numam-dpdk/drivers/crypto/dpaa_sec/dpaa_sec.h
Akhil Goyal 4e694fe511 crypto/dpaa_sec: support same session flows on multi-cores
In dpaa_sec, each session should have a separate in-queue,
and each in-queue should be mapped to an outq.
So if multiple flows of same SA comes to different cores
due to rss distribution of NIC, enqueue from any core will
try to do re-assignment of inq - outq mapping which will fail.

In this patch, for each core a separate inq is allocated and
used from each of the core. But the number of outq will remain
the same and we save the pointer to outq in session for each
of the cores.

Signed-off-by: Akhil Goyal <akhil.goyal@nxp.com>
2019-01-10 16:57:22 +01:00

647 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright 2016 NXP
*
*/
#ifndef _DPAA_SEC_H_
#define _DPAA_SEC_H_
#define CRYPTODEV_NAME_DPAA_SEC_PMD crypto_dpaa_sec
/**< NXP DPAA - SEC PMD device name */
#define MAX_DPAA_CORES 4
#define NUM_POOL_CHANNELS 4
#define DPAA_SEC_BURST 7
#define DPAA_SEC_ALG_UNSUPPORT (-1)
#define TDES_CBC_IV_LEN 8
#define AES_CBC_IV_LEN 16
#define AES_CTR_IV_LEN 16
#define AES_GCM_IV_LEN 12
/* Minimum job descriptor consists of a oneword job descriptor HEADER and
* a pointer to the shared descriptor.
*/
#define MIN_JOB_DESC_SIZE (CAAM_CMD_SZ + CAAM_PTR_SZ)
/* CTX_POOL_NUM_BUFS is set as per the ipsec-secgw application */
#define CTX_POOL_NUM_BUFS 32000
#define CTX_POOL_BUF_SIZE sizeof(struct dpaa_sec_op_ctx)
#define CTX_POOL_CACHE_SIZE 512
#define RTE_DPAA_SEC_PMD_MAX_NB_SESSIONS 1024
#define DIR_ENC 1
#define DIR_DEC 0
enum dpaa_sec_op_type {
DPAA_SEC_NONE, /*!< No Cipher operations*/
DPAA_SEC_CIPHER,/*!< CIPHER operations */
DPAA_SEC_AUTH, /*!< Authentication Operations */
DPAA_SEC_AEAD, /*!< Authenticated Encryption with associated data */
DPAA_SEC_IPSEC, /*!< IPSEC protocol operations*/
DPAA_SEC_PDCP, /*!< PDCP protocol operations*/
DPAA_SEC_PKC, /*!< Public Key Cryptographic Operations */
DPAA_SEC_MAX
};
#define DPAA_SEC_MAX_DESC_SIZE 64
/* code or cmd block to caam */
struct sec_cdb {
struct {
union {
uint32_t word;
struct {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
uint16_t rsvd63_48;
unsigned int rsvd47_39:9;
unsigned int idlen:7;
#else
unsigned int idlen:7;
unsigned int rsvd47_39:9;
uint16_t rsvd63_48;
#endif
} field;
} __packed hi;
union {
uint32_t word;
struct {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
unsigned int rsvd31_30:2;
unsigned int fsgt:1;
unsigned int lng:1;
unsigned int offset:2;
unsigned int abs:1;
unsigned int add_buf:1;
uint8_t pool_id;
uint16_t pool_buffer_size;
#else
uint16_t pool_buffer_size;
uint8_t pool_id;
unsigned int add_buf:1;
unsigned int abs:1;
unsigned int offset:2;
unsigned int lng:1;
unsigned int fsgt:1;
unsigned int rsvd31_30:2;
#endif
} field;
} __packed lo;
} __packed sh_hdr;
uint32_t sh_desc[DPAA_SEC_MAX_DESC_SIZE];
};
/*!
* The structure is to be filled by user as a part of
* dpaa_sec_proto_ctxt for PDCP Protocol
*/
struct sec_pdcp_ctxt {
enum rte_security_pdcp_domain domain; /*!< Data/Control mode*/
int8_t bearer; /*!< PDCP bearer ID */
int8_t pkt_dir;/*!< PDCP Frame Direction 0:UL 1:DL*/
int8_t hfn_ovd;/*!< Overwrite HFN per packet*/
uint32_t hfn; /*!< Hyper Frame Number */
uint32_t hfn_threshold; /*!< HFN Threashold for key renegotiation */
uint8_t sn_size; /*!< Sequence number size, 7/12/15 */
};
typedef struct dpaa_sec_session_entry {
uint8_t dir; /*!< Operation Direction */
enum rte_crypto_cipher_algorithm cipher_alg; /*!< Cipher Algorithm*/
enum rte_crypto_auth_algorithm auth_alg; /*!< Authentication Algorithm*/
enum rte_crypto_aead_algorithm aead_alg; /*!< AEAD Algorithm*/
enum rte_security_session_protocol proto_alg; /*!< Security Algorithm*/
union {
struct {
uint8_t *data; /**< pointer to key data */
size_t length; /**< key length in bytes */
} aead_key;
struct {
struct {
uint8_t *data; /**< pointer to key data */
size_t length; /**< key length in bytes */
} cipher_key;
struct {
uint8_t *data; /**< pointer to key data */
size_t length; /**< key length in bytes */
} auth_key;
};
};
union {
struct {
struct {
uint16_t length;
uint16_t offset;
} iv; /**< Initialisation vector parameters */
uint16_t auth_only_len;
/*!< Length of data for Auth only */
uint32_t digest_length;
struct ipsec_decap_pdb decap_pdb;
struct ipsec_encap_pdb encap_pdb;
struct ip ip4_hdr;
};
struct sec_pdcp_ctxt pdcp;
};
struct dpaa_sec_qp *qp[MAX_DPAA_CORES];
struct qman_fq *inq[MAX_DPAA_CORES];
struct sec_cdb cdb; /**< cmd block associated with qp */
struct rte_mempool *ctx_pool; /* session mempool for dpaa_sec_op_ctx */
} dpaa_sec_session;
struct dpaa_sec_qp {
struct dpaa_sec_dev_private *internals;
struct qman_fq outq;
int rx_pkts;
int rx_errs;
int tx_pkts;
int tx_errs;
};
#define RTE_DPAA_MAX_NB_SEC_QPS 2
#define RTE_DPAA_MAX_RX_QUEUE (MAX_DPAA_CORES * RTE_DPAA_SEC_PMD_MAX_NB_SESSIONS)
#define DPAA_MAX_DEQUEUE_NUM_FRAMES 63
/* internal sec queue interface */
struct dpaa_sec_dev_private {
void *sec_hw;
struct rte_mempool *ctx_pool; /* per dev mempool for dpaa_sec_op_ctx */
struct dpaa_sec_qp qps[RTE_DPAA_MAX_NB_SEC_QPS]; /* i/o queue for sec */
struct qman_fq inq[RTE_DPAA_MAX_RX_QUEUE];
unsigned char inq_attach[RTE_DPAA_MAX_RX_QUEUE];
unsigned int max_nb_queue_pairs;
unsigned int max_nb_sessions;
rte_spinlock_t lock;
};
#define MAX_SG_ENTRIES 16
#define SG_CACHELINE_0 0
#define SG_CACHELINE_1 4
#define SG_CACHELINE_2 8
#define SG_CACHELINE_3 12
struct dpaa_sec_job {
/* sg[0] output, sg[1] input, others are possible sub frames */
struct qm_sg_entry sg[MAX_SG_ENTRIES];
};
#define DPAA_MAX_NB_MAX_DIGEST 32
struct dpaa_sec_op_ctx {
struct dpaa_sec_job job;
struct rte_crypto_op *op;
struct rte_mempool *ctx_pool; /* mempool pointer for dpaa_sec_op_ctx */
uint32_t fd_status;
int64_t vtop_offset;
uint8_t digest[DPAA_MAX_NB_MAX_DIGEST];
};
static const struct rte_cryptodev_capabilities dpaa_sec_capabilities[] = {
{ /* MD5 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_MD5_HMAC,
.block_size = 64,
.key_size = {
.min = 1,
.max = 64,
.increment = 1
},
.digest_size = {
.min = 1,
.max = 16,
.increment = 1
},
.iv_size = { 0 }
}, }
}, }
},
{ /* SHA1 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.block_size = 64,
.key_size = {
.min = 1,
.max = 64,
.increment = 1
},
.digest_size = {
.min = 1,
.max = 20,
.increment = 1
},
.iv_size = { 0 }
}, }
}, }
},
{ /* SHA224 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA224_HMAC,
.block_size = 64,
.key_size = {
.min = 1,
.max = 64,
.increment = 1
},
.digest_size = {
.min = 1,
.max = 28,
.increment = 1
},
.iv_size = { 0 }
}, }
}, }
},
{ /* SHA256 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA256_HMAC,
.block_size = 64,
.key_size = {
.min = 1,
.max = 64,
.increment = 1
},
.digest_size = {
.min = 1,
.max = 32,
.increment = 1
},
.iv_size = { 0 }
}, }
}, }
},
{ /* SHA384 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA384_HMAC,
.block_size = 128,
.key_size = {
.min = 1,
.max = 128,
.increment = 1
},
.digest_size = {
.min = 1,
.max = 48,
.increment = 1
},
.iv_size = { 0 }
}, }
}, }
},
{ /* SHA512 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA512_HMAC,
.block_size = 128,
.key_size = {
.min = 1,
.max = 128,
.increment = 1
},
.digest_size = {
.min = 1,
.max = 64,
.increment = 1
},
.iv_size = { 0 }
}, }
}, }
},
{ /* AES GCM */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AEAD,
{.aead = {
.algo = RTE_CRYPTO_AEAD_AES_GCM,
.block_size = 16,
.key_size = {
.min = 16,
.max = 32,
.increment = 8
},
.digest_size = {
.min = 8,
.max = 16,
.increment = 4
},
.aad_size = {
.min = 0,
.max = 240,
.increment = 1
},
.iv_size = {
.min = 12,
.max = 12,
.increment = 0
},
}, }
}, }
},
{ /* AES CBC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_AES_CBC,
.block_size = 16,
.key_size = {
.min = 16,
.max = 32,
.increment = 8
},
.iv_size = {
.min = 16,
.max = 16,
.increment = 0
}
}, }
}, }
},
{ /* AES CTR */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_AES_CTR,
.block_size = 16,
.key_size = {
.min = 16,
.max = 32,
.increment = 8
},
.iv_size = {
.min = 16,
.max = 16,
.increment = 0
},
}, }
}, }
},
{ /* 3DES CBC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_3DES_CBC,
.block_size = 8,
.key_size = {
.min = 16,
.max = 24,
.increment = 8
},
.iv_size = {
.min = 8,
.max = 8,
.increment = 0
}
}, }
}, }
},
RTE_CRYPTODEV_END_OF_CAPABILITIES_LIST()
};
static const struct rte_cryptodev_capabilities dpaa_pdcp_capabilities[] = {
{ /* SNOW 3G (UIA2) */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SNOW3G_UIA2,
.block_size = 16,
.key_size = {
.min = 16,
.max = 16,
.increment = 0
},
.digest_size = {
.min = 4,
.max = 4,
.increment = 0
},
.iv_size = {
.min = 16,
.max = 16,
.increment = 0
}
}, }
}, }
},
{ /* SNOW 3G (UEA2) */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
.block_size = 16,
.key_size = {
.min = 16,
.max = 16,
.increment = 0
},
.iv_size = {
.min = 16,
.max = 16,
.increment = 0
}
}, }
}, }
},
{ /* AES CTR */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_AES_CTR,
.block_size = 16,
.key_size = {
.min = 16,
.max = 32,
.increment = 8
},
.iv_size = {
.min = 16,
.max = 16,
.increment = 0
}
}, }
}, }
},
{ /* NULL (AUTH) */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_NULL,
.block_size = 1,
.key_size = {
.min = 0,
.max = 0,
.increment = 0
},
.digest_size = {
.min = 0,
.max = 0,
.increment = 0
},
.iv_size = { 0 }
}, },
}, },
},
{ /* NULL (CIPHER) */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_NULL,
.block_size = 1,
.key_size = {
.min = 0,
.max = 0,
.increment = 0
},
.iv_size = {
.min = 0,
.max = 0,
.increment = 0
}
}, },
}, }
},
{ /* ZUC (EEA3) */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_ZUC_EEA3,
.block_size = 16,
.key_size = {
.min = 16,
.max = 16,
.increment = 0
},
.iv_size = {
.min = 16,
.max = 16,
.increment = 0
}
}, }
}, }
},
{ /* ZUC (EIA3) */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_ZUC_EIA3,
.block_size = 16,
.key_size = {
.min = 16,
.max = 16,
.increment = 0
},
.digest_size = {
.min = 4,
.max = 4,
.increment = 0
},
.iv_size = {
.min = 16,
.max = 16,
.increment = 0
}
}, }
}, }
},
RTE_CRYPTODEV_END_OF_CAPABILITIES_LIST()
};
static const struct rte_security_capability dpaa_sec_security_cap[] = {
{ /* IPsec Lookaside Protocol offload ESP Transport Egress */
.action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,
.protocol = RTE_SECURITY_PROTOCOL_IPSEC,
.ipsec = {
.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP,
.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL,
.direction = RTE_SECURITY_IPSEC_SA_DIR_EGRESS,
.options = { 0 }
},
.crypto_capabilities = dpaa_sec_capabilities
},
{ /* IPsec Lookaside Protocol offload ESP Tunnel Ingress */
.action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,
.protocol = RTE_SECURITY_PROTOCOL_IPSEC,
.ipsec = {
.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP,
.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL,
.direction = RTE_SECURITY_IPSEC_SA_DIR_INGRESS,
.options = { 0 }
},
.crypto_capabilities = dpaa_sec_capabilities
},
{ /* PDCP Lookaside Protocol offload Data */
.action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,
.protocol = RTE_SECURITY_PROTOCOL_PDCP,
.pdcp = {
.domain = RTE_SECURITY_PDCP_MODE_DATA,
},
.crypto_capabilities = dpaa_pdcp_capabilities
},
{ /* PDCP Lookaside Protocol offload Control */
.action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,
.protocol = RTE_SECURITY_PROTOCOL_PDCP,
.pdcp = {
.domain = RTE_SECURITY_PDCP_MODE_CONTROL,
},
.crypto_capabilities = dpaa_pdcp_capabilities
},
{
.action = RTE_SECURITY_ACTION_TYPE_NONE
}
};
/**
* Checksum
*
* @param buffer calculate chksum for buffer
* @param len buffer length
*
* @return checksum value in host cpu order
*/
static inline uint16_t
calc_chksum(void *buffer, int len)
{
uint16_t *buf = (uint16_t *)buffer;
uint32_t sum = 0;
uint16_t result;
for (sum = 0; len > 1; len -= 2)
sum += *buf++;
if (len == 1)
sum += *(unsigned char *)buf;
sum = (sum >> 16) + (sum & 0xFFFF);
sum += (sum >> 16);
result = ~sum;
return result;
}
#endif /* _DPAA_SEC_H_ */