numam-dpdk/drivers/net/octeontx2/otx2_flow_parse.c
Kiran Kumar K e0e5d23b3c net/octeontx2: support GRE key parsing
Adding support to parse GRE KEY for octeontx2 Flow.
Matching on GRE Key will only work, if checksum and routing
bits in the GRE header are equal to 0.

Signed-off-by: Kiran Kumar K <kirankumark@marvell.com>
Acked-by: Jerin Jacob <jerinj@marvell.com>
2019-07-29 12:24:49 +02:00

1000 lines
26 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#include "otx2_ethdev.h"
#include "otx2_flow.h"
const struct rte_flow_item *
otx2_flow_skip_void_and_any_items(const struct rte_flow_item *pattern)
{
while ((pattern->type == RTE_FLOW_ITEM_TYPE_VOID) ||
(pattern->type == RTE_FLOW_ITEM_TYPE_ANY))
pattern++;
return pattern;
}
/*
* Tunnel+ESP, Tunnel+ICMP4/6, Tunnel+TCP, Tunnel+UDP,
* Tunnel+SCTP
*/
int
otx2_flow_parse_lh(struct otx2_parse_state *pst)
{
struct otx2_flow_item_info info;
char hw_mask[64];
int lid, lt;
int rc;
if (!pst->tunnel)
return 0;
info.hw_mask = &hw_mask;
info.spec = NULL;
info.mask = NULL;
info.hw_hdr_len = 0;
lid = NPC_LID_LH;
switch (pst->pattern->type) {
case RTE_FLOW_ITEM_TYPE_UDP:
lt = NPC_LT_LH_TU_UDP;
info.def_mask = &rte_flow_item_udp_mask;
info.len = sizeof(struct rte_flow_item_udp);
break;
case RTE_FLOW_ITEM_TYPE_TCP:
lt = NPC_LT_LH_TU_TCP;
info.def_mask = &rte_flow_item_tcp_mask;
info.len = sizeof(struct rte_flow_item_tcp);
break;
case RTE_FLOW_ITEM_TYPE_SCTP:
lt = NPC_LT_LH_TU_SCTP;
info.def_mask = &rte_flow_item_sctp_mask;
info.len = sizeof(struct rte_flow_item_sctp);
break;
case RTE_FLOW_ITEM_TYPE_ESP:
lt = NPC_LT_LH_TU_ESP;
info.def_mask = &rte_flow_item_esp_mask;
info.len = sizeof(struct rte_flow_item_esp);
break;
default:
return 0;
}
otx2_flow_get_hw_supp_mask(pst, &info, lid, lt);
rc = otx2_flow_parse_item_basic(pst->pattern, &info, pst->error);
if (rc != 0)
return rc;
return otx2_flow_update_parse_state(pst, &info, lid, lt, 0);
}
/* Tunnel+IPv4, Tunnel+IPv6 */
int
otx2_flow_parse_lg(struct otx2_parse_state *pst)
{
struct otx2_flow_item_info info;
char hw_mask[64];
int lid, lt;
int rc;
if (!pst->tunnel)
return 0;
info.hw_mask = &hw_mask;
info.spec = NULL;
info.mask = NULL;
info.hw_hdr_len = 0;
lid = NPC_LID_LG;
if (pst->pattern->type == RTE_FLOW_ITEM_TYPE_IPV4) {
lt = NPC_LT_LG_TU_IP;
info.def_mask = &rte_flow_item_ipv4_mask;
info.len = sizeof(struct rte_flow_item_ipv4);
} else if (pst->pattern->type == RTE_FLOW_ITEM_TYPE_IPV6) {
lt = NPC_LT_LG_TU_IP6;
info.def_mask = &rte_flow_item_ipv6_mask;
info.len = sizeof(struct rte_flow_item_ipv6);
} else {
/* There is no tunneled IP header */
return 0;
}
otx2_flow_get_hw_supp_mask(pst, &info, lid, lt);
rc = otx2_flow_parse_item_basic(pst->pattern, &info, pst->error);
if (rc != 0)
return rc;
return otx2_flow_update_parse_state(pst, &info, lid, lt, 0);
}
/* Tunnel+Ether */
int
otx2_flow_parse_lf(struct otx2_parse_state *pst)
{
const struct rte_flow_item *pattern, *last_pattern;
struct rte_flow_item_eth hw_mask;
struct otx2_flow_item_info info;
int lid, lt, lflags;
int nr_vlans = 0;
int rc;
/* We hit this layer if there is a tunneling protocol */
if (!pst->tunnel)
return 0;
if (pst->pattern->type != RTE_FLOW_ITEM_TYPE_ETH)
return 0;
lid = NPC_LID_LF;
lt = NPC_LT_LF_TU_ETHER;
lflags = 0;
info.def_mask = &rte_flow_item_vlan_mask;
/* No match support for vlan tags */
info.hw_mask = NULL;
info.len = sizeof(struct rte_flow_item_vlan);
info.spec = NULL;
info.mask = NULL;
info.hw_hdr_len = 0;
/* Look ahead and find out any VLAN tags. These can be
* detected but no data matching is available.
*/
last_pattern = pst->pattern;
pattern = pst->pattern + 1;
pattern = otx2_flow_skip_void_and_any_items(pattern);
while (pattern->type == RTE_FLOW_ITEM_TYPE_VLAN) {
nr_vlans++;
rc = otx2_flow_parse_item_basic(pattern, &info, pst->error);
if (rc != 0)
return rc;
last_pattern = pattern;
pattern++;
pattern = otx2_flow_skip_void_and_any_items(pattern);
}
otx2_npc_dbg("Nr_vlans = %d", nr_vlans);
switch (nr_vlans) {
case 0:
break;
case 1:
lflags = NPC_F_TU_ETHER_CTAG;
break;
case 2:
lflags = NPC_F_TU_ETHER_STAG_CTAG;
break;
default:
rte_flow_error_set(pst->error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
last_pattern,
"more than 2 vlans with tunneled Ethernet "
"not supported");
return -rte_errno;
}
info.def_mask = &rte_flow_item_eth_mask;
info.hw_mask = &hw_mask;
info.len = sizeof(struct rte_flow_item_eth);
info.hw_hdr_len = 0;
otx2_flow_get_hw_supp_mask(pst, &info, lid, lt);
info.spec = NULL;
info.mask = NULL;
rc = otx2_flow_parse_item_basic(pst->pattern, &info, pst->error);
if (rc != 0)
return rc;
pst->pattern = last_pattern;
return otx2_flow_update_parse_state(pst, &info, lid, lt, lflags);
}
int
otx2_flow_parse_le(struct otx2_parse_state *pst)
{
/*
* We are positioned at UDP. Scan ahead and look for
* UDP encapsulated tunnel protocols. If available,
* parse them. In that case handle this:
* - RTE spec assumes we point to tunnel header.
* - NPC parser provides offset from UDP header.
*/
/*
* Note: Add support to GENEVE, VXLAN_GPE when we
* upgrade DPDK
*
* Note: Better to split flags into two nibbles:
* - Higher nibble can have flags
* - Lower nibble to further enumerate protocols
* and have flags based extraction
*/
const struct rte_flow_item *pattern = pst->pattern;
struct otx2_flow_item_info info;
int lid, lt, lflags;
char hw_mask[64];
int rc;
if (pst->tunnel)
return 0;
if (pst->pattern->type == RTE_FLOW_ITEM_TYPE_MPLS)
return otx2_flow_parse_mpls(pst, NPC_LID_LE);
info.spec = NULL;
info.mask = NULL;
info.hw_mask = NULL;
info.def_mask = NULL;
info.len = 0;
info.hw_hdr_len = 0;
lid = NPC_LID_LE;
lflags = 0;
/* Ensure we are not matching anything in UDP */
rc = otx2_flow_parse_item_basic(pattern, &info, pst->error);
if (rc)
return rc;
info.hw_mask = &hw_mask;
pattern = otx2_flow_skip_void_and_any_items(pattern);
otx2_npc_dbg("Pattern->type = %d", pattern->type);
switch (pattern->type) {
case RTE_FLOW_ITEM_TYPE_VXLAN:
lflags = NPC_F_UDP_VXLAN;
info.def_mask = &rte_flow_item_vxlan_mask;
info.len = sizeof(struct rte_flow_item_vxlan);
lt = NPC_LT_LE_VXLAN;
break;
case RTE_FLOW_ITEM_TYPE_GTPC:
lflags = NPC_F_UDP_GTP_GTPC;
info.def_mask = &rte_flow_item_gtp_mask;
info.len = sizeof(struct rte_flow_item_gtp);
lt = NPC_LT_LE_GTPC;
break;
case RTE_FLOW_ITEM_TYPE_GTPU:
lflags = NPC_F_UDP_GTP_GTPU_G_PDU;
info.def_mask = &rte_flow_item_gtp_mask;
info.len = sizeof(struct rte_flow_item_gtp);
lt = NPC_LT_LE_GTPU;
break;
case RTE_FLOW_ITEM_TYPE_GENEVE:
lflags = NPC_F_UDP_GENEVE;
info.def_mask = &rte_flow_item_geneve_mask;
info.len = sizeof(struct rte_flow_item_geneve);
lt = NPC_LT_LE_GENEVE;
break;
case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
lflags = NPC_F_UDP_VXLANGPE;
info.def_mask = &rte_flow_item_vxlan_gpe_mask;
info.len = sizeof(struct rte_flow_item_vxlan_gpe);
lt = NPC_LT_LE_VXLANGPE;
break;
default:
return 0;
}
pst->tunnel = 1;
otx2_flow_get_hw_supp_mask(pst, &info, lid, lt);
rc = otx2_flow_parse_item_basic(pattern, &info, pst->error);
if (rc != 0)
return rc;
return otx2_flow_update_parse_state(pst, &info, lid, lt, lflags);
}
static int
flow_parse_mpls_label_stack(struct otx2_parse_state *pst, int *flag)
{
int nr_labels = 0;
const struct rte_flow_item *pattern = pst->pattern;
struct otx2_flow_item_info info;
int rc;
uint8_t flag_list[] = {0, NPC_F_MPLS_2_LABELS,
NPC_F_MPLS_3_LABELS, NPC_F_MPLS_4_LABELS};
/*
* pst->pattern points to first MPLS label. We only check
* that subsequent labels do not have anything to match.
*/
info.def_mask = &rte_flow_item_mpls_mask;
info.hw_mask = NULL;
info.len = sizeof(struct rte_flow_item_mpls);
info.spec = NULL;
info.mask = NULL;
info.hw_hdr_len = 0;
while (pattern->type == RTE_FLOW_ITEM_TYPE_MPLS) {
nr_labels++;
/* Basic validation of 2nd/3rd/4th mpls item */
if (nr_labels > 1) {
rc = otx2_flow_parse_item_basic(pattern, &info,
pst->error);
if (rc != 0)
return rc;
}
pst->last_pattern = pattern;
pattern++;
pattern = otx2_flow_skip_void_and_any_items(pattern);
}
if (nr_labels > 4) {
rte_flow_error_set(pst->error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
pst->last_pattern,
"more than 4 mpls labels not supported");
return -rte_errno;
}
*flag = flag_list[nr_labels - 1];
return 0;
}
int
otx2_flow_parse_mpls(struct otx2_parse_state *pst, int lid)
{
/* Find number of MPLS labels */
struct rte_flow_item_mpls hw_mask;
struct otx2_flow_item_info info;
int lt, lflags;
int rc;
lflags = 0;
if (lid == NPC_LID_LC)
lt = NPC_LT_LC_MPLS;
else if (lid == NPC_LID_LD)
lt = NPC_LT_LD_TU_MPLS_IN_IP;
else
lt = NPC_LT_LE_TU_MPLS_IN_UDP;
/* Prepare for parsing the first item */
info.def_mask = &rte_flow_item_mpls_mask;
info.hw_mask = &hw_mask;
info.len = sizeof(struct rte_flow_item_mpls);
info.spec = NULL;
info.mask = NULL;
info.hw_hdr_len = 0;
otx2_flow_get_hw_supp_mask(pst, &info, lid, lt);
rc = otx2_flow_parse_item_basic(pst->pattern, &info, pst->error);
if (rc != 0)
return rc;
/*
* Parse for more labels.
* This sets lflags and pst->last_pattern correctly.
*/
rc = flow_parse_mpls_label_stack(pst, &lflags);
if (rc != 0)
return rc;
pst->tunnel = 1;
pst->pattern = pst->last_pattern;
return otx2_flow_update_parse_state(pst, &info, lid, lt, lflags);
}
/*
* ICMP, ICMP6, UDP, TCP, SCTP, VXLAN, GRE, NVGRE,
* GTP, GTPC, GTPU, ESP
*
* Note: UDP tunnel protocols are identified by flags.
* LPTR for these protocol still points to UDP
* header. Need flag based extraction to support
* this.
*/
int
otx2_flow_parse_ld(struct otx2_parse_state *pst)
{
char hw_mask[NPC_MAX_EXTRACT_DATA_LEN];
uint32_t gre_key_mask = 0xffffffff;
struct otx2_flow_item_info info;
int lid, lt, lflags;
int rc;
if (pst->tunnel) {
/* We have already parsed MPLS or IPv4/v6 followed
* by MPLS or IPv4/v6. Subsequent TCP/UDP etc
* would be parsed as tunneled versions. Skip
* this layer, except for tunneled MPLS. If LC is
* MPLS, we have anyway skipped all stacked MPLS
* labels.
*/
if (pst->pattern->type == RTE_FLOW_ITEM_TYPE_MPLS)
return otx2_flow_parse_mpls(pst, NPC_LID_LD);
return 0;
}
info.hw_mask = &hw_mask;
info.spec = NULL;
info.mask = NULL;
info.def_mask = NULL;
info.len = 0;
info.hw_hdr_len = 0;
lid = NPC_LID_LD;
lflags = 0;
otx2_npc_dbg("Pst->pattern->type = %d", pst->pattern->type);
switch (pst->pattern->type) {
case RTE_FLOW_ITEM_TYPE_ICMP:
if (pst->lt[NPC_LID_LC] == NPC_LT_LC_IP6)
lt = NPC_LT_LD_ICMP6;
else
lt = NPC_LT_LD_ICMP;
info.def_mask = &rte_flow_item_icmp_mask;
info.len = sizeof(struct rte_flow_item_icmp);
break;
case RTE_FLOW_ITEM_TYPE_UDP:
lt = NPC_LT_LD_UDP;
info.def_mask = &rte_flow_item_udp_mask;
info.len = sizeof(struct rte_flow_item_udp);
break;
case RTE_FLOW_ITEM_TYPE_TCP:
lt = NPC_LT_LD_TCP;
info.def_mask = &rte_flow_item_tcp_mask;
info.len = sizeof(struct rte_flow_item_tcp);
break;
case RTE_FLOW_ITEM_TYPE_SCTP:
lt = NPC_LT_LD_SCTP;
info.def_mask = &rte_flow_item_sctp_mask;
info.len = sizeof(struct rte_flow_item_sctp);
break;
case RTE_FLOW_ITEM_TYPE_ESP:
lt = NPC_LT_LD_ESP;
info.def_mask = &rte_flow_item_esp_mask;
info.len = sizeof(struct rte_flow_item_esp);
break;
case RTE_FLOW_ITEM_TYPE_GRE:
lt = NPC_LT_LD_GRE;
info.def_mask = &rte_flow_item_gre_mask;
info.len = sizeof(struct rte_flow_item_gre);
break;
case RTE_FLOW_ITEM_TYPE_GRE_KEY:
lt = NPC_LT_LD_GRE;
info.def_mask = &gre_key_mask;
info.len = sizeof(gre_key_mask);
info.hw_hdr_len = 4;
break;
case RTE_FLOW_ITEM_TYPE_NVGRE:
lt = NPC_LT_LD_GRE;
lflags = NPC_F_GRE_NVGRE;
info.def_mask = &rte_flow_item_nvgre_mask;
info.len = sizeof(struct rte_flow_item_nvgre);
/* Further IP/Ethernet are parsed as tunneled */
pst->tunnel = 1;
break;
default:
return 0;
}
otx2_flow_get_hw_supp_mask(pst, &info, lid, lt);
rc = otx2_flow_parse_item_basic(pst->pattern, &info, pst->error);
if (rc != 0)
return rc;
return otx2_flow_update_parse_state(pst, &info, lid, lt, lflags);
}
static inline void
flow_check_lc_ip_tunnel(struct otx2_parse_state *pst)
{
const struct rte_flow_item *pattern = pst->pattern + 1;
pattern = otx2_flow_skip_void_and_any_items(pattern);
if (pattern->type == RTE_FLOW_ITEM_TYPE_MPLS ||
pattern->type == RTE_FLOW_ITEM_TYPE_IPV4 ||
pattern->type == RTE_FLOW_ITEM_TYPE_IPV6)
pst->tunnel = 1;
}
/* Outer IPv4, Outer IPv6, MPLS, ARP */
int
otx2_flow_parse_lc(struct otx2_parse_state *pst)
{
uint8_t hw_mask[NPC_MAX_EXTRACT_DATA_LEN];
struct otx2_flow_item_info info;
int lid, lt;
int rc;
if (pst->pattern->type == RTE_FLOW_ITEM_TYPE_MPLS)
return otx2_flow_parse_mpls(pst, NPC_LID_LC);
info.hw_mask = &hw_mask;
info.spec = NULL;
info.mask = NULL;
info.hw_hdr_len = 0;
lid = NPC_LID_LC;
switch (pst->pattern->type) {
case RTE_FLOW_ITEM_TYPE_IPV4:
lt = NPC_LT_LC_IP;
info.def_mask = &rte_flow_item_ipv4_mask;
info.len = sizeof(struct rte_flow_item_ipv4);
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
lid = NPC_LID_LC;
lt = NPC_LT_LC_IP6;
info.def_mask = &rte_flow_item_ipv6_mask;
info.len = sizeof(struct rte_flow_item_ipv6);
break;
case RTE_FLOW_ITEM_TYPE_ARP_ETH_IPV4:
lt = NPC_LT_LC_ARP;
info.def_mask = &rte_flow_item_arp_eth_ipv4_mask;
info.len = sizeof(struct rte_flow_item_arp_eth_ipv4);
break;
case RTE_FLOW_ITEM_TYPE_IPV6_EXT:
lid = NPC_LID_LC;
lt = NPC_LT_LC_IP6_EXT;
info.def_mask = &rte_flow_item_ipv6_ext_mask;
info.len = sizeof(struct rte_flow_item_ipv6_ext);
info.hw_hdr_len = 40;
break;
default:
/* No match at this layer */
return 0;
}
/* Identify if IP tunnels MPLS or IPv4/v6 */
flow_check_lc_ip_tunnel(pst);
otx2_flow_get_hw_supp_mask(pst, &info, lid, lt);
rc = otx2_flow_parse_item_basic(pst->pattern, &info, pst->error);
if (rc != 0)
return rc;
return otx2_flow_update_parse_state(pst, &info, lid, lt, 0);
}
/* VLAN, ETAG */
int
otx2_flow_parse_lb(struct otx2_parse_state *pst)
{
const struct rte_flow_item *pattern = pst->pattern;
const struct rte_flow_item *last_pattern;
char hw_mask[NPC_MAX_EXTRACT_DATA_LEN];
struct otx2_flow_item_info info;
int lid, lt, lflags;
int nr_vlans = 0;
int rc;
info.spec = NULL;
info.mask = NULL;
info.hw_hdr_len = NPC_TPID_LENGTH;
lid = NPC_LID_LB;
lflags = 0;
last_pattern = pattern;
if (pst->pattern->type == RTE_FLOW_ITEM_TYPE_VLAN) {
/* RTE vlan is either 802.1q or 802.1ad,
* this maps to either CTAG/STAG. We need to decide
* based on number of VLANS present. Matching is
* supported on first tag only.
*/
info.def_mask = &rte_flow_item_vlan_mask;
info.hw_mask = NULL;
info.len = sizeof(struct rte_flow_item_vlan);
pattern = pst->pattern;
while (pattern->type == RTE_FLOW_ITEM_TYPE_VLAN) {
nr_vlans++;
/* Basic validation of 2nd/3rd vlan item */
if (nr_vlans > 1) {
otx2_npc_dbg("Vlans = %d", nr_vlans);
rc = otx2_flow_parse_item_basic(pattern, &info,
pst->error);
if (rc != 0)
return rc;
}
last_pattern = pattern;
pattern++;
pattern = otx2_flow_skip_void_and_any_items(pattern);
}
switch (nr_vlans) {
case 1:
lt = NPC_LT_LB_CTAG;
break;
case 2:
lt = NPC_LT_LB_STAG;
lflags = NPC_F_STAG_CTAG;
break;
case 3:
lt = NPC_LT_LB_STAG;
lflags = NPC_F_STAG_STAG_CTAG;
break;
default:
rte_flow_error_set(pst->error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
last_pattern,
"more than 3 vlans not supported");
return -rte_errno;
}
} else if (pst->pattern->type == RTE_FLOW_ITEM_TYPE_E_TAG) {
/* we can support ETAG and match a subsequent CTAG
* without any matching support.
*/
lt = NPC_LT_LB_ETAG;
lflags = 0;
last_pattern = pst->pattern;
pattern = otx2_flow_skip_void_and_any_items(pst->pattern + 1);
if (pattern->type == RTE_FLOW_ITEM_TYPE_VLAN) {
info.def_mask = &rte_flow_item_vlan_mask;
/* set supported mask to NULL for vlan tag */
info.hw_mask = NULL;
info.len = sizeof(struct rte_flow_item_vlan);
rc = otx2_flow_parse_item_basic(pattern, &info,
pst->error);
if (rc != 0)
return rc;
lflags = NPC_F_ETAG_CTAG;
last_pattern = pattern;
}
info.def_mask = &rte_flow_item_e_tag_mask;
info.len = sizeof(struct rte_flow_item_e_tag);
} else {
return 0;
}
info.hw_mask = &hw_mask;
info.spec = NULL;
info.mask = NULL;
otx2_flow_get_hw_supp_mask(pst, &info, lid, lt);
rc = otx2_flow_parse_item_basic(pst->pattern, &info, pst->error);
if (rc != 0)
return rc;
/* Point pattern to last item consumed */
pst->pattern = last_pattern;
return otx2_flow_update_parse_state(pst, &info, lid, lt, lflags);
}
int
otx2_flow_parse_la(struct otx2_parse_state *pst)
{
struct rte_flow_item_eth hw_mask;
struct otx2_flow_item_info info;
int lid, lt;
int rc;
/* Identify the pattern type into lid, lt */
if (pst->pattern->type != RTE_FLOW_ITEM_TYPE_ETH)
return 0;
lid = NPC_LID_LA;
lt = NPC_LT_LA_ETHER;
info.hw_hdr_len = 0;
if (pst->flow->nix_intf == NIX_INTF_TX) {
lt = NPC_LT_LA_IH_NIX_ETHER;
info.hw_hdr_len = NPC_IH_LENGTH;
}
/* Prepare for parsing the item */
info.def_mask = &rte_flow_item_eth_mask;
info.hw_mask = &hw_mask;
info.len = sizeof(struct rte_flow_item_eth);
otx2_flow_get_hw_supp_mask(pst, &info, lid, lt);
info.spec = NULL;
info.mask = NULL;
/* Basic validation of item parameters */
rc = otx2_flow_parse_item_basic(pst->pattern, &info, pst->error);
if (rc)
return rc;
/* Update pst if not validate only? clash check? */
return otx2_flow_update_parse_state(pst, &info, lid, lt, 0);
}
static int
parse_rss_action(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_action *act,
struct rte_flow_error *error)
{
struct otx2_eth_dev *hw = dev->data->dev_private;
struct otx2_rss_info *rss_info = &hw->rss_info;
const struct rte_flow_action_rss *rss;
uint32_t i;
rss = (const struct rte_flow_action_rss *)act->conf;
/* Not supported */
if (attr->egress) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "No support of RSS in egress");
}
if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "multi-queue mode is disabled");
/* Parse RSS related parameters from configuration */
if (!rss || !rss->queue_num)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "no valid queues");
if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, act,
"non-default RSS hash functions"
" are not supported");
if (rss->key_len && rss->key_len > RTE_DIM(rss_info->key))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, act,
"RSS hash key too large");
if (rss->queue_num > rss_info->rss_size)
return rte_flow_error_set
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act,
"too many queues for RSS context");
for (i = 0; i < rss->queue_num; i++) {
if (rss->queue[i] >= dev->data->nb_rx_queues)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"queue id > max number"
" of queues");
}
return 0;
}
int
otx2_flow_parse_actions(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_action actions[],
struct rte_flow_error *error,
struct rte_flow *flow)
{
struct otx2_eth_dev *hw = dev->data->dev_private;
struct otx2_npc_flow_info *npc = &hw->npc_flow;
const struct rte_flow_action_count *act_count;
const struct rte_flow_action_mark *act_mark;
const struct rte_flow_action_queue *act_q;
const struct rte_flow_action_vf *vf_act;
const char *errmsg = NULL;
int sel_act, req_act = 0;
uint16_t pf_func, vf_id;
int errcode = 0;
int mark = 0;
int rq = 0;
/* Initialize actions */
flow->ctr_id = NPC_COUNTER_NONE;
pf_func = otx2_pfvf_func(hw->pf, hw->vf);
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
otx2_npc_dbg("Action type = %d", actions->type);
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_MARK:
act_mark =
(const struct rte_flow_action_mark *)actions->conf;
/* We have only 16 bits. Use highest val for flag */
if (act_mark->id > (OTX2_FLOW_FLAG_VAL - 2)) {
errmsg = "mark value must be < 0xfffe";
errcode = ENOTSUP;
goto err_exit;
}
mark = act_mark->id + 1;
req_act |= OTX2_FLOW_ACT_MARK;
rte_atomic32_inc(&npc->mark_actions);
break;
case RTE_FLOW_ACTION_TYPE_FLAG:
mark = OTX2_FLOW_FLAG_VAL;
req_act |= OTX2_FLOW_ACT_FLAG;
rte_atomic32_inc(&npc->mark_actions);
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
act_count =
(const struct rte_flow_action_count *)
actions->conf;
if (act_count->shared == 1) {
errmsg = "Shared Counters not supported";
errcode = ENOTSUP;
goto err_exit;
}
/* Indicates, need a counter */
flow->ctr_id = 1;
req_act |= OTX2_FLOW_ACT_COUNT;
break;
case RTE_FLOW_ACTION_TYPE_DROP:
req_act |= OTX2_FLOW_ACT_DROP;
break;
case RTE_FLOW_ACTION_TYPE_PF:
req_act |= OTX2_FLOW_ACT_PF;
pf_func &= (0xfc00);
break;
case RTE_FLOW_ACTION_TYPE_VF:
vf_act = (const struct rte_flow_action_vf *)
actions->conf;
req_act |= OTX2_FLOW_ACT_VF;
if (vf_act->original == 0) {
vf_id = (vf_act->id & RVU_PFVF_FUNC_MASK) + 1;
if (vf_id >= hw->maxvf) {
errmsg = "invalid vf specified";
errcode = EINVAL;
goto err_exit;
}
pf_func &= (0xfc00);
pf_func = (pf_func | vf_id);
}
break;
case RTE_FLOW_ACTION_TYPE_QUEUE:
/* Applicable only to ingress flow */
act_q = (const struct rte_flow_action_queue *)
actions->conf;
rq = act_q->index;
if (rq >= dev->data->nb_rx_queues) {
errmsg = "invalid queue index";
errcode = EINVAL;
goto err_exit;
}
req_act |= OTX2_FLOW_ACT_QUEUE;
break;
case RTE_FLOW_ACTION_TYPE_RSS:
errcode = parse_rss_action(dev, attr, actions, error);
if (errcode)
return -rte_errno;
req_act |= OTX2_FLOW_ACT_RSS;
break;
case RTE_FLOW_ACTION_TYPE_SECURITY:
/* Assumes user has already configured security
* session for this flow. Associated conf is
* opaque. When RTE security is implemented for otx2,
* we need to verify that for specified security
* session:
* action_type ==
* RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL &&
* session_protocol ==
* RTE_SECURITY_PROTOCOL_IPSEC
*
* RSS is not supported with inline ipsec. Get the
* rq from associated conf, or make
* RTE_FLOW_ACTION_TYPE_QUEUE compulsory with this
* action.
* Currently, rq = 0 is assumed.
*/
req_act |= OTX2_FLOW_ACT_SEC;
rq = 0;
break;
default:
errmsg = "Unsupported action specified";
errcode = ENOTSUP;
goto err_exit;
}
}
/* Check if actions specified are compatible */
if (attr->egress) {
/* Only DROP/COUNT is supported */
if (!(req_act & OTX2_FLOW_ACT_DROP)) {
errmsg = "DROP is required action for egress";
errcode = EINVAL;
goto err_exit;
} else if (req_act & ~(OTX2_FLOW_ACT_DROP |
OTX2_FLOW_ACT_COUNT)) {
errmsg = "Unsupported action specified";
errcode = ENOTSUP;
goto err_exit;
}
flow->npc_action = NIX_TX_ACTIONOP_DROP;
goto set_pf_func;
}
/* We have already verified the attr, this is ingress.
* - Exactly one terminating action is supported
* - Exactly one of MARK or FLAG is supported
* - If terminating action is DROP, only count is valid.
*/
sel_act = req_act & OTX2_FLOW_ACT_TERM;
if ((sel_act & (sel_act - 1)) != 0) {
errmsg = "Only one terminating action supported";
errcode = EINVAL;
goto err_exit;
}
if (req_act & OTX2_FLOW_ACT_DROP) {
sel_act = req_act & ~OTX2_FLOW_ACT_COUNT;
if ((sel_act & (sel_act - 1)) != 0) {
errmsg = "Only COUNT action is supported "
"with DROP ingress action";
errcode = ENOTSUP;
goto err_exit;
}
}
if ((req_act & (OTX2_FLOW_ACT_FLAG | OTX2_FLOW_ACT_MARK))
== (OTX2_FLOW_ACT_FLAG | OTX2_FLOW_ACT_MARK)) {
errmsg = "Only one of FLAG or MARK action is supported";
errcode = ENOTSUP;
goto err_exit;
}
/* Set NIX_RX_ACTIONOP */
if (req_act & (OTX2_FLOW_ACT_PF | OTX2_FLOW_ACT_VF)) {
flow->npc_action = NIX_RX_ACTIONOP_UCAST;
if (req_act & OTX2_FLOW_ACT_QUEUE)
flow->npc_action |= (uint64_t)rq << 20;
} else if (req_act & OTX2_FLOW_ACT_DROP) {
flow->npc_action = NIX_RX_ACTIONOP_DROP;
} else if (req_act & OTX2_FLOW_ACT_QUEUE) {
flow->npc_action = NIX_RX_ACTIONOP_UCAST;
flow->npc_action |= (uint64_t)rq << 20;
} else if (req_act & OTX2_FLOW_ACT_RSS) {
/* When user added a rule for rss, first we will add the
*rule in MCAM and then update the action, once if we have
*FLOW_KEY_ALG index. So, till we update the action with
*flow_key_alg index, set the action to drop.
*/
if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_RSS)
flow->npc_action = NIX_RX_ACTIONOP_DROP;
else
flow->npc_action = NIX_RX_ACTIONOP_UCAST;
} else if (req_act & OTX2_FLOW_ACT_SEC) {
flow->npc_action = NIX_RX_ACTIONOP_UCAST_IPSEC;
flow->npc_action |= (uint64_t)rq << 20;
} else if (req_act & (OTX2_FLOW_ACT_FLAG | OTX2_FLOW_ACT_MARK)) {
flow->npc_action = NIX_RX_ACTIONOP_UCAST;
} else if (req_act & OTX2_FLOW_ACT_COUNT) {
/* Keep OTX2_FLOW_ACT_COUNT always at the end
* This is default action, when user specify only
* COUNT ACTION
*/
flow->npc_action = NIX_RX_ACTIONOP_UCAST;
} else {
/* Should never reach here */
errmsg = "Invalid action specified";
errcode = EINVAL;
goto err_exit;
}
if (mark)
flow->npc_action |= (uint64_t)mark << 40;
if (rte_atomic32_read(&npc->mark_actions) == 1) {
hw->rx_offload_flags |=
NIX_RX_OFFLOAD_MARK_UPDATE_F;
otx2_eth_set_rx_function(dev);
}
set_pf_func:
/* Ideally AF must ensure that correct pf_func is set */
flow->npc_action |= (uint64_t)pf_func << 4;
return 0;
err_exit:
rte_flow_error_set(error, errcode,
RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
errmsg);
return -rte_errno;
}