numam-dpdk/app/test/test_memzone.c
Huawei Xie 693f715da4 remove extra parentheses in return statement
fix the error reported by checkpatch:
  "ERROR: return is not a function, parentheses are not required"

remove parentheses in return like:
  "return (logical expressions)"

remove parentheses in return a function like:
  "return (rte_mempool_lookup(...))"

Fixes: 6307b909b8 ("lib: remove extra parenthesis after return")

Signed-off-by: Huawei Xie <huawei.xie@intel.com>
2016-02-10 15:47:50 +01:00

880 lines
24 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <rte_random.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_common.h>
#include <rte_string_fns.h>
#include <rte_errno.h>
#include <rte_malloc.h>
#include "../../lib/librte_eal/common/malloc_elem.h"
#include "test.h"
/*
* Memzone
* =======
*
* - Search for three reserved zones or reserve them if they do not exist:
*
* - One is on any socket id.
* - The second is on socket 0.
* - The last one is on socket 1 (if socket 1 exists).
*
* - Check that the zones exist.
*
* - Check that the zones are cache-aligned.
*
* - Check that zones do not overlap.
*
* - Check that the zones are on the correct socket id.
*
* - Check that a lookup of the first zone returns the same pointer.
*
* - Check that it is not possible to create another zone with the
* same name as an existing zone.
*
* - Check flags for specific huge page size reservation
*/
/* Test if memory overlaps: return 1 if true, or 0 if false. */
static int
is_memory_overlap(phys_addr_t ptr1, size_t len1, phys_addr_t ptr2, size_t len2)
{
if (ptr2 >= ptr1 && (ptr2 - ptr1) < len1)
return 1;
else if (ptr2 < ptr1 && (ptr1 - ptr2) < len2)
return 1;
return 0;
}
static int
test_memzone_invalid_alignment(void)
{
const struct rte_memzone * mz;
mz = rte_memzone_lookup("invalid_alignment");
if (mz != NULL) {
printf("Zone with invalid alignment has been reserved\n");
return -1;
}
mz = rte_memzone_reserve_aligned("invalid_alignment", 100,
SOCKET_ID_ANY, 0, 100);
if (mz != NULL) {
printf("Zone with invalid alignment has been reserved\n");
return -1;
}
return 0;
}
static int
test_memzone_reserving_zone_size_bigger_than_the_maximum(void)
{
const struct rte_memzone * mz;
mz = rte_memzone_lookup("zone_size_bigger_than_the_maximum");
if (mz != NULL) {
printf("zone_size_bigger_than_the_maximum has been reserved\n");
return -1;
}
mz = rte_memzone_reserve("zone_size_bigger_than_the_maximum", (size_t)-1,
SOCKET_ID_ANY, 0);
if (mz != NULL) {
printf("It is impossible to reserve such big a memzone\n");
return -1;
}
return 0;
}
static int
test_memzone_reserve_flags(void)
{
const struct rte_memzone *mz;
const struct rte_memseg *ms;
int hugepage_2MB_avail = 0;
int hugepage_1GB_avail = 0;
int hugepage_16MB_avail = 0;
int hugepage_16GB_avail = 0;
const size_t size = 100;
int i = 0;
ms = rte_eal_get_physmem_layout();
for (i = 0; i < RTE_MAX_MEMSEG; i++) {
if (ms[i].hugepage_sz == RTE_PGSIZE_2M)
hugepage_2MB_avail = 1;
if (ms[i].hugepage_sz == RTE_PGSIZE_1G)
hugepage_1GB_avail = 1;
if (ms[i].hugepage_sz == RTE_PGSIZE_16M)
hugepage_16MB_avail = 1;
if (ms[i].hugepage_sz == RTE_PGSIZE_16G)
hugepage_16GB_avail = 1;
}
/* Display the availability of 2MB ,1GB, 16MB, 16GB pages */
if (hugepage_2MB_avail)
printf("2MB Huge pages available\n");
if (hugepage_1GB_avail)
printf("1GB Huge pages available\n");
if (hugepage_16MB_avail)
printf("16MB Huge pages available\n");
if (hugepage_16GB_avail)
printf("16GB Huge pages available\n");
/*
* If 2MB pages available, check that a small memzone is correctly
* reserved from 2MB huge pages when requested by the RTE_MEMZONE_2MB flag.
* Also check that RTE_MEMZONE_SIZE_HINT_ONLY flag only defaults to an
* available page size (i.e 1GB ) when 2MB pages are unavailable.
*/
if (hugepage_2MB_avail) {
mz = rte_memzone_reserve("flag_zone_2M", size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB);
if (mz == NULL) {
printf("MEMZONE FLAG 2MB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_2M) {
printf("hugepage_sz not equal 2M\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 2MB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_2M) {
printf("hugepage_sz not equal 2M\n");
return -1;
}
/* Check if 1GB huge pages are unavailable, that function fails unless
* HINT flag is indicated
*/
if (!hugepage_1GB_avail) {
mz = rte_memzone_reserve("flag_zone_1G_HINT", size, SOCKET_ID_ANY,
RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 1GB & HINT\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_2M) {
printf("hugepage_sz not equal 2M\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_1G", size, SOCKET_ID_ANY,
RTE_MEMZONE_1GB);
if (mz != NULL) {
printf("MEMZONE FLAG 1GB\n");
return -1;
}
}
}
/*As with 2MB tests above for 1GB huge page requests*/
if (hugepage_1GB_avail) {
mz = rte_memzone_reserve("flag_zone_1G", size, SOCKET_ID_ANY,
RTE_MEMZONE_1GB);
if (mz == NULL) {
printf("MEMZONE FLAG 1GB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_1G) {
printf("hugepage_sz not equal 1G\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_1G_HINT", size, SOCKET_ID_ANY,
RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 1GB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_1G) {
printf("hugepage_sz not equal 1G\n");
return -1;
}
/* Check if 1GB huge pages are unavailable, that function fails unless
* HINT flag is indicated
*/
if (!hugepage_2MB_avail) {
mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL){
printf("MEMZONE FLAG 2MB & HINT\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_1G) {
printf("hugepage_sz not equal 1G\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_2M", size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB);
if (mz != NULL) {
printf("MEMZONE FLAG 2MB\n");
return -1;
}
}
if (hugepage_2MB_avail && hugepage_1GB_avail) {
mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB|RTE_MEMZONE_1GB);
if (mz != NULL) {
printf("BOTH SIZES SET\n");
return -1;
}
}
}
/*
* This option is for IBM Power. If 16MB pages available, check
* that a small memzone is correctly reserved from 16MB huge pages
* when requested by the RTE_MEMZONE_16MB flag. Also check that
* RTE_MEMZONE_SIZE_HINT_ONLY flag only defaults to an available
* page size (i.e 16GB ) when 16MB pages are unavailable.
*/
if (hugepage_16MB_avail) {
mz = rte_memzone_reserve("flag_zone_16M", size, SOCKET_ID_ANY,
RTE_MEMZONE_16MB);
if (mz == NULL) {
printf("MEMZONE FLAG 16MB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16M) {
printf("hugepage_sz not equal 16M\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_16M_HINT", size,
SOCKET_ID_ANY, RTE_MEMZONE_16MB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 2MB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16M) {
printf("hugepage_sz not equal 16M\n");
return -1;
}
/* Check if 1GB huge pages are unavailable, that function fails
* unless HINT flag is indicated
*/
if (!hugepage_16GB_avail) {
mz = rte_memzone_reserve("flag_zone_16G_HINT", size,
SOCKET_ID_ANY,
RTE_MEMZONE_16GB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 16GB & HINT\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16M) {
printf("hugepage_sz not equal 16M\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_16G", size,
SOCKET_ID_ANY, RTE_MEMZONE_16GB);
if (mz != NULL) {
printf("MEMZONE FLAG 16GB\n");
return -1;
}
}
}
/*As with 16MB tests above for 16GB huge page requests*/
if (hugepage_16GB_avail) {
mz = rte_memzone_reserve("flag_zone_16G", size, SOCKET_ID_ANY,
RTE_MEMZONE_16GB);
if (mz == NULL) {
printf("MEMZONE FLAG 16GB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16G) {
printf("hugepage_sz not equal 16G\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_16G_HINT", size,
SOCKET_ID_ANY, RTE_MEMZONE_16GB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 16GB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16G) {
printf("hugepage_sz not equal 16G\n");
return -1;
}
/* Check if 1GB huge pages are unavailable, that function fails
* unless HINT flag is indicated
*/
if (!hugepage_16MB_avail) {
mz = rte_memzone_reserve("flag_zone_16M_HINT", size,
SOCKET_ID_ANY,
RTE_MEMZONE_16MB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 16MB & HINT\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16G) {
printf("hugepage_sz not equal 16G\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_16M", size,
SOCKET_ID_ANY, RTE_MEMZONE_16MB);
if (mz != NULL) {
printf("MEMZONE FLAG 16MB\n");
return -1;
}
}
if (hugepage_16MB_avail && hugepage_16GB_avail) {
mz = rte_memzone_reserve("flag_zone_16M_HINT", size,
SOCKET_ID_ANY,
RTE_MEMZONE_16MB|RTE_MEMZONE_16GB);
if (mz != NULL) {
printf("BOTH SIZES SET\n");
return -1;
}
}
}
return 0;
}
/* Find the heap with the greatest free block size */
static size_t
find_max_block_free_size(const unsigned _align)
{
struct rte_malloc_socket_stats stats;
unsigned i, align = _align;
size_t len = 0;
for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
rte_malloc_get_socket_stats(i, &stats);
if (stats.greatest_free_size > len)
len = stats.greatest_free_size;
}
if (align < RTE_CACHE_LINE_SIZE)
align = RTE_CACHE_LINE_ROUNDUP(align+1);
if (len <= MALLOC_ELEM_OVERHEAD + align)
return 0;
return len - MALLOC_ELEM_OVERHEAD - align;
}
static int
test_memzone_reserve_max(void)
{
const struct rte_memzone *mz;
size_t maxlen;
maxlen = find_max_block_free_size(0);
if (maxlen == 0) {
printf("There is no space left!\n");
return 0;
}
mz = rte_memzone_reserve("max_zone", 0, SOCKET_ID_ANY, 0);
if (mz == NULL){
printf("Failed to reserve a big chunk of memory - %s\n",
rte_strerror(rte_errno));
rte_dump_physmem_layout(stdout);
rte_memzone_dump(stdout);
return -1;
}
if (mz->len != maxlen) {
printf("Memzone reserve with 0 size did not return bigest block\n");
printf("Expected size = %zu, actual size = %zu\n", maxlen, mz->len);
rte_dump_physmem_layout(stdout);
rte_memzone_dump(stdout);
return -1;
}
return 0;
}
static int
test_memzone_reserve_max_aligned(void)
{
const struct rte_memzone *mz;
size_t maxlen = 0;
/* random alignment */
rte_srand((unsigned)rte_rdtsc());
const unsigned align = 1 << ((rte_rand() % 8) + 5); /* from 128 up to 4k alignment */
maxlen = find_max_block_free_size(align);
if (maxlen == 0) {
printf("There is no space left for biggest %u-aligned memzone!\n", align);
return 0;
}
mz = rte_memzone_reserve_aligned("max_zone_aligned", 0,
SOCKET_ID_ANY, 0, align);
if (mz == NULL){
printf("Failed to reserve a big chunk of memory - %s\n",
rte_strerror(rte_errno));
rte_dump_physmem_layout(stdout);
rte_memzone_dump(stdout);
return -1;
}
if (mz->len != maxlen) {
printf("Memzone reserve with 0 size and alignment %u did not return"
" bigest block\n", align);
printf("Expected size = %zu, actual size = %zu\n",
maxlen, mz->len);
rte_dump_physmem_layout(stdout);
rte_memzone_dump(stdout);
return -1;
}
return 0;
}
static int
test_memzone_aligned(void)
{
const struct rte_memzone *memzone_aligned_32;
const struct rte_memzone *memzone_aligned_128;
const struct rte_memzone *memzone_aligned_256;
const struct rte_memzone *memzone_aligned_512;
const struct rte_memzone *memzone_aligned_1024;
/* memzone that should automatically be adjusted to align on 64 bytes */
memzone_aligned_32 = rte_memzone_reserve_aligned("aligned_32", 100,
SOCKET_ID_ANY, 0, 32);
/* memzone that is supposed to be aligned on a 128 byte boundary */
memzone_aligned_128 = rte_memzone_reserve_aligned("aligned_128", 100,
SOCKET_ID_ANY, 0, 128);
/* memzone that is supposed to be aligned on a 256 byte boundary */
memzone_aligned_256 = rte_memzone_reserve_aligned("aligned_256", 100,
SOCKET_ID_ANY, 0, 256);
/* memzone that is supposed to be aligned on a 512 byte boundary */
memzone_aligned_512 = rte_memzone_reserve_aligned("aligned_512", 100,
SOCKET_ID_ANY, 0, 512);
/* memzone that is supposed to be aligned on a 1024 byte boundary */
memzone_aligned_1024 = rte_memzone_reserve_aligned("aligned_1024", 100,
SOCKET_ID_ANY, 0, 1024);
printf("check alignments and lengths\n");
if (memzone_aligned_32 == NULL) {
printf("Unable to reserve 64-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_32->phys_addr & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (((uintptr_t) memzone_aligned_32->addr & RTE_CACHE_LINE_MASK) != 0)
return -1;
if ((memzone_aligned_32->len & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (memzone_aligned_128 == NULL) {
printf("Unable to reserve 128-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_128->phys_addr & 127) != 0)
return -1;
if (((uintptr_t) memzone_aligned_128->addr & 127) != 0)
return -1;
if ((memzone_aligned_128->len & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (memzone_aligned_256 == NULL) {
printf("Unable to reserve 256-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_256->phys_addr & 255) != 0)
return -1;
if (((uintptr_t) memzone_aligned_256->addr & 255) != 0)
return -1;
if ((memzone_aligned_256->len & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (memzone_aligned_512 == NULL) {
printf("Unable to reserve 512-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_512->phys_addr & 511) != 0)
return -1;
if (((uintptr_t) memzone_aligned_512->addr & 511) != 0)
return -1;
if ((memzone_aligned_512->len & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (memzone_aligned_1024 == NULL) {
printf("Unable to reserve 1024-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_1024->phys_addr & 1023) != 0)
return -1;
if (((uintptr_t) memzone_aligned_1024->addr & 1023) != 0)
return -1;
if ((memzone_aligned_1024->len & RTE_CACHE_LINE_MASK) != 0)
return -1;
/* check that zones don't overlap */
printf("check overlapping\n");
if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
memzone_aligned_128->phys_addr, memzone_aligned_128->len))
return -1;
if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
memzone_aligned_256->phys_addr, memzone_aligned_256->len))
return -1;
if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
memzone_aligned_512->phys_addr, memzone_aligned_512->len))
return -1;
if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
return -1;
if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
memzone_aligned_256->phys_addr, memzone_aligned_256->len))
return -1;
if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
memzone_aligned_512->phys_addr, memzone_aligned_512->len))
return -1;
if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
return -1;
if (is_memory_overlap(memzone_aligned_256->phys_addr, memzone_aligned_256->len,
memzone_aligned_512->phys_addr, memzone_aligned_512->len))
return -1;
if (is_memory_overlap(memzone_aligned_256->phys_addr, memzone_aligned_256->len,
memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
return -1;
if (is_memory_overlap(memzone_aligned_512->phys_addr, memzone_aligned_512->len,
memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
return -1;
return 0;
}
static int
check_memzone_bounded(const char *name, uint32_t len, uint32_t align,
uint32_t bound)
{
const struct rte_memzone *mz;
phys_addr_t bmask;
bmask = ~((phys_addr_t)bound - 1);
if ((mz = rte_memzone_reserve_bounded(name, len, SOCKET_ID_ANY, 0,
align, bound)) == NULL) {
printf("%s(%s): memzone creation failed\n",
__func__, name);
return -1;
}
if ((mz->phys_addr & ((phys_addr_t)align - 1)) != 0) {
printf("%s(%s): invalid phys addr alignment\n",
__func__, mz->name);
return -1;
}
if (((uintptr_t) mz->addr & ((uintptr_t)align - 1)) != 0) {
printf("%s(%s): invalid virtual addr alignment\n",
__func__, mz->name);
return -1;
}
if ((mz->len & RTE_CACHE_LINE_MASK) != 0 || mz->len < len ||
mz->len < RTE_CACHE_LINE_SIZE) {
printf("%s(%s): invalid length\n",
__func__, mz->name);
return -1;
}
if ((mz->phys_addr & bmask) !=
((mz->phys_addr + mz->len - 1) & bmask)) {
printf("%s(%s): invalid memzone boundary %u crossed\n",
__func__, mz->name, bound);
return -1;
}
return 0;
}
static int
test_memzone_bounded(void)
{
const struct rte_memzone *memzone_err;
const char *name;
int rc;
/* should fail as boundary is not power of two */
name = "bounded_error_31";
if ((memzone_err = rte_memzone_reserve_bounded(name,
100, SOCKET_ID_ANY, 0, 32, UINT32_MAX)) != NULL) {
printf("%s(%s)created a memzone with invalid boundary "
"conditions\n", __func__, memzone_err->name);
return -1;
}
/* should fail as len is greater then boundary */
name = "bounded_error_32";
if ((memzone_err = rte_memzone_reserve_bounded(name,
100, SOCKET_ID_ANY, 0, 32, 32)) != NULL) {
printf("%s(%s)created a memzone with invalid boundary "
"conditions\n", __func__, memzone_err->name);
return -1;
}
if ((rc = check_memzone_bounded("bounded_128", 100, 128, 128)) != 0)
return rc;
if ((rc = check_memzone_bounded("bounded_256", 100, 256, 128)) != 0)
return rc;
if ((rc = check_memzone_bounded("bounded_1K", 100, 64, 1024)) != 0)
return rc;
if ((rc = check_memzone_bounded("bounded_1K_MAX", 0, 64, 1024)) != 0)
return rc;
return 0;
}
static int
test_memzone_free(void)
{
const struct rte_memzone *mz[RTE_MAX_MEMZONE];
int i;
char name[20];
mz[0] = rte_memzone_reserve("tempzone0", 2000, SOCKET_ID_ANY, 0);
mz[1] = rte_memzone_reserve("tempzone1", 4000, SOCKET_ID_ANY, 0);
if (mz[0] > mz[1])
return -1;
if (!rte_memzone_lookup("tempzone0"))
return -1;
if (!rte_memzone_lookup("tempzone1"))
return -1;
if (rte_memzone_free(mz[0])) {
printf("Fail memzone free - tempzone0\n");
return -1;
}
if (rte_memzone_lookup("tempzone0")) {
printf("Found previously free memzone - tempzone0\n");
return -1;
}
mz[2] = rte_memzone_reserve("tempzone2", 2000, SOCKET_ID_ANY, 0);
if (mz[2] > mz[1]) {
printf("tempzone2 should have gotten the free entry from tempzone0\n");
return -1;
}
if (rte_memzone_free(mz[2])) {
printf("Fail memzone free - tempzone2\n");
return -1;
}
if (rte_memzone_lookup("tempzone2")) {
printf("Found previously free memzone - tempzone2\n");
return -1;
}
if (rte_memzone_free(mz[1])) {
printf("Fail memzone free - tempzone1\n");
return -1;
}
if (rte_memzone_lookup("tempzone1")) {
printf("Found previously free memzone - tempzone1\n");
return -1;
}
i = 0;
do {
snprintf(name, sizeof(name), "tempzone%u", i);
mz[i] = rte_memzone_reserve(name, 1, SOCKET_ID_ANY, 0);
} while (mz[i++] != NULL);
if (rte_memzone_free(mz[0])) {
printf("Fail memzone free - tempzone0\n");
return -1;
}
mz[0] = rte_memzone_reserve("tempzone0new", 0, SOCKET_ID_ANY, 0);
if (mz[0] == NULL) {
printf("Fail to create memzone - tempzone0new - when MAX memzones were "
"created and one was free\n");
return -1;
}
for (i = i - 2; i >= 0; i--) {
if (rte_memzone_free(mz[i])) {
printf("Fail memzone free - tempzone%d\n", i);
return -1;
}
}
return 0;
}
static int
test_memzone(void)
{
const struct rte_memzone *memzone1;
const struct rte_memzone *memzone2;
const struct rte_memzone *memzone3;
const struct rte_memzone *memzone4;
const struct rte_memzone *mz;
memzone1 = rte_memzone_reserve("testzone1", 100,
SOCKET_ID_ANY, 0);
memzone2 = rte_memzone_reserve("testzone2", 1000,
0, 0);
memzone3 = rte_memzone_reserve("testzone3", 1000,
1, 0);
memzone4 = rte_memzone_reserve("testzone4", 1024,
SOCKET_ID_ANY, 0);
/* memzone3 may be NULL if we don't have NUMA */
if (memzone1 == NULL || memzone2 == NULL || memzone4 == NULL)
return -1;
rte_memzone_dump(stdout);
/* check cache-line alignments */
printf("check alignments and lengths\n");
if ((memzone1->phys_addr & RTE_CACHE_LINE_MASK) != 0)
return -1;
if ((memzone2->phys_addr & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (memzone3 != NULL && (memzone3->phys_addr & RTE_CACHE_LINE_MASK) != 0)
return -1;
if ((memzone1->len & RTE_CACHE_LINE_MASK) != 0 || memzone1->len == 0)
return -1;
if ((memzone2->len & RTE_CACHE_LINE_MASK) != 0 || memzone2->len == 0)
return -1;
if (memzone3 != NULL && ((memzone3->len & RTE_CACHE_LINE_MASK) != 0 ||
memzone3->len == 0))
return -1;
if (memzone4->len != 1024)
return -1;
/* check that zones don't overlap */
printf("check overlapping\n");
if (is_memory_overlap(memzone1->phys_addr, memzone1->len,
memzone2->phys_addr, memzone2->len))
return -1;
if (memzone3 != NULL &&
is_memory_overlap(memzone1->phys_addr, memzone1->len,
memzone3->phys_addr, memzone3->len))
return -1;
if (memzone3 != NULL &&
is_memory_overlap(memzone2->phys_addr, memzone2->len,
memzone3->phys_addr, memzone3->len))
return -1;
printf("check socket ID\n");
/* memzone2 must be on socket id 0 and memzone3 on socket 1 */
if (memzone2->socket_id != 0)
return -1;
if (memzone3 != NULL && memzone3->socket_id != 1)
return -1;
printf("test zone lookup\n");
mz = rte_memzone_lookup("testzone1");
if (mz != memzone1)
return -1;
printf("test duplcate zone name\n");
mz = rte_memzone_reserve("testzone1", 100,
SOCKET_ID_ANY, 0);
if (mz != NULL)
return -1;
printf("test free memzone\n");
if (test_memzone_free() < 0)
return -1;
printf("test reserving memzone with bigger size than the maximum\n");
if (test_memzone_reserving_zone_size_bigger_than_the_maximum() < 0)
return -1;
printf("test memzone_reserve flags\n");
if (test_memzone_reserve_flags() < 0)
return -1;
printf("test alignment for memzone_reserve\n");
if (test_memzone_aligned() < 0)
return -1;
printf("test boundary alignment for memzone_reserve\n");
if (test_memzone_bounded() < 0)
return -1;
printf("test invalid alignment for memzone_reserve\n");
if (test_memzone_invalid_alignment() < 0)
return -1;
printf("test reserving the largest size memzone possible\n");
if (test_memzone_reserve_max() < 0)
return -1;
printf("test reserving the largest size aligned memzone possible\n");
if (test_memzone_reserve_max_aligned() < 0)
return -1;
return 0;
}
static struct test_command memzone_cmd = {
.command = "memzone_autotest",
.callback = test_memzone,
};
REGISTER_TEST_COMMAND(memzone_cmd);