numam-dpdk/drivers/common/cpt/cpt_ucode_asym.h
Archana Muniganti ecd070ac64 common/cpt: use predefined macros
Replace redundant macro ROUNDUP* with predefined macros.

Signed-off-by: Archana Muniganti <marchana@marvell.com>
Acked-by: Anoob Joseph <anoobj@marvell.com>
2020-11-12 21:43:54 +01:00

902 lines
25 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2019 Marvell International Ltd.
*/
#ifndef _CPT_UCODE_ASYM_H_
#define _CPT_UCODE_ASYM_H_
#include <rte_common.h>
#include <rte_crypto_asym.h>
#include <rte_malloc.h>
#include "cpt_common.h"
#include "cpt_hw_types.h"
#include "cpt_mcode_defines.h"
static __rte_always_inline void
cpt_modex_param_normalize(uint8_t **data, size_t *len)
{
size_t i;
/* Strip leading NUL bytes */
for (i = 0; i < *len; i++) {
if ((*data)[i] != 0)
break;
}
*data += i;
*len -= i;
}
static __rte_always_inline int
cpt_fill_modex_params(struct cpt_asym_sess_misc *sess,
struct rte_crypto_asym_xform *xform)
{
struct rte_crypto_modex_xform *ctx = &sess->mod_ctx;
size_t exp_len = xform->modex.exponent.length;
size_t mod_len = xform->modex.modulus.length;
uint8_t *exp = xform->modex.exponent.data;
uint8_t *mod = xform->modex.modulus.data;
cpt_modex_param_normalize(&mod, &mod_len);
cpt_modex_param_normalize(&exp, &exp_len);
if (unlikely(exp_len == 0 || mod_len == 0))
return -EINVAL;
if (unlikely(exp_len > mod_len)) {
CPT_LOG_DP_ERR("Exponent length greater than modulus length is not supported");
return -ENOTSUP;
}
/* Allocate buffer to hold modexp params */
ctx->modulus.data = rte_malloc(NULL, mod_len + exp_len, 0);
if (ctx->modulus.data == NULL) {
CPT_LOG_DP_ERR("Could not allocate buffer for modex params");
return -ENOMEM;
}
/* Set up modexp prime modulus and private exponent */
memcpy(ctx->modulus.data, mod, mod_len);
ctx->exponent.data = ctx->modulus.data + mod_len;
memcpy(ctx->exponent.data, exp, exp_len);
ctx->modulus.length = mod_len;
ctx->exponent.length = exp_len;
return 0;
}
static __rte_always_inline int
cpt_fill_rsa_params(struct cpt_asym_sess_misc *sess,
struct rte_crypto_asym_xform *xform)
{
struct rte_crypto_rsa_priv_key_qt qt = xform->rsa.qt;
struct rte_crypto_rsa_xform *xfrm_rsa = &xform->rsa;
struct rte_crypto_rsa_xform *rsa = &sess->rsa_ctx;
size_t mod_len = xfrm_rsa->n.length;
size_t exp_len = xfrm_rsa->e.length;
uint64_t total_size;
size_t len = 0;
/* Make sure key length used is not more than mod_len/2 */
if (qt.p.data != NULL)
len = (((mod_len / 2) < qt.p.length) ? len : qt.p.length);
/* Total size required for RSA key params(n,e,(q,dQ,p,dP,qInv)) */
total_size = mod_len + exp_len + 5 * len;
/* Allocate buffer to hold all RSA keys */
rsa->n.data = rte_malloc(NULL, total_size, 0);
if (rsa->n.data == NULL) {
CPT_LOG_DP_ERR("Could not allocate buffer for RSA keys");
return -ENOMEM;
}
/* Set up RSA prime modulus and public key exponent */
memcpy(rsa->n.data, xfrm_rsa->n.data, mod_len);
rsa->e.data = rsa->n.data + mod_len;
memcpy(rsa->e.data, xfrm_rsa->e.data, exp_len);
/* Private key in quintuple format */
if (len != 0) {
rsa->qt.q.data = rsa->e.data + exp_len;
memcpy(rsa->qt.q.data, qt.q.data, qt.q.length);
rsa->qt.dQ.data = rsa->qt.q.data + qt.q.length;
memcpy(rsa->qt.dQ.data, qt.dQ.data, qt.dQ.length);
rsa->qt.p.data = rsa->qt.dQ.data + qt.dQ.length;
memcpy(rsa->qt.p.data, qt.p.data, qt.p.length);
rsa->qt.dP.data = rsa->qt.p.data + qt.p.length;
memcpy(rsa->qt.dP.data, qt.dP.data, qt.dP.length);
rsa->qt.qInv.data = rsa->qt.dP.data + qt.dP.length;
memcpy(rsa->qt.qInv.data, qt.qInv.data, qt.qInv.length);
rsa->qt.q.length = qt.q.length;
rsa->qt.dQ.length = qt.dQ.length;
rsa->qt.p.length = qt.p.length;
rsa->qt.dP.length = qt.dP.length;
rsa->qt.qInv.length = qt.qInv.length;
}
rsa->n.length = mod_len;
rsa->e.length = exp_len;
return 0;
}
static __rte_always_inline int
cpt_fill_ec_params(struct cpt_asym_sess_misc *sess,
struct rte_crypto_asym_xform *xform)
{
struct cpt_asym_ec_ctx *ec = &sess->ec_ctx;
switch (xform->ec.curve_id) {
case RTE_CRYPTO_EC_GROUP_SECP192R1:
ec->curveid = CPT_EC_ID_P192;
break;
case RTE_CRYPTO_EC_GROUP_SECP224R1:
ec->curveid = CPT_EC_ID_P224;
break;
case RTE_CRYPTO_EC_GROUP_SECP256R1:
ec->curveid = CPT_EC_ID_P256;
break;
case RTE_CRYPTO_EC_GROUP_SECP384R1:
ec->curveid = CPT_EC_ID_P384;
break;
case RTE_CRYPTO_EC_GROUP_SECP521R1:
ec->curveid = CPT_EC_ID_P521;
break;
default:
/* Only NIST curves (FIPS 186-4) are supported */
CPT_LOG_DP_ERR("Unsupported curve");
return -EINVAL;
}
return 0;
}
static __rte_always_inline int
cpt_fill_asym_session_parameters(struct cpt_asym_sess_misc *sess,
struct rte_crypto_asym_xform *xform)
{
int ret;
sess->xfrm_type = xform->xform_type;
switch (xform->xform_type) {
case RTE_CRYPTO_ASYM_XFORM_RSA:
ret = cpt_fill_rsa_params(sess, xform);
break;
case RTE_CRYPTO_ASYM_XFORM_MODEX:
ret = cpt_fill_modex_params(sess, xform);
break;
case RTE_CRYPTO_ASYM_XFORM_ECDSA:
/* Fall through */
case RTE_CRYPTO_ASYM_XFORM_ECPM:
ret = cpt_fill_ec_params(sess, xform);
break;
default:
CPT_LOG_DP_ERR("Unsupported transform type");
return -ENOTSUP;
}
return ret;
}
static __rte_always_inline void
cpt_free_asym_session_parameters(struct cpt_asym_sess_misc *sess)
{
struct rte_crypto_modex_xform *mod;
struct rte_crypto_rsa_xform *rsa;
switch (sess->xfrm_type) {
case RTE_CRYPTO_ASYM_XFORM_RSA:
rsa = &sess->rsa_ctx;
if (rsa->n.data)
rte_free(rsa->n.data);
break;
case RTE_CRYPTO_ASYM_XFORM_MODEX:
mod = &sess->mod_ctx;
if (mod->modulus.data)
rte_free(mod->modulus.data);
break;
case RTE_CRYPTO_ASYM_XFORM_ECDSA:
/* Fall through */
case RTE_CRYPTO_ASYM_XFORM_ECPM:
break;
default:
CPT_LOG_DP_ERR("Invalid transform type");
break;
}
}
static __rte_always_inline void
cpt_fill_req_comp_addr(struct cpt_request_info *req, buf_ptr_t addr)
{
void *completion_addr = RTE_PTR_ALIGN(addr.vaddr, 16);
/* Pointer to cpt_res_s, updated by CPT */
req->completion_addr = (volatile uint64_t *)completion_addr;
req->comp_baddr = addr.dma_addr +
RTE_PTR_DIFF(completion_addr, addr.vaddr);
*(req->completion_addr) = COMPLETION_CODE_INIT;
}
static __rte_always_inline int
cpt_modex_prep(struct asym_op_params *modex_params,
struct rte_crypto_modex_xform *mod)
{
struct cpt_request_info *req = modex_params->req;
phys_addr_t mphys = modex_params->meta_buf;
uint32_t exp_len = mod->exponent.length;
uint32_t mod_len = mod->modulus.length;
struct rte_crypto_mod_op_param mod_op;
struct rte_crypto_op **op;
vq_cmd_word0_t vq_cmd_w0;
uint64_t total_key_len;
uint32_t dlen, rlen;
uint32_t base_len;
buf_ptr_t caddr;
uint8_t *dptr;
/* Extracting modex op form params->req->op[1]->asym->modex */
op = RTE_PTR_ADD(req->op, sizeof(uintptr_t));
mod_op = ((struct rte_crypto_op *)*op)->asym->modex;
base_len = mod_op.base.length;
if (unlikely(base_len > mod_len)) {
CPT_LOG_DP_ERR("Base length greater than modulus length is not supported");
(*op)->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
return -ENOTSUP;
}
total_key_len = mod_len + exp_len;
/* Input buffer */
dptr = RTE_PTR_ADD(req, sizeof(struct cpt_request_info));
memcpy(dptr, mod->modulus.data, total_key_len);
dptr += total_key_len;
memcpy(dptr, mod_op.base.data, base_len);
dptr += base_len;
dlen = total_key_len + base_len;
/* Result buffer */
rlen = mod_len;
/* Setup opcodes */
vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_MODEX;
vq_cmd_w0.s.opcode.minor = CPT_MINOR_OP_MODEX;
/* GP op header */
vq_cmd_w0.s.param1 = mod_len;
vq_cmd_w0.s.param2 = exp_len;
vq_cmd_w0.s.dlen = dlen;
/* Filling cpt_request_info structure */
req->ist.ei0 = vq_cmd_w0.u64;
req->ist.ei1 = mphys;
req->ist.ei2 = mphys + dlen;
/* Result pointer to store result data */
req->rptr = dptr;
/* alternate_caddr to write completion status of the microcode */
req->alternate_caddr = (uint64_t *)(dptr + rlen);
*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
/* Preparing completion addr, +1 for completion code */
caddr.vaddr = dptr + rlen + 1;
caddr.dma_addr = mphys + dlen + rlen + 1;
cpt_fill_req_comp_addr(req, caddr);
return 0;
}
static __rte_always_inline void
cpt_rsa_prep(struct asym_op_params *rsa_params,
struct rte_crypto_rsa_xform *rsa,
rte_crypto_param *crypto_param)
{
struct cpt_request_info *req = rsa_params->req;
phys_addr_t mphys = rsa_params->meta_buf;
struct rte_crypto_rsa_op_param rsa_op;
uint32_t mod_len = rsa->n.length;
uint32_t exp_len = rsa->e.length;
struct rte_crypto_op **op;
vq_cmd_word0_t vq_cmd_w0;
uint64_t total_key_len;
uint32_t dlen, rlen;
uint32_t in_size;
buf_ptr_t caddr;
uint8_t *dptr;
/* Extracting rsa op form params->req->op[1]->asym->rsa */
op = RTE_PTR_ADD(req->op, sizeof(uintptr_t));
rsa_op = ((struct rte_crypto_op *)*op)->asym->rsa;
total_key_len = mod_len + exp_len;
/* Input buffer */
dptr = RTE_PTR_ADD(req, sizeof(struct cpt_request_info));
memcpy(dptr, rsa->n.data, total_key_len);
dptr += total_key_len;
in_size = crypto_param->length;
memcpy(dptr, crypto_param->data, in_size);
dptr += in_size;
dlen = total_key_len + in_size;
/* Result buffer */
rlen = mod_len;
if (rsa_op.pad == RTE_CRYPTO_RSA_PADDING_NONE) {
/* Use mod_exp operation for no_padding type */
vq_cmd_w0.s.opcode.minor = CPT_MINOR_OP_MODEX;
vq_cmd_w0.s.param2 = exp_len;
} else {
if (rsa_op.op_type == RTE_CRYPTO_ASYM_OP_ENCRYPT) {
vq_cmd_w0.s.opcode.minor = CPT_MINOR_OP_PKCS_ENC;
/* Public key encrypt, use BT2*/
vq_cmd_w0.s.param2 = CPT_BLOCK_TYPE2 |
((uint16_t)(exp_len) << 1);
} else if (rsa_op.op_type == RTE_CRYPTO_ASYM_OP_VERIFY) {
vq_cmd_w0.s.opcode.minor = CPT_MINOR_OP_PKCS_DEC;
/* Public key decrypt, use BT1 */
vq_cmd_w0.s.param2 = CPT_BLOCK_TYPE1;
/* + 2 for decrypted len */
rlen += 2;
}
}
vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_MODEX;
/* GP op header */
vq_cmd_w0.s.param1 = mod_len;
vq_cmd_w0.s.dlen = dlen;
/* Filling cpt_request_info structure */
req->ist.ei0 = vq_cmd_w0.u64;
req->ist.ei1 = mphys;
req->ist.ei2 = mphys + dlen;
/* Result pointer to store result data */
req->rptr = dptr;
/* alternate_caddr to write completion status of the microcode */
req->alternate_caddr = (uint64_t *)(dptr + rlen);
*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
/* Preparing completion addr, +1 for completion code */
caddr.vaddr = dptr + rlen + 1;
caddr.dma_addr = mphys + dlen + rlen + 1;
cpt_fill_req_comp_addr(req, caddr);
}
static __rte_always_inline void
cpt_rsa_crt_prep(struct asym_op_params *rsa_params,
struct rte_crypto_rsa_xform *rsa,
rte_crypto_param *crypto_param)
{
struct cpt_request_info *req = rsa_params->req;
phys_addr_t mphys = rsa_params->meta_buf;
uint32_t qInv_len = rsa->qt.qInv.length;
struct rte_crypto_rsa_op_param rsa_op;
uint32_t dP_len = rsa->qt.dP.length;
uint32_t dQ_len = rsa->qt.dQ.length;
uint32_t p_len = rsa->qt.p.length;
uint32_t q_len = rsa->qt.q.length;
uint32_t mod_len = rsa->n.length;
struct rte_crypto_op **op;
vq_cmd_word0_t vq_cmd_w0;
uint64_t total_key_len;
uint32_t dlen, rlen;
uint32_t in_size;
buf_ptr_t caddr;
uint8_t *dptr;
/* Extracting rsa op form params->req->op[1]->asym->rsa */
op = RTE_PTR_ADD(req->op, sizeof(uintptr_t));
rsa_op = ((struct rte_crypto_op *)*op)->asym->rsa;
total_key_len = p_len + q_len + dP_len + dQ_len + qInv_len;
/* Input buffer */
dptr = RTE_PTR_ADD(req, sizeof(struct cpt_request_info));
memcpy(dptr, rsa->qt.q.data, total_key_len);
dptr += total_key_len;
in_size = crypto_param->length;
memcpy(dptr, crypto_param->data, in_size);
dptr += in_size;
dlen = total_key_len + in_size;
/* Result buffer */
rlen = mod_len;
if (rsa_op.pad == RTE_CRYPTO_RSA_PADDING_NONE) {
/*Use mod_exp operation for no_padding type */
vq_cmd_w0.s.opcode.minor = CPT_MINOR_OP_MODEX_CRT;
} else {
if (rsa_op.op_type == RTE_CRYPTO_ASYM_OP_SIGN) {
vq_cmd_w0.s.opcode.minor = CPT_MINOR_OP_PKCS_ENC_CRT;
/* Private encrypt, use BT1 */
vq_cmd_w0.s.param2 = CPT_BLOCK_TYPE1;
} else if (rsa_op.op_type == RTE_CRYPTO_ASYM_OP_DECRYPT) {
vq_cmd_w0.s.opcode.minor = CPT_MINOR_OP_PKCS_DEC_CRT;
/* Private decrypt, use BT2 */
vq_cmd_w0.s.param2 = CPT_BLOCK_TYPE2;
/* + 2 for decrypted len */
rlen += 2;
}
}
vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_MODEX;
/* GP op header */
vq_cmd_w0.s.param1 = mod_len;
vq_cmd_w0.s.dlen = dlen;
/* Filling cpt_request_info structure */
req->ist.ei0 = vq_cmd_w0.u64;
req->ist.ei1 = mphys;
req->ist.ei2 = mphys + dlen;
/* Result pointer to store result data */
req->rptr = dptr;
/* alternate_caddr to write completion status of the microcode */
req->alternate_caddr = (uint64_t *)(dptr + rlen);
*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
/* Preparing completion addr, +1 for completion code */
caddr.vaddr = dptr + rlen + 1;
caddr.dma_addr = mphys + dlen + rlen + 1;
cpt_fill_req_comp_addr(req, caddr);
}
static __rte_always_inline int __rte_hot
cpt_enqueue_rsa_op(struct rte_crypto_op *op,
struct asym_op_params *params,
struct cpt_asym_sess_misc *sess)
{
struct rte_crypto_rsa_op_param *rsa = &op->asym->rsa;
switch (rsa->op_type) {
case RTE_CRYPTO_ASYM_OP_VERIFY:
cpt_rsa_prep(params, &sess->rsa_ctx, &rsa->sign);
break;
case RTE_CRYPTO_ASYM_OP_ENCRYPT:
cpt_rsa_prep(params, &sess->rsa_ctx, &rsa->message);
break;
case RTE_CRYPTO_ASYM_OP_SIGN:
cpt_rsa_crt_prep(params, &sess->rsa_ctx, &rsa->message);
break;
case RTE_CRYPTO_ASYM_OP_DECRYPT:
cpt_rsa_crt_prep(params, &sess->rsa_ctx, &rsa->cipher);
break;
default:
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
return -EINVAL;
}
return 0;
}
static const struct cpt_ec_group ec_grp[CPT_EC_ID_PMAX] = {
{
.prime = {
.data = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
},
.length = 24,
},
.order = {
.data = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x99, 0xDE, 0xF8, 0x36,
0x14, 0x6B, 0xC9, 0xB1, 0xB4, 0xD2, 0x28, 0x31
},
.length = 24
},
},
{
.prime = {
.data = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01
},
.length = 28
},
.order = {
.data = {
0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF,
0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0X16, 0XA2,
0XE0, 0XB8, 0XF0, 0X3E, 0X13, 0XDD, 0X29, 0X45,
0X5C, 0X5C, 0X2A, 0X3D
},
.length = 28
},
},
{
.prime = {
.data = {
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
},
.length = 32
},
.order = {
.data = {
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84,
0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51
},
.length = 32
},
},
{
.prime = {
.data = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF
},
.length = 48
},
.order = {
.data = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xC7, 0x63, 0x4D, 0x81, 0xF4, 0x37, 0x2D, 0xDF,
0x58, 0x1A, 0x0D, 0xB2, 0x48, 0xB0, 0xA7, 0x7A,
0xEC, 0xEC, 0x19, 0x6A, 0xCC, 0xC5, 0x29, 0x73
},
.length = 48
}
},
{
.prime = {
.data = {
0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF
},
.length = 66
},
.order = {
.data = {
0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFA, 0x51, 0x86, 0x87, 0x83, 0xBF, 0x2F,
0x96, 0x6B, 0x7F, 0xCC, 0x01, 0x48, 0xF7, 0x09,
0xA5, 0xD0, 0x3B, 0xB5, 0xC9, 0xB8, 0x89, 0x9C,
0x47, 0xAE, 0xBB, 0x6F, 0xB7, 0x1E, 0x91, 0x38,
0x64, 0x09
},
.length = 66
}
}
};
static __rte_always_inline void
cpt_ecdsa_sign_prep(struct rte_crypto_ecdsa_op_param *ecdsa,
struct asym_op_params *ecdsa_params,
uint64_t fpm_table_iova,
uint8_t curveid)
{
struct cpt_request_info *req = ecdsa_params->req;
uint16_t message_len = ecdsa->message.length;
phys_addr_t mphys = ecdsa_params->meta_buf;
uint16_t pkey_len = ecdsa->pkey.length;
uint16_t p_align, k_align, m_align;
uint16_t k_len = ecdsa->k.length;
uint16_t order_len, prime_len;
uint16_t o_offset, pk_offset;
vq_cmd_word0_t vq_cmd_w0;
uint16_t rlen, dlen;
buf_ptr_t caddr;
uint8_t *dptr;
prime_len = ec_grp[curveid].prime.length;
order_len = ec_grp[curveid].order.length;
/* Truncate input length to curve prime length */
if (message_len > prime_len)
message_len = prime_len;
m_align = RTE_ALIGN_CEIL(message_len, 8);
p_align = RTE_ALIGN_CEIL(prime_len, 8);
k_align = RTE_ALIGN_CEIL(k_len, 8);
/* Set write offset for order and private key */
o_offset = prime_len - order_len;
pk_offset = prime_len - pkey_len;
/* Input buffer */
dptr = RTE_PTR_ADD(req, sizeof(struct cpt_request_info));
/*
* Set dlen = sum(sizeof(fpm address), ROUNDUP8(scalar len, input len),
* ROUNDUP8(priv key len, prime len, order len)).
* Please note, private key, order cannot exceed prime
* length i.e 3 * p_align.
*/
dlen = sizeof(fpm_table_iova) + k_align + m_align + p_align * 3;
memset(dptr, 0, dlen);
*(uint64_t *)dptr = fpm_table_iova;
dptr += sizeof(fpm_table_iova);
memcpy(dptr, ecdsa->k.data, k_len);
dptr += k_align;
memcpy(dptr, ec_grp[curveid].prime.data, prime_len);
dptr += p_align;
memcpy(dptr + o_offset, ec_grp[curveid].order.data, order_len);
dptr += p_align;
memcpy(dptr + pk_offset, ecdsa->pkey.data, pkey_len);
dptr += p_align;
memcpy(dptr, ecdsa->message.data, message_len);
dptr += m_align;
/* 2 * prime length (for sign r and s ) */
rlen = 2 * p_align;
/* Setup opcodes */
vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_ECDSA;
vq_cmd_w0.s.opcode.minor = CPT_MINOR_OP_ECDSA_SIGN;
/* GP op header */
vq_cmd_w0.s.param1 = curveid | (message_len << 8);
vq_cmd_w0.s.param2 = k_len;
vq_cmd_w0.s.dlen = dlen;
/* Filling cpt_request_info structure */
req->ist.ei0 = vq_cmd_w0.u64;
req->ist.ei1 = mphys;
req->ist.ei2 = mphys + dlen;
/* Result pointer to store result data */
req->rptr = dptr;
/* alternate_caddr to write completion status of the microcode */
req->alternate_caddr = (uint64_t *)(dptr + rlen);
*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
/* Preparing completion addr, +1 for completion code */
caddr.vaddr = dptr + rlen + 1;
caddr.dma_addr = mphys + dlen + rlen + 1;
cpt_fill_req_comp_addr(req, caddr);
}
static __rte_always_inline void
cpt_ecdsa_verify_prep(struct rte_crypto_ecdsa_op_param *ecdsa,
struct asym_op_params *ecdsa_params,
uint64_t fpm_table_iova,
uint8_t curveid)
{
struct cpt_request_info *req = ecdsa_params->req;
uint32_t message_len = ecdsa->message.length;
phys_addr_t mphys = ecdsa_params->meta_buf;
uint16_t o_offset, r_offset, s_offset;
uint16_t qx_len = ecdsa->q.x.length;
uint16_t qy_len = ecdsa->q.y.length;
uint16_t r_len = ecdsa->r.length;
uint16_t s_len = ecdsa->s.length;
uint16_t order_len, prime_len;
uint16_t qx_offset, qy_offset;
uint16_t p_align, m_align;
vq_cmd_word0_t vq_cmd_w0;
buf_ptr_t caddr;
uint16_t dlen;
uint8_t *dptr;
prime_len = ec_grp[curveid].prime.length;
order_len = ec_grp[curveid].order.length;
/* Truncate input length to curve prime length */
if (message_len > prime_len)
message_len = prime_len;
m_align = RTE_ALIGN_CEIL(message_len, 8);
p_align = RTE_ALIGN_CEIL(prime_len, 8);
/* Set write offset for sign, order and public key coordinates */
o_offset = prime_len - order_len;
qx_offset = prime_len - qx_len;
qy_offset = prime_len - qy_len;
r_offset = prime_len - r_len;
s_offset = prime_len - s_len;
/* Input buffer */
dptr = RTE_PTR_ADD(req, sizeof(struct cpt_request_info));
/*
* Set dlen = sum(sizeof(fpm address), ROUNDUP8(message len),
* ROUNDUP8(sign len(r and s), public key len(x and y coordinates),
* prime len, order len)).
* Please note sign, public key and order can not excede prime length
* i.e. 6 * p_align
*/
dlen = sizeof(fpm_table_iova) + m_align + (6 * p_align);
memset(dptr, 0, dlen);
*(uint64_t *)dptr = fpm_table_iova;
dptr += sizeof(fpm_table_iova);
memcpy(dptr + r_offset, ecdsa->r.data, r_len);
dptr += p_align;
memcpy(dptr + s_offset, ecdsa->s.data, s_len);
dptr += p_align;
memcpy(dptr, ecdsa->message.data, message_len);
dptr += m_align;
memcpy(dptr + o_offset, ec_grp[curveid].order.data, order_len);
dptr += p_align;
memcpy(dptr, ec_grp[curveid].prime.data, prime_len);
dptr += p_align;
memcpy(dptr + qx_offset, ecdsa->q.x.data, qx_len);
dptr += p_align;
memcpy(dptr + qy_offset, ecdsa->q.y.data, qy_len);
dptr += p_align;
/* Setup opcodes */
vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_ECDSA;
vq_cmd_w0.s.opcode.minor = CPT_MINOR_OP_ECDSA_VERIFY;
/* GP op header */
vq_cmd_w0.s.param1 = curveid | (message_len << 8);
vq_cmd_w0.s.param2 = 0;
vq_cmd_w0.s.dlen = dlen;
/* Filling cpt_request_info structure */
req->ist.ei0 = vq_cmd_w0.u64;
req->ist.ei1 = mphys;
req->ist.ei2 = mphys + dlen;
/* Result pointer to store result data */
req->rptr = dptr;
/* alternate_caddr to write completion status of the microcode */
req->alternate_caddr = (uint64_t *)dptr;
*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
/* Preparing completion addr, +1 for completion code */
caddr.vaddr = dptr + 1;
caddr.dma_addr = mphys + dlen + 1;
cpt_fill_req_comp_addr(req, caddr);
}
static __rte_always_inline int __rte_hot
cpt_enqueue_ecdsa_op(struct rte_crypto_op *op,
struct asym_op_params *params,
struct cpt_asym_sess_misc *sess,
uint64_t *fpm_iova)
{
struct rte_crypto_ecdsa_op_param *ecdsa = &op->asym->ecdsa;
uint8_t curveid = sess->ec_ctx.curveid;
if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_SIGN)
cpt_ecdsa_sign_prep(ecdsa, params, fpm_iova[curveid], curveid);
else if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY)
cpt_ecdsa_verify_prep(ecdsa, params, fpm_iova[curveid],
curveid);
else {
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
return -EINVAL;
}
return 0;
}
static __rte_always_inline int
cpt_ecpm_prep(struct rte_crypto_ecpm_op_param *ecpm,
struct asym_op_params *asym_params,
uint8_t curveid)
{
struct cpt_request_info *req = asym_params->req;
phys_addr_t mphys = asym_params->meta_buf;
uint16_t x1_len = ecpm->p.x.length;
uint16_t y1_len = ecpm->p.y.length;
uint16_t scalar_align, p_align;
uint16_t dlen, rlen, prime_len;
uint16_t x1_offset, y1_offset;
vq_cmd_word0_t vq_cmd_w0;
buf_ptr_t caddr;
uint8_t *dptr;
prime_len = ec_grp[curveid].prime.length;
/* Input buffer */
dptr = RTE_PTR_ADD(req, sizeof(struct cpt_request_info));
p_align = RTE_ALIGN_CEIL(prime_len, 8);
scalar_align = RTE_ALIGN_CEIL(ecpm->scalar.length, 8);
/*
* Set dlen = sum(ROUNDUP8(input point(x and y coordinates), prime,
* scalar length),
* Please note point length is equivalent to prime of the curve
*/
dlen = 3 * p_align + scalar_align;
x1_offset = prime_len - x1_len;
y1_offset = prime_len - y1_len;
memset(dptr, 0, dlen);
/* Copy input point, scalar, prime */
memcpy(dptr + x1_offset, ecpm->p.x.data, x1_len);
dptr += p_align;
memcpy(dptr + y1_offset, ecpm->p.y.data, y1_len);
dptr += p_align;
memcpy(dptr, ecpm->scalar.data, ecpm->scalar.length);
dptr += scalar_align;
memcpy(dptr, ec_grp[curveid].prime.data, ec_grp[curveid].prime.length);
dptr += p_align;
/* Setup opcodes */
vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_ECC;
vq_cmd_w0.s.opcode.minor = CPT_MINOR_OP_ECC_UMP;
/* GP op header */
vq_cmd_w0.s.param1 = curveid;
vq_cmd_w0.s.param2 = ecpm->scalar.length;
vq_cmd_w0.s.dlen = dlen;
/* Filling cpt_request_info structure */
req->ist.ei0 = vq_cmd_w0.u64;
req->ist.ei1 = mphys;
req->ist.ei2 = mphys + dlen;
/* Result buffer will store output point where length of
* each coordinate will be of prime length, thus set
* rlen to twice of prime length.
*/
rlen = p_align << 1;
req->rptr = dptr;
/* alternate_caddr to write completion status by the microcode */
req->alternate_caddr = (uint64_t *)(dptr + rlen);
*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
/* Preparing completion addr, +1 for completion code */
caddr.vaddr = dptr + rlen + 1;
caddr.dma_addr = mphys + dlen + rlen + 1;
cpt_fill_req_comp_addr(req, caddr);
return 0;
}
#endif /* _CPT_UCODE_ASYM_H_ */