numam-dpdk/app/test/test_table_acl.c
Marcin Kerlin 48f2543cf0 app/test: add bulk adding and deleting
Added to acl table unit test check for bulk add and bulk delete.

Signed-off-by: Maciej Gajdzica <maciejx.t.gajdzica@intel.com>
Acked-by: Cristian Dumitrescu <cristian.dumitrescu@intel.com>
2015-11-26 00:32:12 +01:00

760 lines
20 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_hexdump.h>
#include "test_table.h"
#include "test_table_acl.h"
#define IPv4(a, b, c, d) ((uint32_t)(((a) & 0xff) << 24) | \
(((b) & 0xff) << 16) | \
(((c) & 0xff) << 8) | \
((d) & 0xff))
/*
* Rule and trace formats definitions.
**/
struct ipv4_5tuple {
uint8_t proto;
uint32_t ip_src;
uint32_t ip_dst;
uint16_t port_src;
uint16_t port_dst;
};
enum {
PROTO_FIELD_IPV4,
SRC_FIELD_IPV4,
DST_FIELD_IPV4,
SRCP_FIELD_IPV4,
DSTP_FIELD_IPV4,
NUM_FIELDS_IPV4
};
struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
{
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof(uint8_t),
.field_index = PROTO_FIELD_IPV4,
.input_index = PROTO_FIELD_IPV4,
.offset = offsetof(struct ipv4_5tuple, proto),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC_FIELD_IPV4,
.input_index = SRC_FIELD_IPV4,
.offset = offsetof(struct ipv4_5tuple, ip_src),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST_FIELD_IPV4,
.input_index = DST_FIELD_IPV4,
.offset = offsetof(struct ipv4_5tuple, ip_dst),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = SRCP_FIELD_IPV4,
.input_index = SRCP_FIELD_IPV4,
.offset = offsetof(struct ipv4_5tuple, port_src),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = DSTP_FIELD_IPV4,
.input_index = SRCP_FIELD_IPV4,
.offset = offsetof(struct ipv4_5tuple, port_dst),
},
};
struct rte_table_acl_rule_add_params table_acl_IPv4_rule;
typedef int (*parse_5tuple)(char *text,
struct rte_table_acl_rule_add_params *rule);
/*
* The order of the fields in the rule string after the initial '@'
*/
enum {
CB_FLD_SRC_ADDR,
CB_FLD_DST_ADDR,
CB_FLD_SRC_PORT_RANGE,
CB_FLD_DST_PORT_RANGE,
CB_FLD_PROTO,
CB_FLD_NUM,
};
#define GET_CB_FIELD(in, fd, base, lim, dlm) \
do { \
unsigned long val; \
char *end; \
\
errno = 0; \
val = strtoul((in), &end, (base)); \
if (errno != 0 || end[0] != (dlm) || val > (lim)) \
return -EINVAL; \
(fd) = (typeof(fd)) val; \
(in) = end + 1; \
} while (0)
static int
parse_ipv4_net(const char *in, uint32_t *addr, uint32_t *mask_len)
{
uint8_t a, b, c, d, m;
GET_CB_FIELD(in, a, 0, UINT8_MAX, '.');
GET_CB_FIELD(in, b, 0, UINT8_MAX, '.');
GET_CB_FIELD(in, c, 0, UINT8_MAX, '.');
GET_CB_FIELD(in, d, 0, UINT8_MAX, '/');
GET_CB_FIELD(in, m, 0, sizeof(uint32_t) * CHAR_BIT, 0);
addr[0] = IPv4(a, b, c, d);
mask_len[0] = m;
return 0;
}
static int
parse_port_range(const char *in, uint16_t *port_low, uint16_t *port_high)
{
uint16_t a, b;
GET_CB_FIELD(in, a, 0, UINT16_MAX, ':');
GET_CB_FIELD(in, b, 0, UINT16_MAX, 0);
port_low[0] = a;
port_high[0] = b;
return 0;
}
static int
parse_cb_ipv4_rule(char *str, struct rte_table_acl_rule_add_params *v)
{
int i, rc;
char *s, *sp, *in[CB_FLD_NUM];
static const char *dlm = " \t\n";
/*
** Skip leading '@'
*/
if (strchr(str, '@') != str)
return -EINVAL;
s = str + 1;
/*
* Populate the 'in' array with the location of each
* field in the string we're parsing
*/
for (i = 0; i != DIM(in); i++) {
in[i] = strtok_r(s, dlm, &sp);
if (in[i] == NULL)
return -EINVAL;
s = NULL;
}
/* Parse x.x.x.x/x */
rc = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
&v->field_value[SRC_FIELD_IPV4].value.u32,
&v->field_value[SRC_FIELD_IPV4].mask_range.u32);
if (rc != 0) {
RTE_LOG(ERR, PIPELINE, "failed to read src address/mask: %s\n",
in[CB_FLD_SRC_ADDR]);
return rc;
}
printf("V=%u, mask=%u\n", v->field_value[SRC_FIELD_IPV4].value.u32,
v->field_value[SRC_FIELD_IPV4].mask_range.u32);
/* Parse x.x.x.x/x */
rc = parse_ipv4_net(in[CB_FLD_DST_ADDR],
&v->field_value[DST_FIELD_IPV4].value.u32,
&v->field_value[DST_FIELD_IPV4].mask_range.u32);
if (rc != 0) {
RTE_LOG(ERR, PIPELINE, "failed to read dest address/mask: %s\n",
in[CB_FLD_DST_ADDR]);
return rc;
}
printf("V=%u, mask=%u\n", v->field_value[DST_FIELD_IPV4].value.u32,
v->field_value[DST_FIELD_IPV4].mask_range.u32);
/* Parse n:n */
rc = parse_port_range(in[CB_FLD_SRC_PORT_RANGE],
&v->field_value[SRCP_FIELD_IPV4].value.u16,
&v->field_value[SRCP_FIELD_IPV4].mask_range.u16);
if (rc != 0) {
RTE_LOG(ERR, PIPELINE, "failed to read source port range: %s\n",
in[CB_FLD_SRC_PORT_RANGE]);
return rc;
}
printf("V=%u, mask=%u\n", v->field_value[SRCP_FIELD_IPV4].value.u16,
v->field_value[SRCP_FIELD_IPV4].mask_range.u16);
/* Parse n:n */
rc = parse_port_range(in[CB_FLD_DST_PORT_RANGE],
&v->field_value[DSTP_FIELD_IPV4].value.u16,
&v->field_value[DSTP_FIELD_IPV4].mask_range.u16);
if (rc != 0) {
RTE_LOG(ERR, PIPELINE, "failed to read dest port range: %s\n",
in[CB_FLD_DST_PORT_RANGE]);
return rc;
}
printf("V=%u, mask=%u\n", v->field_value[DSTP_FIELD_IPV4].value.u16,
v->field_value[DSTP_FIELD_IPV4].mask_range.u16);
/* parse 0/0xnn */
GET_CB_FIELD(in[CB_FLD_PROTO],
v->field_value[PROTO_FIELD_IPV4].value.u8,
0, UINT8_MAX, '/');
GET_CB_FIELD(in[CB_FLD_PROTO],
v->field_value[PROTO_FIELD_IPV4].mask_range.u8,
0, UINT8_MAX, 0);
printf("V=%u, mask=%u\n",
(unsigned int)v->field_value[PROTO_FIELD_IPV4].value.u8,
v->field_value[PROTO_FIELD_IPV4].mask_range.u8);
return 0;
}
static int
parse_cb_ipv4_rule_del(char *str, struct rte_table_acl_rule_delete_params *v)
{
int i, rc;
char *s, *sp, *in[CB_FLD_NUM];
static const char *dlm = " \t\n";
/*
** Skip leading '@'
*/
if (strchr(str, '@') != str)
return -EINVAL;
s = str + 1;
/*
* Populate the 'in' array with the location of each
* field in the string we're parsing
*/
for (i = 0; i != DIM(in); i++) {
in[i] = strtok_r(s, dlm, &sp);
if (in[i] == NULL)
return -EINVAL;
s = NULL;
}
/* Parse x.x.x.x/x */
rc = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
&v->field_value[SRC_FIELD_IPV4].value.u32,
&v->field_value[SRC_FIELD_IPV4].mask_range.u32);
if (rc != 0) {
RTE_LOG(ERR, PIPELINE, "failed to read src address/mask: %s\n",
in[CB_FLD_SRC_ADDR]);
return rc;
}
printf("V=%u, mask=%u\n", v->field_value[SRC_FIELD_IPV4].value.u32,
v->field_value[SRC_FIELD_IPV4].mask_range.u32);
/* Parse x.x.x.x/x */
rc = parse_ipv4_net(in[CB_FLD_DST_ADDR],
&v->field_value[DST_FIELD_IPV4].value.u32,
&v->field_value[DST_FIELD_IPV4].mask_range.u32);
if (rc != 0) {
RTE_LOG(ERR, PIPELINE, "failed to read dest address/mask: %s\n",
in[CB_FLD_DST_ADDR]);
return rc;
}
printf("V=%u, mask=%u\n", v->field_value[DST_FIELD_IPV4].value.u32,
v->field_value[DST_FIELD_IPV4].mask_range.u32);
/* Parse n:n */
rc = parse_port_range(in[CB_FLD_SRC_PORT_RANGE],
&v->field_value[SRCP_FIELD_IPV4].value.u16,
&v->field_value[SRCP_FIELD_IPV4].mask_range.u16);
if (rc != 0) {
RTE_LOG(ERR, PIPELINE, "failed to read source port range: %s\n",
in[CB_FLD_SRC_PORT_RANGE]);
return rc;
}
printf("V=%u, mask=%u\n", v->field_value[SRCP_FIELD_IPV4].value.u16,
v->field_value[SRCP_FIELD_IPV4].mask_range.u16);
/* Parse n:n */
rc = parse_port_range(in[CB_FLD_DST_PORT_RANGE],
&v->field_value[DSTP_FIELD_IPV4].value.u16,
&v->field_value[DSTP_FIELD_IPV4].mask_range.u16);
if (rc != 0) {
RTE_LOG(ERR, PIPELINE, "failed to read dest port range: %s\n",
in[CB_FLD_DST_PORT_RANGE]);
return rc;
}
printf("V=%u, mask=%u\n", v->field_value[DSTP_FIELD_IPV4].value.u16,
v->field_value[DSTP_FIELD_IPV4].mask_range.u16);
/* parse 0/0xnn */
GET_CB_FIELD(in[CB_FLD_PROTO],
v->field_value[PROTO_FIELD_IPV4].value.u8,
0, UINT8_MAX, '/');
GET_CB_FIELD(in[CB_FLD_PROTO],
v->field_value[PROTO_FIELD_IPV4].mask_range.u8,
0, UINT8_MAX, 0);
printf("V=%u, mask=%u\n",
(unsigned int)v->field_value[PROTO_FIELD_IPV4].value.u8,
v->field_value[PROTO_FIELD_IPV4].mask_range.u8);
return 0;
}
/*
* The format for these rules DO NOT need the port ranges to be
* separated by ' : ', just ':'. It's a lot more readable and
* cleaner, IMO.
*/
char lines[][128] = {
"@0.0.0.0/0 0.0.0.0/0 0:65535 0:65535 2/0xff", /* Protocol check */
"@192.168.3.1/32 0.0.0.0/0 0:65535 0:65535 0/0", /* Src IP checl */
"@0.0.0.0/0 10.4.4.1/32 0:65535 0:65535 0/0", /* dst IP check */
"@0.0.0.0/0 0.0.0.0/0 105:105 0:65535 0/0", /* src port check */
"@0.0.0.0/0 0.0.0.0/0 0:65535 206:206 0/0", /* dst port check */
};
char line[128];
static int
setup_acl_pipeline(void)
{
int ret;
int i;
struct rte_pipeline_params pipeline_params = {
.name = "PIPELINE",
.socket_id = 0,
};
uint32_t n;
struct rte_table_acl_rule_add_params rule_params;
struct rte_pipeline_table_acl_rule_delete_params *delete_params;
parse_5tuple parser;
char acl_name[64];
/* Pipeline configuration */
p = rte_pipeline_create(&pipeline_params);
if (p == NULL) {
RTE_LOG(INFO, PIPELINE, "%s: Failed to configure pipeline\n",
__func__);
goto fail;
}
/* Input port configuration */
for (i = 0; i < N_PORTS; i++) {
struct rte_port_ring_reader_params port_ring_params = {
.ring = rings_rx[i],
};
struct rte_pipeline_port_in_params port_params = {
.ops = &rte_port_ring_reader_ops,
.arg_create = (void *) &port_ring_params,
.f_action = NULL,
.burst_size = BURST_SIZE,
};
/* Put in action for some ports */
if (i)
port_params.f_action = port_in_action;
ret = rte_pipeline_port_in_create(p, &port_params,
&port_in_id[i]);
if (ret) {
rte_panic("Unable to configure input port %d, ret:%d\n",
i, ret);
goto fail;
}
}
/* output Port configuration */
for (i = 0; i < N_PORTS; i++) {
struct rte_port_ring_writer_params port_ring_params = {
.ring = rings_tx[i],
.tx_burst_sz = BURST_SIZE,
};
struct rte_pipeline_port_out_params port_params = {
.ops = &rte_port_ring_writer_ops,
.arg_create = (void *) &port_ring_params,
.f_action = NULL,
.arg_ah = NULL,
};
if (rte_pipeline_port_out_create(p, &port_params,
&port_out_id[i])) {
rte_panic("Unable to configure output port %d\n", i);
goto fail;
}
}
/* Table configuration */
for (i = 0; i < N_PORTS; i++) {
struct rte_pipeline_table_params table_params;
/* Set up defaults for stub */
table_params.ops = &rte_table_stub_ops;
table_params.arg_create = NULL;
table_params.f_action_hit = action_handler_hit;
table_params.f_action_miss = NULL;
table_params.action_data_size = 0;
RTE_LOG(INFO, PIPELINE, "miss_action=%x\n",
table_entry_miss_action);
printf("RTE_ACL_RULE_SZ(%zu) = %zu\n", DIM(ipv4_defs),
RTE_ACL_RULE_SZ(DIM(ipv4_defs)));
struct rte_table_acl_params acl_params;
acl_params.n_rules = 1 << 5;
acl_params.n_rule_fields = DIM(ipv4_defs);
snprintf(acl_name, sizeof(acl_name), "ACL%d", i);
acl_params.name = acl_name;
memcpy(acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));
table_params.ops = &rte_table_acl_ops;
table_params.arg_create = &acl_params;
if (rte_pipeline_table_create(p, &table_params, &table_id[i])) {
rte_panic("Unable to configure table %u\n", i);
goto fail;
}
if (connect_miss_action_to_table) {
if (rte_pipeline_table_create(p, &table_params,
&table_id[i+2])) {
rte_panic("Unable to configure table %u\n", i);
goto fail;
}
}
}
for (i = 0; i < N_PORTS; i++) {
if (rte_pipeline_port_in_connect_to_table(p, port_in_id[i],
table_id[i])) {
rte_panic("Unable to connect input port %u to "
"table %u\n",
port_in_id[i], table_id[i]);
goto fail;
}
}
/* Add bulk entries to tables */
for (i = 0; i < N_PORTS; i++) {
struct rte_table_acl_rule_add_params keys[5];
struct rte_pipeline_table_entry entries[5];
struct rte_table_acl_rule_add_params *key_array[5];
struct rte_pipeline_table_entry *table_entries[5];
int key_found[5];
struct rte_pipeline_table_entry *table_entries_ptr[5];
struct rte_pipeline_table_entry entries_ptr[5];
parser = parse_cb_ipv4_rule;
for (n = 0; n < 5; n++) {
memset(&keys[n], 0, sizeof(struct rte_table_acl_rule_add_params));
key_array[n] = &keys[n];
snprintf(line, sizeof(line), "%s", lines[n]);
printf("PARSING [%s]\n", line);
ret = parser(line, &keys[n]);
if (ret != 0) {
RTE_LOG(ERR, PIPELINE,
"line %u: parse_cb_ipv4vlan_rule"
" failed, error code: %d (%s)\n",
n, ret, strerror(-ret));
return ret;
}
keys[n].priority = RTE_ACL_MAX_PRIORITY - n - 1;
entries[n].action = RTE_PIPELINE_ACTION_PORT;
entries[n].port_id = port_out_id[i^1];
table_entries[n] = &entries[n];
table_entries_ptr[n] = &entries_ptr[n];
}
ret = rte_pipeline_table_entry_add_bulk(p, table_id[i],
(void **)key_array, table_entries, 5, key_found, table_entries_ptr);
if (ret < 0) {
rte_panic("Add entry bulk to table %u failed (%d)\n",
table_id[i], ret);
goto fail;
}
}
/* Delete bulk entries from tables */
for (i = 0; i < N_PORTS; i++) {
struct rte_table_acl_rule_delete_params keys[5];
struct rte_table_acl_rule_delete_params *key_array[5];
struct rte_pipeline_table_entry *table_entries[5];
int key_found[5];
for (n = 0; n < 5; n++) {
memset(&keys[n], 0, sizeof(struct rte_table_acl_rule_delete_params));
key_array[n] = &keys[n];
snprintf(line, sizeof(line), "%s", lines[n]);
printf("PARSING [%s]\n", line);
ret = parse_cb_ipv4_rule_del(line, &keys[n]);
if (ret != 0) {
RTE_LOG(ERR, PIPELINE,
"line %u: parse_cb_ipv4vlan_rule"
" failed, error code: %d (%s)\n",
n, ret, strerror(-ret));
return ret;
}
}
ret = rte_pipeline_table_entry_delete_bulk(p, table_id[i],
(void **)key_array, 5, key_found, table_entries);
if (ret < 0) {
rte_panic("Delete bulk entries from table %u failed (%d)\n",
table_id[i], ret);
goto fail;
} else
printf("Bulk deleted rules.\n");
}
/* Add entries to tables */
for (i = 0; i < N_PORTS; i++) {
struct rte_pipeline_table_entry table_entry = {
.action = RTE_PIPELINE_ACTION_PORT,
{.port_id = port_out_id[i^1]},
};
int key_found;
struct rte_pipeline_table_entry *entry_ptr;
memset(&rule_params, 0, sizeof(rule_params));
parser = parse_cb_ipv4_rule;
for (n = 1; n <= 5; n++) {
snprintf(line, sizeof(line), "%s", lines[n-1]);
printf("PARSING [%s]\n", line);
ret = parser(line, &rule_params);
if (ret != 0) {
RTE_LOG(ERR, PIPELINE,
"line %u: parse_cb_ipv4vlan_rule"
" failed, error code: %d (%s)\n",
n, ret, strerror(-ret));
return ret;
}
rule_params.priority = RTE_ACL_MAX_PRIORITY - n;
ret = rte_pipeline_table_entry_add(p, table_id[i],
&rule_params,
&table_entry, &key_found, &entry_ptr);
if (ret < 0) {
rte_panic("Add entry to table %u failed (%d)\n",
table_id[i], ret);
goto fail;
}
}
/* delete a few rules */
for (n = 2; n <= 3; n++) {
snprintf(line, sizeof(line), "%s", lines[n-1]);
printf("PARSING [%s]\n", line);
ret = parser(line, &rule_params);
if (ret != 0) {
RTE_LOG(ERR, PIPELINE, "line %u: parse rule "
" failed, error code: %d (%s)\n",
n, ret, strerror(-ret));
return ret;
}
delete_params = (struct
rte_pipeline_table_acl_rule_delete_params *)
&(rule_params.field_value[0]);
ret = rte_pipeline_table_entry_delete(p, table_id[i],
delete_params, &key_found, NULL);
if (ret < 0) {
rte_panic("Add entry to table %u failed (%d)\n",
table_id[i], ret);
goto fail;
} else
printf("Deleted Rule.\n");
}
/* Try to add duplicates */
for (n = 1; n <= 5; n++) {
snprintf(line, sizeof(line), "%s", lines[n-1]);
printf("PARSING [%s]\n", line);
ret = parser(line, &rule_params);
if (ret != 0) {
RTE_LOG(ERR, PIPELINE, "line %u: parse rule"
" failed, error code: %d (%s)\n",
n, ret, strerror(-ret));
return ret;
}
rule_params.priority = RTE_ACL_MAX_PRIORITY - n;
ret = rte_pipeline_table_entry_add(p, table_id[i],
&rule_params,
&table_entry, &key_found, &entry_ptr);
if (ret < 0) {
rte_panic("Add entry to table %u failed (%d)\n",
table_id[i], ret);
goto fail;
}
}
}
/* Enable input ports */
for (i = 0; i < N_PORTS ; i++)
if (rte_pipeline_port_in_enable(p, port_in_id[i]))
rte_panic("Unable to enable input port %u\n",
port_in_id[i]);
/* Check pipeline consistency */
if (rte_pipeline_check(p) < 0) {
rte_panic("Pipeline consistency check failed\n");
goto fail;
}
return 0;
fail:
return -1;
}
static int
test_pipeline_single_filter(int expected_count)
{
int i, j, ret, tx_count;
struct ipv4_5tuple five_tuple;
/* Allocate a few mbufs and manually insert into the rings. */
for (i = 0; i < N_PORTS; i++) {
for (j = 0; j < 8; j++) {
struct rte_mbuf *mbuf;
mbuf = rte_pktmbuf_alloc(pool);
if (mbuf == NULL)
/* this will cause test failure after cleanup
* of already enqueued mbufs, as the mbuf
* counts won't match */
break;
memset(rte_pktmbuf_mtod(mbuf, char *), 0x00,
sizeof(struct ipv4_5tuple));
five_tuple.proto = j;
five_tuple.ip_src = rte_bswap32(IPv4(192, 168, j, 1));
five_tuple.ip_dst = rte_bswap32(IPv4(10, 4, j, 1));
five_tuple.port_src = rte_bswap16(100 + j);
five_tuple.port_dst = rte_bswap16(200 + j);
memcpy(rte_pktmbuf_mtod(mbuf, char *), &five_tuple,
sizeof(struct ipv4_5tuple));
RTE_LOG(INFO, PIPELINE, "%s: Enqueue onto ring %d\n",
__func__, i);
rte_ring_enqueue(rings_rx[i], mbuf);
}
}
/* Run pipeline once */
rte_pipeline_run(p);
rte_pipeline_flush(p);
tx_count = 0;
for (i = 0; i < N_PORTS; i++) {
void *objs[RING_TX_SIZE];
struct rte_mbuf *mbuf;
ret = rte_ring_sc_dequeue_burst(rings_tx[i], objs, 10);
if (ret <= 0) {
printf("Got no objects from ring %d - error code %d\n",
i, ret);
} else {
printf("Got %d object(s) from ring %d!\n", ret, i);
for (j = 0; j < ret; j++) {
mbuf = (struct rte_mbuf *)objs[j];
rte_hexdump(stdout, "mbuf",
rte_pktmbuf_mtod(mbuf, char *), 64);
rte_pktmbuf_free(mbuf);
}
tx_count += ret;
}
}
if (tx_count != expected_count) {
RTE_LOG(INFO, PIPELINE,
"%s: Unexpected packets for ACL test, "
"expected %d, got %d\n",
__func__, expected_count, tx_count);
goto fail;
}
rte_pipeline_free(p);
return 0;
fail:
return -1;
}
int
test_table_ACL(void)
{
override_hit_mask = 0xFF; /* All packets are a hit */
setup_acl_pipeline();
if (test_pipeline_single_filter(10) < 0)
return -1;
return 0;
}