
ECORE_ILT) -
|
|
1);
|
|
return ECORE_INVAL;
|
|
}
|
|
|
|
ecore_hw_set_feat(p_hwfn);
|
|
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
|
|
"The numbers for each resource are:\n"
|
|
"SB = %d start = %d\n"
|
|
"L2_QUEUE = %d start = %d\n"
|
|
"VPORT = %d start = %d\n"
|
|
"PQ = %d start = %d\n"
|
|
"RL = %d start = %d\n"
|
|
"MAC = %d start = %d\n"
|
|
"VLAN = %d start = %d\n"
|
|
"ILT = %d start = %d\n"
|
|
"CMDQS_CQS = %d start = %d\n",
|
|
RESC_NUM(p_hwfn, ECORE_SB), RESC_START(p_hwfn, ECORE_SB),
|
|
RESC_NUM(p_hwfn, ECORE_L2_QUEUE),
|
|
RESC_START(p_hwfn, ECORE_L2_QUEUE),
|
|
RESC_NUM(p_hwfn, ECORE_VPORT),
|
|
RESC_START(p_hwfn, ECORE_VPORT),
|
|
RESC_NUM(p_hwfn, ECORE_PQ), RESC_START(p_hwfn, ECORE_PQ),
|
|
RESC_NUM(p_hwfn, ECORE_RL), RESC_START(p_hwfn, ECORE_RL),
|
|
RESC_NUM(p_hwfn, ECORE_MAC), RESC_START(p_hwfn, ECORE_MAC),
|
|
RESC_NUM(p_hwfn, ECORE_VLAN),
|
|
RESC_START(p_hwfn, ECORE_VLAN),
|
|
RESC_NUM(p_hwfn, ECORE_ILT), RESC_START(p_hwfn, ECORE_ILT),
|
|
RESC_NUM(p_hwfn, ECORE_CMDQS_CQS),
|
|
RESC_START(p_hwfn, ECORE_CMDQS_CQS));
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
static enum _ecore_status_t ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt)
|
|
{
|
|
u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
|
|
u32 port_cfg_addr, link_temp, device_capabilities;
|
|
struct ecore_mcp_link_params *link;
|
|
|
|
/* Read global nvm_cfg address */
|
|
u32 nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
|
|
|
|
/* Verify MCP has initialized it */
|
|
if (nvm_cfg_addr == 0) {
|
|
DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
|
|
return ECORE_INVAL;
|
|
}
|
|
|
|
/* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */
|
|
nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
|
|
|
|
addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
|
|
OFFSETOF(struct nvm_cfg1, glob) + OFFSETOF(struct nvm_cfg1_glob,
|
|
core_cfg);
|
|
|
|
core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
|
|
|
|
switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
|
|
NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_2X40G:
|
|
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_2X50G:
|
|
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_1X100G:
|
|
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_4X10G_F:
|
|
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_4X10G_E:
|
|
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_4X20G:
|
|
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_1X40G:
|
|
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_2X25G:
|
|
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_1X25G:
|
|
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
|
|
break;
|
|
default:
|
|
DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
|
|
core_cfg);
|
|
break;
|
|
}
|
|
|
|
/* Read default link configuration */
|
|
link = &p_hwfn->mcp_info->link_input;
|
|
port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
|
|
OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
|
|
link_temp = ecore_rd(p_hwfn, p_ptt,
|
|
port_cfg_addr +
|
|
OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
|
|
link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
|
|
link->speed.advertised_speeds = link_temp;
|
|
|
|
link_temp = link->speed.advertised_speeds;
|
|
p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
|
|
|
|
link_temp = ecore_rd(p_hwfn, p_ptt,
|
|
port_cfg_addr +
|
|
OFFSETOF(struct nvm_cfg1_port, link_settings));
|
|
switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
|
|
NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
|
|
case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
|
|
link->speed.autoneg = true;
|
|
break;
|
|
case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
|
|
link->speed.forced_speed = 1000;
|
|
break;
|
|
case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
|
|
link->speed.forced_speed = 10000;
|
|
break;
|
|
case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
|
|
link->speed.forced_speed = 25000;
|
|
break;
|
|
case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
|
|
link->speed.forced_speed = 40000;
|
|
break;
|
|
case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
|
|
link->speed.forced_speed = 50000;
|
|
break;
|
|
case NVM_CFG1_PORT_DRV_LINK_SPEED_100G:
|
|
link->speed.forced_speed = 100000;
|
|
break;
|
|
default:
|
|
DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n", link_temp);
|
|
}
|
|
|
|
link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
|
|
link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
|
|
link->pause.autoneg = !!(link_temp &
|
|
NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
|
|
link->pause.forced_rx = !!(link_temp &
|
|
NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
|
|
link->pause.forced_tx = !!(link_temp &
|
|
NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
|
|
link->loopback_mode = 0;
|
|
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
|
|
"Read default link: Speed 0x%08x, Adv. Speed 0x%08x,"
|
|
" AN: 0x%02x, PAUSE AN: 0x%02x\n",
|
|
link->speed.forced_speed, link->speed.advertised_speeds,
|
|
link->speed.autoneg, link->pause.autoneg);
|
|
|
|
/* Read Multi-function information from shmem */
|
|
addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
|
|
OFFSETOF(struct nvm_cfg1, glob) +
|
|
OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
|
|
|
|
generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
|
|
|
|
mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
|
|
NVM_CFG1_GLOB_MF_MODE_OFFSET;
|
|
|
|
switch (mf_mode) {
|
|
case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
|
|
p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
|
|
break;
|
|
case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
|
|
p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
|
|
break;
|
|
case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
|
|
p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
|
|
break;
|
|
}
|
|
DP_INFO(p_hwfn, "Multi function mode is %08x\n",
|
|
p_hwfn->p_dev->mf_mode);
|
|
|
|
/* Read Multi-function information from shmem */
|
|
addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
|
|
OFFSETOF(struct nvm_cfg1, glob) +
|
|
OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
|
|
|
|
device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
|
|
if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
|
|
OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
|
|
&p_hwfn->hw_info.device_capabilities);
|
|
|
|
return ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
|
|
}
|
|
|
|
static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt)
|
|
{
|
|
u8 num_funcs;
|
|
u32 tmp, mask;
|
|
|
|
num_funcs = ECORE_IS_AH(p_hwfn->p_dev) ? MAX_NUM_PFS_K2
|
|
: MAX_NUM_PFS_BB;
|
|
|
|
/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
|
|
* in the other bits are selected.
|
|
* Bits 1-15 are for functions 1-15, respectively, and their value is
|
|
* '0' only for enabled functions (function 0 always exists and
|
|
* enabled).
|
|
* In case of CMT, only the "even" functions are enabled, and thus the
|
|
* number of functions for both hwfns is learnt from the same bits.
|
|
*/
|
|
|
|
tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
|
|
if (tmp & 0x1) {
|
|
if (ECORE_PATH_ID(p_hwfn) && p_hwfn->p_dev->num_hwfns == 1) {
|
|
num_funcs = 0;
|
|
mask = 0xaaaa;
|
|
} else {
|
|
num_funcs = 1;
|
|
mask = 0x5554;
|
|
}
|
|
|
|
tmp = (tmp ^ 0xffffffff) & mask;
|
|
while (tmp) {
|
|
if (tmp & 0x1)
|
|
num_funcs++;
|
|
tmp >>= 0x1;
|
|
}
|
|
}
|
|
|
|
p_hwfn->num_funcs_on_engine = num_funcs;
|
|
|
|
#ifndef ASIC_ONLY
|
|
if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
|
|
DP_NOTICE(p_hwfn, false,
|
|
"FPGA: Limit number of PFs to 4 [would affect"
|
|
" resource allocation, needed for IOV]\n");
|
|
p_hwfn->num_funcs_on_engine = 4;
|
|
}
|
|
#endif
|
|
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "num_funcs_on_engine = %d\n",
|
|
p_hwfn->num_funcs_on_engine);
|
|
}
|
|
|
|
static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt)
|
|
{
|
|
u32 port_mode;
|
|
|
|
#ifndef ASIC_ONLY
|
|
/* Read the port mode */
|
|
if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
|
|
port_mode = 4;
|
|
else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) &&
|
|
(p_hwfn->p_dev->num_hwfns > 1))
|
|
/* In CMT on emulation, assume 1 port */
|
|
port_mode = 1;
|
|
else
|
|
#endif
|
|
port_mode = ecore_rd(p_hwfn, p_ptt,
|
|
CNIG_REG_NW_PORT_MODE_BB_B0);
|
|
|
|
if (port_mode < 3) {
|
|
p_hwfn->p_dev->num_ports_in_engines = 1;
|
|
} else if (port_mode <= 5) {
|
|
p_hwfn->p_dev->num_ports_in_engines = 2;
|
|
} else {
|
|
DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
|
|
p_hwfn->p_dev->num_ports_in_engines);
|
|
|
|
/* Default num_ports_in_engines to something */
|
|
p_hwfn->p_dev->num_ports_in_engines = 1;
|
|
}
|
|
}
|
|
|
|
static void ecore_hw_info_port_num_ah(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt)
|
|
{
|
|
u32 port;
|
|
int i;
|
|
|
|
p_hwfn->p_dev->num_ports_in_engines = 0;
|
|
|
|
for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
|
|
port = ecore_rd(p_hwfn, p_ptt,
|
|
CNIG_REG_NIG_PORT0_CONF_K2 + (i * 4));
|
|
if (port & 1)
|
|
p_hwfn->p_dev->num_ports_in_engines++;
|
|
}
|
|
}
|
|
|
|
static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt)
|
|
{
|
|
if (ECORE_IS_BB(p_hwfn->p_dev))
|
|
ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
|
|
else
|
|
ecore_hw_info_port_num_ah(p_hwfn, p_ptt);
|
|
}
|
|
|
|
static enum _ecore_status_t
|
|
ecore_get_hw_info(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
enum ecore_pci_personality personality)
|
|
{
|
|
enum _ecore_status_t rc;
|
|
|
|
rc = ecore_iov_hw_info(p_hwfn, p_hwfn->p_main_ptt);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* TODO In get_hw_info, amoungst others:
|
|
* Get MCP FW revision and determine according to it the supported
|
|
* featrues (e.g. DCB)
|
|
* Get boot mode
|
|
* ecore_get_pcie_width_speed, WOL capability.
|
|
* Number of global CQ-s (for storage
|
|
*/
|
|
ecore_hw_info_port_num(p_hwfn, p_ptt);
|
|
|
|
#ifndef ASIC_ONLY
|
|
if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
|
|
#endif
|
|
ecore_hw_get_nvm_info(p_hwfn, p_ptt);
|
|
|
|
rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
|
|
if (rc)
|
|
return rc;
|
|
|
|
#ifndef ASIC_ONLY
|
|
if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
|
|
#endif
|
|
OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
|
|
p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
|
|
#ifndef ASIC_ONLY
|
|
} else {
|
|
static u8 mcp_hw_mac[6] = { 0, 2, 3, 4, 5, 6 };
|
|
|
|
OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
|
|
p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
|
|
}
|
|
#endif
|
|
|
|
if (ecore_mcp_is_init(p_hwfn)) {
|
|
if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
|
|
p_hwfn->hw_info.ovlan =
|
|
p_hwfn->mcp_info->func_info.ovlan;
|
|
|
|
ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
|
|
}
|
|
|
|
if (personality != ECORE_PCI_DEFAULT)
|
|
p_hwfn->hw_info.personality = personality;
|
|
else if (ecore_mcp_is_init(p_hwfn))
|
|
p_hwfn->hw_info.personality =
|
|
p_hwfn->mcp_info->func_info.protocol;
|
|
|
|
#ifndef ASIC_ONLY
|
|
/* To overcome ILT lack for emulation, until at least until we'll have
|
|
* a definite answer from system about it, allow only PF0 to be RoCE.
|
|
*/
|
|
if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev))
|
|
p_hwfn->hw_info.personality = ECORE_PCI_ETH;
|
|
#endif
|
|
|
|
ecore_get_num_funcs(p_hwfn, p_ptt);
|
|
|
|
/* Feat num is dependent on personality and on the number of functions
|
|
* on the engine. Therefore it should be come after personality
|
|
* initialization and after getting the number of functions.
|
|
*/
|
|
return ecore_hw_get_resc(p_hwfn);
|
|
}
|
|
|
|
/* @TMP - this should move to a proper .h */
|
|
#define CHIP_NUM_AH 0x8070
|
|
|
|
static enum _ecore_status_t ecore_get_dev_info(struct ecore_dev *p_dev)
|
|
{
|
|
struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
|
|
u32 tmp;
|
|
|
|
/* Read Vendor Id / Device Id */
|
|
OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
|
|
&p_dev->vendor_id);
|
|
OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
|
|
&p_dev->device_id);
|
|
|
|
p_dev->chip_num = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
|
|
MISCS_REG_CHIP_NUM);
|
|
p_dev->chip_rev = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
|
|
MISCS_REG_CHIP_REV);
|
|
|
|
MASK_FIELD(CHIP_REV, p_dev->chip_rev);
|
|
|
|
/* Determine type */
|
|
if (p_dev->device_id == CHIP_NUM_AH)
|
|
p_dev->type = ECORE_DEV_TYPE_AH;
|
|
else
|
|
p_dev->type = ECORE_DEV_TYPE_BB;
|
|
|
|
/* Learn number of HW-functions */
|
|
tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
|
|
MISCS_REG_CMT_ENABLED_FOR_PAIR);
|
|
|
|
if (tmp & (1 << p_hwfn->rel_pf_id)) {
|
|
DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
|
|
p_dev->num_hwfns = 2;
|
|
} else {
|
|
p_dev->num_hwfns = 1;
|
|
}
|
|
|
|
#ifndef ASIC_ONLY
|
|
if (CHIP_REV_IS_EMUL(p_dev)) {
|
|
/* For some reason we have problems with this register
|
|
* in B0 emulation; Simply assume no CMT
|
|
*/
|
|
DP_NOTICE(p_dev->hwfns, false,
|
|
"device on emul - assume no CMT\n");
|
|
p_dev->num_hwfns = 1;
|
|
}
|
|
#endif
|
|
|
|
p_dev->chip_bond_id = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
|
|
MISCS_REG_CHIP_TEST_REG) >> 4;
|
|
MASK_FIELD(CHIP_BOND_ID, p_dev->chip_bond_id);
|
|
p_dev->chip_metal = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
|
|
MISCS_REG_CHIP_METAL);
|
|
MASK_FIELD(CHIP_METAL, p_dev->chip_metal);
|
|
DP_INFO(p_dev->hwfns,
|
|
"Chip details - %s%d, Num: %04x Rev: %04x Bond id: %04x"
|
|
" Metal: %04x\n",
|
|
ECORE_IS_BB(p_dev) ? "BB" : "AH",
|
|
CHIP_REV_IS_A0(p_dev) ? 0 : 1,
|
|
p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
|
|
p_dev->chip_metal);
|
|
|
|
if (ECORE_IS_BB(p_dev) && CHIP_REV_IS_A0(p_dev)) {
|
|
DP_NOTICE(p_dev->hwfns, false,
|
|
"The chip type/rev (BB A0) is not supported!\n");
|
|
return ECORE_ABORTED;
|
|
}
|
|
#ifndef ASIC_ONLY
|
|
if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
|
|
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
|
|
|
|
if (CHIP_REV_IS_EMUL(p_dev)) {
|
|
tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
|
|
MISCS_REG_ECO_RESERVED);
|
|
if (tmp & (1 << 29)) {
|
|
DP_NOTICE(p_hwfn, false,
|
|
"Emulation: Running on a FULL build\n");
|
|
p_dev->b_is_emul_full = true;
|
|
} else {
|
|
DP_NOTICE(p_hwfn, false,
|
|
"Emulation: Running on a REDUCED build\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
void ecore_prepare_hibernate(struct ecore_dev *p_dev)
|
|
{
|
|
int j;
|
|
|
|
if (IS_VF(p_dev))
|
|
return;
|
|
|
|
for_each_hwfn(p_dev, j) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
|
|
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
|
|
"Mark hw/fw uninitialized\n");
|
|
|
|
p_hwfn->hw_init_done = false;
|
|
p_hwfn->first_on_engine = false;
|
|
}
|
|
}
|
|
|
|
static enum _ecore_status_t
|
|
ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn,
|
|
void OSAL_IOMEM *p_regview,
|
|
void OSAL_IOMEM *p_doorbells,
|
|
enum ecore_pci_personality personality)
|
|
{
|
|
enum _ecore_status_t rc = ECORE_SUCCESS;
|
|
|
|
/* Split PCI bars evenly between hwfns */
|
|
p_hwfn->regview = p_regview;
|
|
p_hwfn->doorbells = p_doorbells;
|
|
|
|
/* Validate that chip access is feasible */
|
|
if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
|
|
DP_ERR(p_hwfn,
|
|
"Reading the ME register returns all Fs;"
|
|
" Preventing further chip access\n");
|
|
return ECORE_INVAL;
|
|
}
|
|
|
|
get_function_id(p_hwfn);
|
|
|
|
/* Allocate PTT pool */
|
|
rc = ecore_ptt_pool_alloc(p_hwfn);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn, true, "Failed to prepare hwfn's hw\n");
|
|
goto err0;
|
|
}
|
|
|
|
/* Allocate the main PTT */
|
|
p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
|
|
|
|
/* First hwfn learns basic information, e.g., number of hwfns */
|
|
if (!p_hwfn->my_id) {
|
|
rc = ecore_get_dev_info(p_hwfn->p_dev);
|
|
if (rc != ECORE_SUCCESS)
|
|
goto err1;
|
|
}
|
|
|
|
ecore_hw_hwfn_prepare(p_hwfn);
|
|
|
|
/* Initialize MCP structure */
|
|
rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn, true, "Failed initializing mcp command\n");
|
|
goto err1;
|
|
}
|
|
|
|
/* Read the device configuration information from the HW and SHMEM */
|
|
rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn, true, "Failed to get HW information\n");
|
|
goto err2;
|
|
}
|
|
|
|
/* Allocate the init RT array and initialize the init-ops engine */
|
|
rc = ecore_init_alloc(p_hwfn);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn, true, "Failed to allocate the init array\n");
|
|
goto err2;
|
|
}
|
|
#ifndef ASIC_ONLY
|
|
if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
|
|
DP_NOTICE(p_hwfn, false,
|
|
"FPGA: workaround; Prevent DMAE parities\n");
|
|
ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK, 7);
|
|
|
|
DP_NOTICE(p_hwfn, false,
|
|
"FPGA: workaround: Set VF bar0 size\n");
|
|
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
PGLUE_B_REG_VF_BAR0_SIZE, 4);
|
|
}
|
|
#endif
|
|
|
|
return rc;
|
|
err2:
|
|
ecore_mcp_free(p_hwfn);
|
|
err1:
|
|
ecore_hw_hwfn_free(p_hwfn);
|
|
err0:
|
|
return rc;
|
|
}
|
|
|
|
enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev, int personality)
|
|
{
|
|
struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
|
|
enum _ecore_status_t rc;
|
|
|
|
if (IS_VF(p_dev))
|
|
return ecore_vf_hw_prepare(p_dev);
|
|
|
|
/* Store the precompiled init data ptrs */
|
|
ecore_init_iro_array(p_dev);
|
|
|
|
/* Initialize the first hwfn - will learn number of hwfns */
|
|
rc = ecore_hw_prepare_single(p_hwfn,
|
|
p_dev->regview,
|
|
p_dev->doorbells, personality);
|
|
if (rc != ECORE_SUCCESS)
|
|
return rc;
|
|
|
|
personality = p_hwfn->hw_info.personality;
|
|
|
|
/* initialalize 2nd hwfn if necessary */
|
|
if (p_dev->num_hwfns > 1) {
|
|
void OSAL_IOMEM *p_regview, *p_doorbell;
|
|
u8 OSAL_IOMEM *addr;
|
|
|
|
/* adjust bar offset for second engine */
|
|
addr = (u8 OSAL_IOMEM *)p_dev->regview +
|
|
ecore_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
|
|
p_regview = (void OSAL_IOMEM *)addr;
|
|
|
|
addr = (u8 OSAL_IOMEM *)p_dev->doorbells +
|
|
ecore_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
|
|
p_doorbell = (void OSAL_IOMEM *)addr;
|
|
|
|
/* prepare second hw function */
|
|
rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
|
|
p_doorbell, personality);
|
|
|
|
/* in case of error, need to free the previously
|
|
* initialiazed hwfn 0
|
|
*/
|
|
if (rc != ECORE_SUCCESS) {
|
|
ecore_init_free(p_hwfn);
|
|
ecore_mcp_free(p_hwfn);
|
|
ecore_hw_hwfn_free(p_hwfn);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
void ecore_hw_remove(struct ecore_dev *p_dev)
|
|
{
|
|
int i;
|
|
|
|
for_each_hwfn(p_dev, i) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
|
|
|
|
if (IS_VF(p_dev)) {
|
|
ecore_vf_pf_release(p_hwfn);
|
|
continue;
|
|
}
|
|
|
|
ecore_init_free(p_hwfn);
|
|
ecore_hw_hwfn_free(p_hwfn);
|
|
ecore_mcp_free(p_hwfn);
|
|
|
|
OSAL_MUTEX_DEALLOC(&p_hwfn->dmae_info.mutex);
|
|
}
|
|
}
|
|
|
|
static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
|
|
struct ecore_chain *p_chain)
|
|
{
|
|
void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
|
|
dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
|
|
struct ecore_chain_next *p_next;
|
|
u32 size, i;
|
|
|
|
if (!p_virt)
|
|
return;
|
|
|
|
size = p_chain->elem_size * p_chain->usable_per_page;
|
|
|
|
for (i = 0; i < p_chain->page_cnt; i++) {
|
|
if (!p_virt)
|
|
break;
|
|
|
|
p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
|
|
p_virt_next = p_next->next_virt;
|
|
p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
|
|
|
|
OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
|
|
ECORE_CHAIN_PAGE_SIZE);
|
|
|
|
p_virt = p_virt_next;
|
|
p_phys = p_phys_next;
|
|
}
|
|
}
|
|
|
|
static void ecore_chain_free_single(struct ecore_dev *p_dev,
|
|
struct ecore_chain *p_chain)
|
|
{
|
|
if (!p_chain->p_virt_addr)
|
|
return;
|
|
|
|
OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
|
|
p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
|
|
}
|
|
|
|
static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
|
|
struct ecore_chain *p_chain)
|
|
{
|
|
void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
|
|
u8 *p_pbl_virt = (u8 *)p_chain->pbl.p_virt_table;
|
|
u32 page_cnt = p_chain->page_cnt, i, pbl_size;
|
|
|
|
if (!pp_virt_addr_tbl)
|
|
return;
|
|
|
|
if (!p_chain->pbl.p_virt_table)
|
|
goto out;
|
|
|
|
for (i = 0; i < page_cnt; i++) {
|
|
if (!pp_virt_addr_tbl[i])
|
|
break;
|
|
|
|
OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
|
|
*(dma_addr_t *)p_pbl_virt,
|
|
ECORE_CHAIN_PAGE_SIZE);
|
|
|
|
p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
|
|
}
|
|
|
|
pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
|
|
OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl.p_virt_table,
|
|
p_chain->pbl.p_phys_table, pbl_size);
|
|
out:
|
|
OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
|
|
}
|
|
|
|
void ecore_chain_free(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
|
|
{
|
|
switch (p_chain->mode) {
|
|
case ECORE_CHAIN_MODE_NEXT_PTR:
|
|
ecore_chain_free_next_ptr(p_dev, p_chain);
|
|
break;
|
|
case ECORE_CHAIN_MODE_SINGLE:
|
|
ecore_chain_free_single(p_dev, p_chain);
|
|
break;
|
|
case ECORE_CHAIN_MODE_PBL:
|
|
ecore_chain_free_pbl(p_dev, p_chain);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static enum _ecore_status_t
|
|
ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
|
|
enum ecore_chain_cnt_type cnt_type,
|
|
osal_size_t elem_size, u32 page_cnt)
|
|
{
|
|
u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
|
|
|
|
/* The actual chain size can be larger than the maximal possible value
|
|
* after rounding up the requested elements number to pages, and after
|
|
* taking into acount the unusuable elements (next-ptr elements).
|
|
* The size of a "u16" chain can be (U16_MAX + 1) since the chain
|
|
* size/capacity fields are of a u32 type.
|
|
*/
|
|
if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
|
|
chain_size > ((u32)ECORE_U16_MAX + 1)) ||
|
|
(cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
|
|
chain_size > ECORE_U32_MAX)) {
|
|
DP_NOTICE(p_dev, true,
|
|
"The actual chain size (0x%lx) is larger than"
|
|
" the maximal possible value\n",
|
|
(unsigned long)chain_size);
|
|
return ECORE_INVAL;
|
|
}
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
static enum _ecore_status_t
|
|
ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
|
|
{
|
|
void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
|
|
dma_addr_t p_phys = 0;
|
|
u32 i;
|
|
|
|
for (i = 0; i < p_chain->page_cnt; i++) {
|
|
p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
|
|
ECORE_CHAIN_PAGE_SIZE);
|
|
if (!p_virt) {
|
|
DP_NOTICE(p_dev, true,
|
|
"Failed to allocate chain memory\n");
|
|
return ECORE_NOMEM;
|
|
}
|
|
|
|
if (i == 0) {
|
|
ecore_chain_init_mem(p_chain, p_virt, p_phys);
|
|
ecore_chain_reset(p_chain);
|
|
} else {
|
|
ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
|
|
p_virt, p_phys);
|
|
}
|
|
|
|
p_virt_prev = p_virt;
|
|
}
|
|
/* Last page's next element should point to the beginning of the
|
|
* chain.
|
|
*/
|
|
ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
|
|
p_chain->p_virt_addr,
|
|
p_chain->p_phys_addr);
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
static enum _ecore_status_t
|
|
ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
|
|
{
|
|
void *p_virt = OSAL_NULL;
|
|
dma_addr_t p_phys = 0;
|
|
|
|
p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
|
|
if (!p_virt) {
|
|
DP_NOTICE(p_dev, true, "Failed to allocate chain memory\n");
|
|
return ECORE_NOMEM;
|
|
}
|
|
|
|
ecore_chain_init_mem(p_chain, p_virt, p_phys);
|
|
ecore_chain_reset(p_chain);
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
static enum _ecore_status_t ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
|
|
struct ecore_chain *p_chain)
|
|
{
|
|
void *p_virt = OSAL_NULL;
|
|
u8 *p_pbl_virt = OSAL_NULL;
|
|
void **pp_virt_addr_tbl = OSAL_NULL;
|
|
dma_addr_t p_phys = 0, p_pbl_phys = 0;
|
|
u32 page_cnt = p_chain->page_cnt, size, i;
|
|
|
|
size = page_cnt * sizeof(*pp_virt_addr_tbl);
|
|
pp_virt_addr_tbl = (void **)OSAL_VALLOC(p_dev, size);
|
|
if (!pp_virt_addr_tbl) {
|
|
DP_NOTICE(p_dev, true,
|
|
"Failed to allocate memory for the chain"
|
|
" virtual addresses table\n");
|
|
return ECORE_NOMEM;
|
|
}
|
|
OSAL_MEM_ZERO(pp_virt_addr_tbl, size);
|
|
|
|
/* The allocation of the PBL table is done with its full size, since it
|
|
* is expected to be successive.
|
|
*/
|
|
size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
|
|
p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
|
|
if (!p_pbl_virt) {
|
|
DP_NOTICE(p_dev, true, "Failed to allocate chain pbl memory\n");
|
|
return ECORE_NOMEM;
|
|
}
|
|
|
|
ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
|
|
pp_virt_addr_tbl);
|
|
|
|
for (i = 0; i < page_cnt; i++) {
|
|
p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
|
|
ECORE_CHAIN_PAGE_SIZE);
|
|
if (!p_virt) {
|
|
DP_NOTICE(p_dev, true,
|
|
"Failed to allocate chain memory\n");
|
|
return ECORE_NOMEM;
|
|
}
|
|
|
|
if (i == 0) {
|
|
ecore_chain_init_mem(p_chain, p_virt, p_phys);
|
|
ecore_chain_reset(p_chain);
|
|
}
|
|
|
|
/* Fill the PBL table with the physical address of the page */
|
|
*(dma_addr_t *)p_pbl_virt = p_phys;
|
|
/* Keep the virtual address of the page */
|
|
p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
|
|
|
|
p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
|
|
}
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
|
|
enum ecore_chain_use_mode intended_use,
|
|
enum ecore_chain_mode mode,
|
|
enum ecore_chain_cnt_type cnt_type,
|
|
u32 num_elems, osal_size_t elem_size,
|
|
struct ecore_chain *p_chain)
|
|
{
|
|
u32 page_cnt;
|
|
enum _ecore_status_t rc = ECORE_SUCCESS;
|
|
|
|
if (mode == ECORE_CHAIN_MODE_SINGLE)
|
|
page_cnt = 1;
|
|
else
|
|
page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
|
|
|
|
rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
|
|
page_cnt);
|
|
if (rc) {
|
|
DP_NOTICE(p_dev, true,
|
|
"Cannot allocate a chain with the given arguments:\n"
|
|
" [use_mode %d, mode %d, cnt_type %d, num_elems %d,"
|
|
" elem_size %zu]\n",
|
|
intended_use, mode, cnt_type, num_elems, elem_size);
|
|
return rc;
|
|
}
|
|
|
|
ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
|
|
mode, cnt_type);
|
|
|
|
switch (mode) {
|
|
case ECORE_CHAIN_MODE_NEXT_PTR:
|
|
rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
|
|
break;
|
|
case ECORE_CHAIN_MODE_SINGLE:
|
|
rc = ecore_chain_alloc_single(p_dev, p_chain);
|
|
break;
|
|
case ECORE_CHAIN_MODE_PBL:
|
|
rc = ecore_chain_alloc_pbl(p_dev, p_chain);
|
|
break;
|
|
}
|
|
if (rc)
|
|
goto nomem;
|
|
|
|
return ECORE_SUCCESS;
|
|
|
|
nomem:
|
|
ecore_chain_free(p_dev, p_chain);
|
|
return rc;
|
|
}
|
|
|
|
enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
|
|
u16 src_id, u16 *dst_id)
|
|
{
|
|
if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
|
|
u16 min, max;
|
|
|
|
min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
|
|
max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
|
|
DP_NOTICE(p_hwfn, true,
|
|
"l2_queue id [%d] is not valid, available"
|
|
" indices [%d - %d]\n",
|
|
src_id, min, max);
|
|
|
|
return ECORE_INVAL;
|
|
}
|
|
|
|
*dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
|
|
u8 src_id, u8 *dst_id)
|
|
{
|
|
if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
|
|
u8 min, max;
|
|
|
|
min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
|
|
max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
|
|
DP_NOTICE(p_hwfn, true,
|
|
"vport id [%d] is not valid, available"
|
|
" indices [%d - %d]\n",
|
|
src_id, min, max);
|
|
|
|
return ECORE_INVAL;
|
|
}
|
|
|
|
*dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
|
|
u8 src_id, u8 *dst_id)
|
|
{
|
|
if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
|
|
u8 min, max;
|
|
|
|
min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
|
|
max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
|
|
DP_NOTICE(p_hwfn, true,
|
|
"rss_eng id [%d] is not valid,avail idx [%d - %d]\n",
|
|
src_id, min, max);
|
|
|
|
return ECORE_INVAL;
|
|
}
|
|
|
|
*dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
u8 *p_filter)
|
|
{
|
|
u32 high, low, en;
|
|
int i;
|
|
|
|
if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
|
|
return ECORE_SUCCESS;
|
|
|
|
high = p_filter[1] | (p_filter[0] << 8);
|
|
low = p_filter[5] | (p_filter[4] << 8) |
|
|
(p_filter[3] << 16) | (p_filter[2] << 24);
|
|
|
|
/* Find a free entry and utilize it */
|
|
for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
|
|
en = ecore_rd(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
|
|
if (en)
|
|
continue;
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
2 * i * sizeof(u32), low);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
(2 * i + 1) * sizeof(u32), high);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
|
|
i * sizeof(u32), 0);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
|
|
break;
|
|
}
|
|
if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
|
|
DP_NOTICE(p_hwfn, false,
|
|
"Failed to find an empty LLH filter to utilize\n");
|
|
return ECORE_INVAL;
|
|
}
|
|
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
|
|
"MAC: %x:%x:%x:%x:%x:%x is added at %d\n",
|
|
p_filter[0], p_filter[1], p_filter[2],
|
|
p_filter[3], p_filter[4], p_filter[5], i);
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
void ecore_llh_remove_mac_filter(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt, u8 *p_filter)
|
|
{
|
|
u32 high, low;
|
|
int i;
|
|
|
|
if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
|
|
return;
|
|
|
|
high = p_filter[1] | (p_filter[0] << 8);
|
|
low = p_filter[5] | (p_filter[4] << 8) |
|
|
(p_filter[3] << 16) | (p_filter[2] << 24);
|
|
|
|
/* Find the entry and clean it */
|
|
for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
|
|
if (ecore_rd(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
2 * i * sizeof(u32)) != low)
|
|
continue;
|
|
if (ecore_rd(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
(2 * i + 1) * sizeof(u32)) != high)
|
|
continue;
|
|
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
2 * i * sizeof(u32), 0);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
(2 * i + 1) * sizeof(u32), 0);
|
|
break;
|
|
}
|
|
if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
|
|
DP_NOTICE(p_hwfn, false,
|
|
"Tried to remove a non-configured filter\n");
|
|
}
|
|
|
|
enum _ecore_status_t ecore_llh_add_ethertype_filter(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
u16 filter)
|
|
{
|
|
u32 high, low, en;
|
|
int i;
|
|
|
|
if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
|
|
return ECORE_SUCCESS;
|
|
|
|
high = filter;
|
|
low = 0;
|
|
|
|
/* Find a free entry and utilize it */
|
|
for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
|
|
en = ecore_rd(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
|
|
if (en)
|
|
continue;
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
2 * i * sizeof(u32), low);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
(2 * i + 1) * sizeof(u32), high);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
|
|
i * sizeof(u32), 1);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
|
|
break;
|
|
}
|
|
if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
|
|
DP_NOTICE(p_hwfn, false,
|
|
"Failed to find an empty LLH filter to utilize\n");
|
|
return ECORE_INVAL;
|
|
}
|
|
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
|
|
"ETH type: %x is added at %d\n", filter, i);
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
void ecore_llh_remove_ethertype_filter(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt, u16 filter)
|
|
{
|
|
u32 high, low;
|
|
int i;
|
|
|
|
if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
|
|
return;
|
|
|
|
high = filter;
|
|
low = 0;
|
|
|
|
/* Find the entry and clean it */
|
|
for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
|
|
if (ecore_rd(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
2 * i * sizeof(u32)) != low)
|
|
continue;
|
|
if (ecore_rd(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
(2 * i + 1) * sizeof(u32)) != high)
|
|
continue;
|
|
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
2 * i * sizeof(u32), 0);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
(2 * i + 1) * sizeof(u32), 0);
|
|
break;
|
|
}
|
|
if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
|
|
DP_NOTICE(p_hwfn, false,
|
|
"Tried to remove a non-configured filter\n");
|
|
}
|
|
|
|
void ecore_llh_clear_all_filters(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt)
|
|
{
|
|
int i;
|
|
|
|
if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
|
|
return;
|
|
|
|
for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
2 * i * sizeof(u32), 0);
|
|
ecore_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
(2 * i + 1) * sizeof(u32), 0);
|
|
}
|
|
}
|
|
|
|
enum _ecore_status_t ecore_test_registers(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt)
|
|
{
|
|
u32 reg_tbl[] = {
|
|
BRB_REG_HEADER_SIZE,
|
|
BTB_REG_HEADER_SIZE,
|
|
CAU_REG_LONG_TIMEOUT_THRESHOLD,
|
|
CCFC_REG_ACTIVITY_COUNTER,
|
|
CDU_REG_CID_ADDR_PARAMS,
|
|
DBG_REG_CLIENT_ENABLE,
|
|
DMAE_REG_INIT,
|
|
DORQ_REG_IFEN,
|
|
GRC_REG_TIMEOUT_EN,
|
|
IGU_REG_BLOCK_CONFIGURATION,
|
|
MCM_REG_INIT,
|
|
MCP2_REG_DBG_DWORD_ENABLE,
|
|
MISC_REG_PORT_MODE,
|
|
MISCS_REG_CLK_100G_MODE,
|
|
MSDM_REG_ENABLE_IN1,
|
|
MSEM_REG_ENABLE_IN,
|
|
NIG_REG_CM_HDR,
|
|
NCSI_REG_CONFIG,
|
|
PBF_REG_INIT,
|
|
PTU_REG_ATC_INIT_ARRAY,
|
|
PCM_REG_INIT,
|
|
PGLUE_B_REG_ADMIN_PER_PF_REGION,
|
|
PRM_REG_DISABLE_PRM,
|
|
PRS_REG_SOFT_RST,
|
|
PSDM_REG_ENABLE_IN1,
|
|
PSEM_REG_ENABLE_IN,
|
|
PSWRQ_REG_DBG_SELECT,
|
|
PSWRQ2_REG_CDUT_P_SIZE,
|
|
PSWHST_REG_DISCARD_INTERNAL_WRITES,
|
|
PSWHST2_REG_DBGSYN_ALMOST_FULL_THR,
|
|
PSWRD_REG_DBG_SELECT,
|
|
PSWRD2_REG_CONF11,
|
|
PSWWR_REG_USDM_FULL_TH,
|
|
PSWWR2_REG_CDU_FULL_TH2,
|
|
QM_REG_MAXPQSIZE_0,
|
|
RSS_REG_RSS_INIT_EN,
|
|
RDIF_REG_STOP_ON_ERROR,
|
|
SRC_REG_SOFT_RST,
|
|
TCFC_REG_ACTIVITY_COUNTER,
|
|
TCM_REG_INIT,
|
|
TM_REG_PXP_READ_DATA_FIFO_INIT,
|
|
TSDM_REG_ENABLE_IN1,
|
|
TSEM_REG_ENABLE_IN,
|
|
TDIF_REG_STOP_ON_ERROR,
|
|
UCM_REG_INIT,
|
|
UMAC_REG_IPG_HD_BKP_CNTL_BB_B0,
|
|
USDM_REG_ENABLE_IN1,
|
|
USEM_REG_ENABLE_IN,
|
|
XCM_REG_INIT,
|
|
XSDM_REG_ENABLE_IN1,
|
|
XSEM_REG_ENABLE_IN,
|
|
YCM_REG_INIT,
|
|
YSDM_REG_ENABLE_IN1,
|
|
YSEM_REG_ENABLE_IN,
|
|
XYLD_REG_SCBD_STRICT_PRIO,
|
|
TMLD_REG_SCBD_STRICT_PRIO,
|
|
MULD_REG_SCBD_STRICT_PRIO,
|
|
YULD_REG_SCBD_STRICT_PRIO,
|
|
};
|
|
u32 test_val[] = { 0x0, 0x1 };
|
|
u32 val, save_val, i, j;
|
|
|
|
for (i = 0; i < OSAL_ARRAY_SIZE(test_val); i++) {
|
|
for (j = 0; j < OSAL_ARRAY_SIZE(reg_tbl); j++) {
|
|
save_val = ecore_rd(p_hwfn, p_ptt, reg_tbl[j]);
|
|
ecore_wr(p_hwfn, p_ptt, reg_tbl[j], test_val[i]);
|
|
val = ecore_rd(p_hwfn, p_ptt, reg_tbl[j]);
|
|
/* Restore the original register's value */
|
|
ecore_wr(p_hwfn, p_ptt, reg_tbl[j], save_val);
|
|
if (val != test_val[i]) {
|
|
DP_INFO(p_hwfn->p_dev,
|
|
"offset 0x%x: val 0x%x != 0x%x\n",
|
|
reg_tbl[j], val, test_val[i]);
|
|
return ECORE_AGAIN;
|
|
}
|
|
}
|
|
}
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
u32 hw_addr, void *p_qzone,
|
|
osal_size_t qzone_size,
|
|
u8 timeset)
|
|
{
|
|
struct coalescing_timeset *p_coalesce_timeset;
|
|
|
|
if (IS_VF(p_hwfn->p_dev)) {
|
|
DP_NOTICE(p_hwfn, true, "VF coalescing config not supported\n");
|
|
return ECORE_INVAL;
|
|
}
|
|
|
|
if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
|
|
DP_NOTICE(p_hwfn, true,
|
|
"Coalescing configuration not enabled\n");
|
|
return ECORE_INVAL;
|
|
}
|
|
|
|
OSAL_MEMSET(p_qzone, 0, qzone_size);
|
|
p_coalesce_timeset = p_qzone;
|
|
p_coalesce_timeset->timeset = timeset;
|
|
p_coalesce_timeset->valid = 1;
|
|
ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_qzone, qzone_size);
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
u8 coalesce, u8 qid)
|
|
{
|
|
struct ustorm_eth_queue_zone qzone;
|
|
u16 fw_qid = 0;
|
|
u32 address;
|
|
u8 timeset;
|
|
enum _ecore_status_t rc;
|
|
|
|
rc = ecore_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
|
|
if (rc != ECORE_SUCCESS)
|
|
return rc;
|
|
|
|
address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
|
|
/* Translate the coalescing time into a timeset, according to:
|
|
* Timeout[Rx] = TimeSet[Rx] << (TimerRes[Rx] + 1)
|
|
*/
|
|
timeset = coalesce >> (ECORE_CAU_DEF_RX_TIMER_RES + 1);
|
|
|
|
rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &qzone,
|
|
sizeof(struct ustorm_eth_queue_zone), timeset);
|
|
if (rc != ECORE_SUCCESS)
|
|
goto out;
|
|
|
|
p_hwfn->p_dev->rx_coalesce_usecs = coalesce;
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
u8 coalesce, u8 qid)
|
|
{
|
|
struct ystorm_eth_queue_zone qzone;
|
|
u16 fw_qid = 0;
|
|
u32 address;
|
|
u8 timeset;
|
|
enum _ecore_status_t rc;
|
|
|
|
rc = ecore_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
|
|
if (rc != ECORE_SUCCESS)
|
|
return rc;
|
|
|
|
address = BAR0_MAP_REG_YSDM_RAM + YSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
|
|
/* Translate the coalescing time into a timeset, according to:
|
|
* Timeout[Tx] = TimeSet[Tx] << (TimerRes[Tx] + 1)
|
|
*/
|
|
timeset = coalesce >> (ECORE_CAU_DEF_TX_TIMER_RES + 1);
|
|
|
|
rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &qzone,
|
|
sizeof(struct ystorm_eth_queue_zone), timeset);
|
|
if (rc != ECORE_SUCCESS)
|
|
goto out;
|
|
|
|
p_hwfn->p_dev->tx_coalesce_usecs = coalesce;
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/* Calculate final WFQ values for all vports and configure it.
|
|
* After this configuration each vport must have
|
|
* approx min rate = vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
|
|
*/
|
|
static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
u32 min_pf_rate)
|
|
{
|
|
struct init_qm_vport_params *vport_params;
|
|
int i, num_vports;
|
|
|
|
vport_params = p_hwfn->qm_info.qm_vport_params;
|
|
num_vports = p_hwfn->qm_info.num_vports;
|
|
|
|
for (i = 0; i < num_vports; i++) {
|
|
u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
|
|
|
|
vport_params[i].vport_wfq =
|
|
(wfq_speed * ECORE_WFQ_UNIT) / min_pf_rate;
|
|
ecore_init_vport_wfq(p_hwfn, p_ptt,
|
|
vport_params[i].first_tx_pq_id,
|
|
vport_params[i].vport_wfq);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn, u32 min_pf_rate)
|
|
{
|
|
int i, num_vports;
|
|
u32 min_speed;
|
|
|
|
num_vports = p_hwfn->qm_info.num_vports;
|
|
min_speed = min_pf_rate / num_vports;
|
|
|
|
for (i = 0; i < num_vports; i++) {
|
|
p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
|
|
p_hwfn->qm_info.wfq_data[i].default_min_speed = min_speed;
|
|
}
|
|
}
|
|
|
|
static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
u32 min_pf_rate)
|
|
{
|
|
struct init_qm_vport_params *vport_params;
|
|
int i, num_vports;
|
|
|
|
vport_params = p_hwfn->qm_info.qm_vport_params;
|
|
num_vports = p_hwfn->qm_info.num_vports;
|
|
|
|
for (i = 0; i < num_vports; i++) {
|
|
ecore_init_wfq_default_param(p_hwfn, min_pf_rate);
|
|
ecore_init_vport_wfq(p_hwfn, p_ptt,
|
|
vport_params[i].first_tx_pq_id,
|
|
vport_params[i].vport_wfq);
|
|
}
|
|
}
|
|
|
|
/* validate wfq for a given vport and required min rate */
|
|
static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
|
|
u16 vport_id, u32 req_rate,
|
|
u32 min_pf_rate)
|
|
{
|
|
u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
|
|
int non_requested_count = 0, req_count = 0, i, num_vports;
|
|
|
|
num_vports = p_hwfn->qm_info.num_vports;
|
|
|
|
/* Check pre-set data for some of the vports */
|
|
for (i = 0; i < num_vports; i++) {
|
|
u32 tmp_speed;
|
|
|
|
if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
|
|
req_count++;
|
|
tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
|
|
total_req_min_rate += tmp_speed;
|
|
}
|
|
}
|
|
|
|
/* Include current vport data as well */
|
|
req_count++;
|
|
total_req_min_rate += req_rate;
|
|
non_requested_count = p_hwfn->qm_info.num_vports - req_count;
|
|
|
|
/* validate possible error cases */
|
|
if (req_rate > min_pf_rate) {
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
|
|
"Vport [%d] - Requested rate[%d Mbps] is greater"
|
|
" than configured PF min rate[%d Mbps]\n",
|
|
vport_id, req_rate, min_pf_rate);
|
|
return ECORE_INVAL;
|
|
}
|
|
|
|
if (req_rate * ECORE_WFQ_UNIT / min_pf_rate < 1) {
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
|
|
"Vport [%d] - Requested rate[%d Mbps] is less than"
|
|
" one percent of configured PF min rate[%d Mbps]\n",
|
|
vport_id, req_rate, min_pf_rate);
|
|
return ECORE_INVAL;
|
|
}
|
|
|
|
/* TBD - for number of vports greater than 100 */
|
|
if (ECORE_WFQ_UNIT / p_hwfn->qm_info.num_vports < 1) {
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
|
|
"Number of vports are greater than 100\n");
|
|
return ECORE_INVAL;
|
|
}
|
|
|
|
if (total_req_min_rate > min_pf_rate) {
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
|
|
"Total requested min rate for all vports[%d Mbps]"
|
|
"is greater than configured PF min rate[%d Mbps]\n",
|
|
total_req_min_rate, min_pf_rate);
|
|
return ECORE_INVAL;
|
|
}
|
|
|
|
/* Data left for non requested vports */
|
|
total_left_rate = min_pf_rate - total_req_min_rate;
|
|
left_rate_per_vp = total_left_rate / non_requested_count;
|
|
|
|
/* validate if non requested get < 1% of min bw */
|
|
if (left_rate_per_vp * ECORE_WFQ_UNIT / min_pf_rate < 1)
|
|
return ECORE_INVAL;
|
|
|
|
/* now req_rate for given vport passes all scenarios.
|
|
* assign final wfq rates to all vports.
|
|
*/
|
|
p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
|
|
p_hwfn->qm_info.wfq_data[vport_id].configured = true;
|
|
|
|
for (i = 0; i < num_vports; i++) {
|
|
if (p_hwfn->qm_info.wfq_data[i].configured)
|
|
continue;
|
|
|
|
p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
|
|
}
|
|
|
|
return ECORE_SUCCESS;
|
|
}
|
|
|
|
static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
u16 vp_id, u32 rate)
|
|
{
|
|
struct ecore_mcp_link_state *p_link;
|
|
int rc = ECORE_SUCCESS;
|
|
|
|
p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
|
|
|
|
if (!p_link->min_pf_rate) {
|
|
p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
|
|
p_hwfn->qm_info.wfq_data[vp_id].configured = true;
|
|
return rc;
|
|
}
|
|
|
|
rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
|
|
|
|
if (rc == ECORE_SUCCESS)
|
|
ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
|
|
p_link->min_pf_rate);
|
|
else
|
|
DP_NOTICE(p_hwfn, false,
|
|
"Validation failed while configuring min rate\n");
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
u32 min_pf_rate)
|
|
{
|
|
int rc = ECORE_SUCCESS;
|
|
bool use_wfq = false;
|
|
u16 i, num_vports;
|
|
|
|
num_vports = p_hwfn->qm_info.num_vports;
|
|
|
|
/* Validate all pre configured vports for wfq */
|
|
for (i = 0; i < num_vports; i++) {
|
|
if (p_hwfn->qm_info.wfq_data[i].configured) {
|
|
u32 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
|
|
|
|
use_wfq = true;
|
|
rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
|
|
if (rc == ECORE_INVAL) {
|
|
DP_NOTICE(p_hwfn, false,
|
|
"Validation failed while"
|
|
" configuring min rate\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (rc == ECORE_SUCCESS && use_wfq)
|
|
ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
|
|
else
|
|
ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Main API for ecore clients to configure vport min rate.
|
|
* vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
|
|
* rate - Speed in Mbps needs to be assigned to a given vport.
|
|
*/
|
|
int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
|
|
{
|
|
int i, rc = ECORE_INVAL;
|
|
|
|
/* TBD - for multiple hardware functions - that is 100 gig */
|
|
if (p_dev->num_hwfns > 1) {
|
|
DP_NOTICE(p_dev, false,
|
|
"WFQ configuration is not supported for this dev\n");
|
|
return rc;
|
|
}
|
|
|
|
for_each_hwfn(p_dev, i) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
|
|
struct ecore_ptt *p_ptt;
|
|
|
|
p_ptt = ecore_ptt_acquire(p_hwfn);
|
|
if (!p_ptt)
|
|
return ECORE_TIMEOUT;
|
|
|
|
rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
|
|
|
|
if (rc != ECORE_SUCCESS) {
|
|
ecore_ptt_release(p_hwfn, p_ptt);
|
|
return rc;
|
|
}
|
|
|
|
ecore_ptt_release(p_hwfn, p_ptt);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* API to configure WFQ from mcp link change */
|
|
void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
|
|
u32 min_pf_rate)
|
|
{
|
|
int i;
|
|
|
|
/* TBD - for multiple hardware functions - that is 100 gig */
|
|
if (p_dev->num_hwfns > 1) {
|
|
DP_VERBOSE(p_dev, ECORE_MSG_LINK,
|
|
"WFQ configuration is not supported for this dev\n");
|
|
return;
|
|
}
|
|
|
|
for_each_hwfn(p_dev, i) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
|
|
|
|
__ecore_configure_vp_wfq_on_link_change(p_hwfn,
|
|
p_hwfn->p_dpc_ptt,
|
|
min_pf_rate);
|
|
}
|
|
}
|
|
|
|
int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
struct ecore_mcp_link_state *p_link,
|
|
u8 max_bw)
|
|
{
|
|
int rc = ECORE_SUCCESS;
|
|
|
|
p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
|
|
|
|
if (!p_link->line_speed)
|
|
return rc;
|
|
|
|
p_link->speed = (p_link->line_speed * max_bw) / 100;
|
|
|
|
rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id, p_link->speed);
|
|
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
|
|
"Configured MAX bandwidth to be %08x Mb/sec\n",
|
|
p_link->speed);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Main API to configure PF max bandwidth where bw range is [1 - 100] */
|
|
int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
|
|
{
|
|
int i, rc = ECORE_INVAL;
|
|
|
|
if (max_bw < 1 || max_bw > 100) {
|
|
DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
|
|
return rc;
|
|
}
|
|
|
|
for_each_hwfn(p_dev, i) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
|
|
struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
|
|
struct ecore_mcp_link_state *p_link;
|
|
struct ecore_ptt *p_ptt;
|
|
|
|
p_link = &p_lead->mcp_info->link_output;
|
|
|
|
p_ptt = ecore_ptt_acquire(p_hwfn);
|
|
if (!p_ptt)
|
|
return ECORE_TIMEOUT;
|
|
|
|
rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
|
|
p_link, max_bw);
|
|
if (rc != ECORE_SUCCESS) {
|
|
ecore_ptt_release(p_hwfn, p_ptt);
|
|
return rc;
|
|
}
|
|
|
|
ecore_ptt_release(p_hwfn, p_ptt);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
|
|
struct ecore_ptt *p_ptt,
|
|
struct ecore_mcp_link_state *p_link,
|
|
u8 min_bw)
|
|
{
|
|
int rc = ECORE_SUCCESS;
|
|
|
|
p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
|
|
|
|
if (!p_link->line_speed)
|
|
return rc;
|
|
|
|
p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
|
|
|
|
rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
|
|
|
|
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
|
|
"Configured MIN bandwidth to be %d Mb/sec\n",
|
|
p_link->min_pf_rate);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Main API to configure PF min bandwidth where bw range is [1-100] */
|
|
int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
|
|
{
|
|
int i, rc = ECORE_INVAL;
|
|
|
|
if (min_bw < 1 || min_bw > 100) {
|
|
DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
|
|
return rc;
|
|
}
|
|
|
|
for_each_hwfn(p_dev, i) {
|
|
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
|
|
struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
|
|
struct ecore_mcp_link_state *p_link;
|
|
struct ecore_ptt *p_ptt;
|
|
|
|
p_link = &p_lead->mcp_info->link_output;
|
|
|
|
p_ptt = ecore_ptt_acquire(p_hwfn);
|
|
if (!p_ptt)
|
|
return ECORE_TIMEOUT;
|
|
|
|
rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
|
|
p_link, min_bw);
|
|
if (rc != ECORE_SUCCESS) {
|
|
ecore_ptt_release(p_hwfn, p_ptt);
|
|
return rc;
|
|
}
|
|
|
|
if (p_link->min_pf_rate) {
|
|
u32 min_rate = p_link->min_pf_rate;
|
|
|
|
rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
|
|
p_ptt,
|
|
min_rate);
|
|
}
|
|
|
|
ecore_ptt_release(p_hwfn, p_ptt);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
|
|
{
|
|
struct ecore_mcp_link_state *p_link;
|
|
|
|
p_link = &p_hwfn->mcp_info->link_output;
|
|
|
|
if (p_link->min_pf_rate)
|
|
ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt,
|
|
p_link->min_pf_rate);
|
|
|
|
OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
|
|
sizeof(*p_hwfn->qm_info.wfq_data) *
|
|
p_hwfn->qm_info.num_vports);
|
|
}
|
|
|
|
int ecore_device_num_engines(struct ecore_dev *p_dev)
|
|
{
|
|
return ECORE_IS_BB(p_dev) ? 2 : 1;
|
|
}
|
|
|
|
int ecore_device_num_ports(struct ecore_dev *p_dev)
|
|
{
|
|
/* in CMT always only one port */
|
|
if (p_dev->num_hwfns > 1)
|
|
return 1;
|
|
|
|
return p_dev->num_ports_in_engines * ecore_device_num_engines(p_dev);
|
|
}
|