numam-dpdk/drivers/net/ice/base/ice_sched.c
Qi Zhang cfaeec82d2 net/ice/base: remove null check of port info
The code in ice_sched_cleanup_all checks whether the port info is NULL
prior to calling ice_sched_clear_port.

More importantly, it also checks whether the port structure has been
initialized by checking its port_state field as well.

Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Signed-off-by: Paul M Stillwell Jr <paul.m.stillwell.jr@intel.com>
Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
Acked-by: Qiming Yang <qiming.yang@intel.com>
2019-10-07 15:00:56 +02:00

5471 lines
151 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2001-2019
*/
#include "ice_sched.h"
/**
* ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
* @pi: port information structure
* @info: Scheduler element information from firmware
*
* This function inserts the root node of the scheduling tree topology
* to the SW DB.
*/
static enum ice_status
ice_sched_add_root_node(struct ice_port_info *pi,
struct ice_aqc_txsched_elem_data *info)
{
struct ice_sched_node *root;
struct ice_hw *hw;
if (!pi)
return ICE_ERR_PARAM;
hw = pi->hw;
root = (struct ice_sched_node *)ice_malloc(hw, sizeof(*root));
if (!root)
return ICE_ERR_NO_MEMORY;
/* coverity[suspicious_sizeof] */
root->children = (struct ice_sched_node **)
ice_calloc(hw, hw->max_children[0], sizeof(*root));
if (!root->children) {
ice_free(hw, root);
return ICE_ERR_NO_MEMORY;
}
ice_memcpy(&root->info, info, sizeof(*info), ICE_DMA_TO_NONDMA);
pi->root = root;
return ICE_SUCCESS;
}
/**
* ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
* @start_node: pointer to the starting ice_sched_node struct in a sub-tree
* @teid: node TEID to search
*
* This function searches for a node matching the TEID in the scheduling tree
* from the SW DB. The search is recursive and is restricted by the number of
* layers it has searched through; stopping at the max supported layer.
*
* This function needs to be called when holding the port_info->sched_lock
*/
struct ice_sched_node *
ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
{
u16 i;
/* The TEID is same as that of the start_node */
if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
return start_node;
/* The node has no children or is at the max layer */
if (!start_node->num_children ||
start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
return NULL;
/* Check if TEID matches to any of the children nodes */
for (i = 0; i < start_node->num_children; i++)
if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
return start_node->children[i];
/* Search within each child's sub-tree */
for (i = 0; i < start_node->num_children; i++) {
struct ice_sched_node *tmp;
tmp = ice_sched_find_node_by_teid(start_node->children[i],
teid);
if (tmp)
return tmp;
}
return NULL;
}
/**
* ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
* @hw: pointer to the HW struct
* @cmd_opc: cmd opcode
* @elems_req: number of elements to request
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @elems_resp: returns total number of elements response
* @cd: pointer to command details structure or NULL
*
* This function sends a scheduling elements cmd (cmd_opc)
*/
static enum ice_status
ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
u16 elems_req, void *buf, u16 buf_size,
u16 *elems_resp, struct ice_sq_cd *cd)
{
struct ice_aqc_sched_elem_cmd *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.sched_elem_cmd;
ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
cmd->num_elem_req = CPU_TO_LE16(elems_req);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (!status && elems_resp)
*elems_resp = LE16_TO_CPU(cmd->num_elem_resp);
return status;
}
/**
* ice_aq_query_sched_elems - query scheduler elements
* @hw: pointer to the HW struct
* @elems_req: number of elements to query
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @elems_ret: returns total number of elements returned
* @cd: pointer to command details structure or NULL
*
* Query scheduling elements (0x0404)
*/
enum ice_status
ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
struct ice_aqc_get_elem *buf, u16 buf_size,
u16 *elems_ret, struct ice_sq_cd *cd)
{
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
elems_req, (void *)buf, buf_size,
elems_ret, cd);
}
/**
* ice_sched_add_node - Insert the Tx scheduler node in SW DB
* @pi: port information structure
* @layer: Scheduler layer of the node
* @info: Scheduler element information from firmware
*
* This function inserts a scheduler node to the SW DB.
*/
enum ice_status
ice_sched_add_node(struct ice_port_info *pi, u8 layer,
struct ice_aqc_txsched_elem_data *info)
{
struct ice_sched_node *parent;
struct ice_aqc_get_elem elem;
struct ice_sched_node *node;
enum ice_status status;
struct ice_hw *hw;
if (!pi)
return ICE_ERR_PARAM;
hw = pi->hw;
/* A valid parent node should be there */
parent = ice_sched_find_node_by_teid(pi->root,
LE32_TO_CPU(info->parent_teid));
if (!parent) {
ice_debug(hw, ICE_DBG_SCHED,
"Parent Node not found for parent_teid=0x%x\n",
LE32_TO_CPU(info->parent_teid));
return ICE_ERR_PARAM;
}
/* query the current node information from FW before additing it
* to the SW DB
*/
status = ice_sched_query_elem(hw, LE32_TO_CPU(info->node_teid), &elem);
if (status)
return status;
node = (struct ice_sched_node *)ice_malloc(hw, sizeof(*node));
if (!node)
return ICE_ERR_NO_MEMORY;
if (hw->max_children[layer]) {
/* coverity[suspicious_sizeof] */
node->children = (struct ice_sched_node **)
ice_calloc(hw, hw->max_children[layer], sizeof(*node));
if (!node->children) {
ice_free(hw, node);
return ICE_ERR_NO_MEMORY;
}
}
node->in_use = true;
node->parent = parent;
node->tx_sched_layer = layer;
parent->children[parent->num_children++] = node;
node->info = elem.generic[0];
return ICE_SUCCESS;
}
/**
* ice_aq_delete_sched_elems - delete scheduler elements
* @hw: pointer to the HW struct
* @grps_req: number of groups to delete
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @grps_del: returns total number of elements deleted
* @cd: pointer to command details structure or NULL
*
* Delete scheduling elements (0x040F)
*/
static enum ice_status
ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
struct ice_aqc_delete_elem *buf, u16 buf_size,
u16 *grps_del, struct ice_sq_cd *cd)
{
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
grps_req, (void *)buf, buf_size,
grps_del, cd);
}
/**
* ice_sched_remove_elems - remove nodes from HW
* @hw: pointer to the HW struct
* @parent: pointer to the parent node
* @num_nodes: number of nodes
* @node_teids: array of node teids to be deleted
*
* This function remove nodes from HW
*/
static enum ice_status
ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
u16 num_nodes, u32 *node_teids)
{
struct ice_aqc_delete_elem *buf;
u16 i, num_groups_removed = 0;
enum ice_status status;
u16 buf_size;
buf_size = sizeof(*buf) + sizeof(u32) * (num_nodes - 1);
buf = (struct ice_aqc_delete_elem *)ice_malloc(hw, buf_size);
if (!buf)
return ICE_ERR_NO_MEMORY;
buf->hdr.parent_teid = parent->info.node_teid;
buf->hdr.num_elems = CPU_TO_LE16(num_nodes);
for (i = 0; i < num_nodes; i++)
buf->teid[i] = CPU_TO_LE32(node_teids[i]);
status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
&num_groups_removed, NULL);
if (status != ICE_SUCCESS || num_groups_removed != 1)
ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
hw->adminq.sq_last_status);
ice_free(hw, buf);
return status;
}
/**
* ice_sched_get_first_node - get the first node of the given layer
* @pi: port information structure
* @parent: pointer the base node of the subtree
* @layer: layer number
*
* This function retrieves the first node of the given layer from the subtree
*/
static struct ice_sched_node *
ice_sched_get_first_node(struct ice_port_info *pi,
struct ice_sched_node *parent, u8 layer)
{
return pi->sib_head[parent->tc_num][layer];
}
/**
* ice_sched_get_tc_node - get pointer to TC node
* @pi: port information structure
* @tc: TC number
*
* This function returns the TC node pointer
*/
struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
{
u8 i;
if (!pi || !pi->root)
return NULL;
for (i = 0; i < pi->root->num_children; i++)
if (pi->root->children[i]->tc_num == tc)
return pi->root->children[i];
return NULL;
}
/**
* ice_free_sched_node - Free a Tx scheduler node from SW DB
* @pi: port information structure
* @node: pointer to the ice_sched_node struct
*
* This function frees up a node from SW DB as well as from HW
*
* This function needs to be called with the port_info->sched_lock held
*/
void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
{
struct ice_sched_node *parent;
struct ice_hw *hw = pi->hw;
u8 i, j;
/* Free the children before freeing up the parent node
* The parent array is updated below and that shifts the nodes
* in the array. So always pick the first child if num children > 0
*/
while (node->num_children)
ice_free_sched_node(pi, node->children[0]);
/* Leaf, TC and root nodes can't be deleted by SW */
if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
u32 teid = LE32_TO_CPU(node->info.node_teid);
ice_sched_remove_elems(hw, node->parent, 1, &teid);
}
parent = node->parent;
/* root has no parent */
if (parent) {
struct ice_sched_node *p;
/* update the parent */
for (i = 0; i < parent->num_children; i++)
if (parent->children[i] == node) {
for (j = i + 1; j < parent->num_children; j++)
parent->children[j - 1] =
parent->children[j];
parent->num_children--;
break;
}
p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
while (p) {
if (p->sibling == node) {
p->sibling = node->sibling;
break;
}
p = p->sibling;
}
/* update the sibling head if head is getting removed */
if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
pi->sib_head[node->tc_num][node->tx_sched_layer] =
node->sibling;
}
/* leaf nodes have no children */
if (node->children)
ice_free(hw, node->children);
ice_free(hw, node);
}
/**
* ice_aq_get_dflt_topo - gets default scheduler topology
* @hw: pointer to the HW struct
* @lport: logical port number
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @num_branches: returns total number of queue to port branches
* @cd: pointer to command details structure or NULL
*
* Get default scheduler topology (0x400)
*/
static enum ice_status
ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
struct ice_aqc_get_topo_elem *buf, u16 buf_size,
u8 *num_branches, struct ice_sq_cd *cd)
{
struct ice_aqc_get_topo *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.get_topo;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
cmd->port_num = lport;
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (!status && num_branches)
*num_branches = cmd->num_branches;
return status;
}
/**
* ice_aq_add_sched_elems - adds scheduling element
* @hw: pointer to the HW struct
* @grps_req: the number of groups that are requested to be added
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @grps_added: returns total number of groups added
* @cd: pointer to command details structure or NULL
*
* Add scheduling elements (0x0401)
*/
static enum ice_status
ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
struct ice_aqc_add_elem *buf, u16 buf_size,
u16 *grps_added, struct ice_sq_cd *cd)
{
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
grps_req, (void *)buf, buf_size,
grps_added, cd);
}
/**
* ice_aq_cfg_sched_elems - configures scheduler elements
* @hw: pointer to the HW struct
* @elems_req: number of elements to configure
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @elems_cfgd: returns total number of elements configured
* @cd: pointer to command details structure or NULL
*
* Configure scheduling elements (0x0403)
*/
static enum ice_status
ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
struct ice_aqc_conf_elem *buf, u16 buf_size,
u16 *elems_cfgd, struct ice_sq_cd *cd)
{
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
elems_req, (void *)buf, buf_size,
elems_cfgd, cd);
}
/**
* ice_aq_move_sched_elems - move scheduler elements
* @hw: pointer to the HW struct
* @grps_req: number of groups to move
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @grps_movd: returns total number of groups moved
* @cd: pointer to command details structure or NULL
*
* Move scheduling elements (0x0408)
*/
static enum ice_status
ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
struct ice_aqc_move_elem *buf, u16 buf_size,
u16 *grps_movd, struct ice_sq_cd *cd)
{
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
grps_req, (void *)buf, buf_size,
grps_movd, cd);
}
/**
* ice_aq_suspend_sched_elems - suspend scheduler elements
* @hw: pointer to the HW struct
* @elems_req: number of elements to suspend
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @elems_ret: returns total number of elements suspended
* @cd: pointer to command details structure or NULL
*
* Suspend scheduling elements (0x0409)
*/
static enum ice_status
ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req,
struct ice_aqc_suspend_resume_elem *buf,
u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
{
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
elems_req, (void *)buf, buf_size,
elems_ret, cd);
}
/**
* ice_aq_resume_sched_elems - resume scheduler elements
* @hw: pointer to the HW struct
* @elems_req: number of elements to resume
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @elems_ret: returns total number of elements resumed
* @cd: pointer to command details structure or NULL
*
* resume scheduling elements (0x040A)
*/
static enum ice_status
ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req,
struct ice_aqc_suspend_resume_elem *buf,
u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
{
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
elems_req, (void *)buf, buf_size,
elems_ret, cd);
}
/**
* ice_aq_query_sched_res - query scheduler resource
* @hw: pointer to the HW struct
* @buf_size: buffer size in bytes
* @buf: pointer to buffer
* @cd: pointer to command details structure or NULL
*
* Query scheduler resource allocation (0x0412)
*/
static enum ice_status
ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
struct ice_aqc_query_txsched_res_resp *buf,
struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
}
/**
* ice_sched_suspend_resume_elems - suspend or resume HW nodes
* @hw: pointer to the HW struct
* @num_nodes: number of nodes
* @node_teids: array of node teids to be suspended or resumed
* @suspend: true means suspend / false means resume
*
* This function suspends or resumes HW nodes
*/
static enum ice_status
ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
bool suspend)
{
struct ice_aqc_suspend_resume_elem *buf;
u16 i, buf_size, num_elem_ret = 0;
enum ice_status status;
buf_size = sizeof(*buf) * num_nodes;
buf = (struct ice_aqc_suspend_resume_elem *)
ice_malloc(hw, buf_size);
if (!buf)
return ICE_ERR_NO_MEMORY;
for (i = 0; i < num_nodes; i++)
buf->teid[i] = CPU_TO_LE32(node_teids[i]);
if (suspend)
status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
buf_size, &num_elem_ret,
NULL);
else
status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
buf_size, &num_elem_ret,
NULL);
if (status != ICE_SUCCESS || num_elem_ret != num_nodes)
ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
ice_free(hw, buf);
return status;
}
/**
* ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
* @hw: pointer to the HW struct
* @vsi_handle: VSI handle
* @tc: TC number
* @new_numqs: number of queues
*/
static enum ice_status
ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
{
struct ice_vsi_ctx *vsi_ctx;
struct ice_q_ctx *q_ctx;
vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
if (!vsi_ctx)
return ICE_ERR_PARAM;
/* allocate LAN queue contexts */
if (!vsi_ctx->lan_q_ctx[tc]) {
vsi_ctx->lan_q_ctx[tc] = (struct ice_q_ctx *)
ice_calloc(hw, new_numqs, sizeof(*q_ctx));
if (!vsi_ctx->lan_q_ctx[tc])
return ICE_ERR_NO_MEMORY;
vsi_ctx->num_lan_q_entries[tc] = new_numqs;
return ICE_SUCCESS;
}
/* num queues are increased, update the queue contexts */
if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
q_ctx = (struct ice_q_ctx *)
ice_calloc(hw, new_numqs, sizeof(*q_ctx));
if (!q_ctx)
return ICE_ERR_NO_MEMORY;
ice_memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
prev_num * sizeof(*q_ctx), ICE_DMA_TO_NONDMA);
ice_free(hw, vsi_ctx->lan_q_ctx[tc]);
vsi_ctx->lan_q_ctx[tc] = q_ctx;
vsi_ctx->num_lan_q_entries[tc] = new_numqs;
}
return ICE_SUCCESS;
}
/**
* ice_aq_rl_profile - performs a rate limiting task
* @hw: pointer to the HW struct
* @opcode:opcode for add, query, or remove profile(s)
* @num_profiles: the number of profiles
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @num_processed: number of processed add or remove profile(s) to return
* @cd: pointer to command details structure
*
* Rl profile function to add, query, or remove profile(s)
*/
static enum ice_status
ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
u16 num_profiles, struct ice_aqc_rl_profile_generic_elem *buf,
u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
{
struct ice_aqc_rl_profile *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.rl_profile;
ice_fill_dflt_direct_cmd_desc(&desc, opcode);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
cmd->num_profiles = CPU_TO_LE16(num_profiles);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (!status && num_processed)
*num_processed = LE16_TO_CPU(cmd->num_processed);
return status;
}
/**
* ice_aq_add_rl_profile - adds rate limiting profile(s)
* @hw: pointer to the HW struct
* @num_profiles: the number of profile(s) to be add
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @num_profiles_added: total number of profiles added to return
* @cd: pointer to command details structure
*
* Add RL profile (0x0410)
*/
static enum ice_status
ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
struct ice_aqc_rl_profile_generic_elem *buf,
u16 buf_size, u16 *num_profiles_added,
struct ice_sq_cd *cd)
{
return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles,
num_profiles, buf,
buf_size, num_profiles_added, cd);
}
/**
* ice_aq_query_rl_profile - query rate limiting profile(s)
* @hw: pointer to the HW struct
* @num_profiles: the number of profile(s) to query
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @cd: pointer to command details structure
*
* Query RL profile (0x0411)
*/
enum ice_status
ice_aq_query_rl_profile(struct ice_hw *hw, u16 num_profiles,
struct ice_aqc_rl_profile_generic_elem *buf,
u16 buf_size, struct ice_sq_cd *cd)
{
return ice_aq_rl_profile(hw, ice_aqc_opc_query_rl_profiles,
num_profiles, buf, buf_size, NULL, cd);
}
/**
* ice_aq_remove_rl_profile - removes RL profile(s)
* @hw: pointer to the HW struct
* @num_profiles: the number of profile(s) to remove
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @num_profiles_removed: total number of profiles removed to return
* @cd: pointer to command details structure or NULL
*
* Remove RL profile (0x0415)
*/
static enum ice_status
ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
struct ice_aqc_rl_profile_generic_elem *buf,
u16 buf_size, u16 *num_profiles_removed,
struct ice_sq_cd *cd)
{
return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
num_profiles, buf,
buf_size, num_profiles_removed, cd);
}
/**
* ice_sched_del_rl_profile - remove RL profile
* @hw: pointer to the HW struct
* @rl_info: rate limit profile information
*
* If the profile ID is not referenced anymore, it removes profile ID with
* its associated parameters from HW DB,and locally. The caller needs to
* hold scheduler lock.
*/
static enum ice_status
ice_sched_del_rl_profile(struct ice_hw *hw,
struct ice_aqc_rl_profile_info *rl_info)
{
struct ice_aqc_rl_profile_generic_elem *buf;
u16 num_profiles_removed;
enum ice_status status;
u16 num_profiles = 1;
if (rl_info->prof_id_ref != 0)
return ICE_ERR_IN_USE;
/* Safe to remove profile ID */
buf = (struct ice_aqc_rl_profile_generic_elem *)
&rl_info->profile;
status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
&num_profiles_removed, NULL);
if (status || num_profiles_removed != num_profiles)
return ICE_ERR_CFG;
/* Delete stale entry now */
LIST_DEL(&rl_info->list_entry);
ice_free(hw, rl_info);
return status;
}
/**
* ice_sched_clear_rl_prof - clears RL prof entries
* @pi: port information structure
*
* This function removes all RL profile from HW as well as from SW DB.
*/
static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
{
u16 ln;
for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
struct ice_aqc_rl_profile_info *rl_prof_elem;
struct ice_aqc_rl_profile_info *rl_prof_tmp;
LIST_FOR_EACH_ENTRY_SAFE(rl_prof_elem, rl_prof_tmp,
&pi->rl_prof_list[ln],
ice_aqc_rl_profile_info, list_entry) {
struct ice_hw *hw = pi->hw;
enum ice_status status;
rl_prof_elem->prof_id_ref = 0;
status = ice_sched_del_rl_profile(hw, rl_prof_elem);
if (status) {
ice_debug(hw, ICE_DBG_SCHED,
"Remove rl profile failed\n");
/* On error, free mem required */
LIST_DEL(&rl_prof_elem->list_entry);
ice_free(hw, rl_prof_elem);
}
}
}
}
/**
* ice_sched_clear_agg - clears the aggregator related information
* @hw: pointer to the hardware structure
*
* This function removes aggregator list and free up aggregator related memory
* previously allocated.
*/
void ice_sched_clear_agg(struct ice_hw *hw)
{
struct ice_sched_agg_info *agg_info;
struct ice_sched_agg_info *atmp;
LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &hw->agg_list,
ice_sched_agg_info,
list_entry) {
struct ice_sched_agg_vsi_info *agg_vsi_info;
struct ice_sched_agg_vsi_info *vtmp;
LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
&agg_info->agg_vsi_list,
ice_sched_agg_vsi_info, list_entry) {
LIST_DEL(&agg_vsi_info->list_entry);
ice_free(hw, agg_vsi_info);
}
LIST_DEL(&agg_info->list_entry);
ice_free(hw, agg_info);
}
}
/**
* ice_sched_clear_tx_topo - clears the schduler tree nodes
* @pi: port information structure
*
* This function removes all the nodes from HW as well as from SW DB.
*/
static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
{
if (!pi)
return;
/* remove RL profiles related lists */
ice_sched_clear_rl_prof(pi);
if (pi->root) {
ice_free_sched_node(pi, pi->root);
pi->root = NULL;
}
}
/**
* ice_sched_clear_port - clear the scheduler elements from SW DB for a port
* @pi: port information structure
*
* Cleanup scheduling elements from SW DB
*/
void ice_sched_clear_port(struct ice_port_info *pi)
{
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return;
pi->port_state = ICE_SCHED_PORT_STATE_INIT;
ice_acquire_lock(&pi->sched_lock);
ice_sched_clear_tx_topo(pi);
ice_release_lock(&pi->sched_lock);
ice_destroy_lock(&pi->sched_lock);
}
/**
* ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
* @hw: pointer to the HW struct
*
* Cleanup scheduling elements from SW DB for all the ports
*/
void ice_sched_cleanup_all(struct ice_hw *hw)
{
if (!hw)
return;
if (hw->layer_info) {
ice_free(hw, hw->layer_info);
hw->layer_info = NULL;
}
ice_sched_clear_port(hw->port_info);
hw->num_tx_sched_layers = 0;
hw->num_tx_sched_phys_layers = 0;
hw->flattened_layers = 0;
hw->max_cgds = 0;
}
/**
* ice_aq_cfg_l2_node_cgd - configures L2 node to CGD mapping
* @hw: pointer to the HW struct
* @num_l2_nodes: the number of L2 nodes whose CGDs to configure
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @cd: pointer to command details structure or NULL
*
* Configure L2 Node CGD (0x0414)
*/
enum ice_status
ice_aq_cfg_l2_node_cgd(struct ice_hw *hw, u16 num_l2_nodes,
struct ice_aqc_cfg_l2_node_cgd_data *buf,
u16 buf_size, struct ice_sq_cd *cd)
{
struct ice_aqc_cfg_l2_node_cgd *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.cfg_l2_node_cgd;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_l2_node_cgd);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
cmd->num_l2_nodes = CPU_TO_LE16(num_l2_nodes);
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
}
/**
* ice_sched_add_elems - add nodes to HW and SW DB
* @pi: port information structure
* @tc_node: pointer to the branch node
* @parent: pointer to the parent node
* @layer: layer number to add nodes
* @num_nodes: number of nodes
* @num_nodes_added: pointer to num nodes added
* @first_node_teid: if new nodes are added then return the TEID of first node
*
* This function add nodes to HW as well as to SW DB for a given layer
*/
static enum ice_status
ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
struct ice_sched_node *parent, u8 layer, u16 num_nodes,
u16 *num_nodes_added, u32 *first_node_teid)
{
struct ice_sched_node *prev, *new_node;
struct ice_aqc_add_elem *buf;
u16 i, num_groups_added = 0;
enum ice_status status = ICE_SUCCESS;
struct ice_hw *hw = pi->hw;
u16 buf_size;
u32 teid;
buf_size = sizeof(*buf) + sizeof(*buf->generic) * (num_nodes - 1);
buf = (struct ice_aqc_add_elem *)ice_malloc(hw, buf_size);
if (!buf)
return ICE_ERR_NO_MEMORY;
buf->hdr.parent_teid = parent->info.node_teid;
buf->hdr.num_elems = CPU_TO_LE16(num_nodes);
for (i = 0; i < num_nodes; i++) {
buf->generic[i].parent_teid = parent->info.node_teid;
buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
buf->generic[i].data.valid_sections =
ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
ICE_AQC_ELEM_VALID_EIR;
buf->generic[i].data.generic = 0;
buf->generic[i].data.cir_bw.bw_profile_idx =
CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
buf->generic[i].data.cir_bw.bw_alloc =
CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
buf->generic[i].data.eir_bw.bw_profile_idx =
CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
buf->generic[i].data.eir_bw.bw_alloc =
CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
}
status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
&num_groups_added, NULL);
if (status != ICE_SUCCESS || num_groups_added != 1) {
ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
hw->adminq.sq_last_status);
ice_free(hw, buf);
return ICE_ERR_CFG;
}
*num_nodes_added = num_nodes;
/* add nodes to the SW DB */
for (i = 0; i < num_nodes; i++) {
status = ice_sched_add_node(pi, layer, &buf->generic[i]);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_SCHED,
"add nodes in SW DB failed status =%d\n",
status);
break;
}
teid = LE32_TO_CPU(buf->generic[i].node_teid);
new_node = ice_sched_find_node_by_teid(parent, teid);
if (!new_node) {
ice_debug(hw, ICE_DBG_SCHED,
"Node is missing for teid =%d\n", teid);
break;
}
new_node->sibling = NULL;
new_node->tc_num = tc_node->tc_num;
/* add it to previous node sibling pointer */
/* Note: siblings are not linked across branches */
prev = ice_sched_get_first_node(pi, tc_node, layer);
if (prev && prev != new_node) {
while (prev->sibling)
prev = prev->sibling;
prev->sibling = new_node;
}
/* initialize the sibling head */
if (!pi->sib_head[tc_node->tc_num][layer])
pi->sib_head[tc_node->tc_num][layer] = new_node;
if (i == 0)
*first_node_teid = teid;
}
ice_free(hw, buf);
return status;
}
/**
* ice_sched_add_nodes_to_layer - Add nodes to a given layer
* @pi: port information structure
* @tc_node: pointer to TC node
* @parent: pointer to parent node
* @layer: layer number to add nodes
* @num_nodes: number of nodes to be added
* @first_node_teid: pointer to the first node TEID
* @num_nodes_added: pointer to number of nodes added
*
* This function add nodes to a given layer.
*/
static enum ice_status
ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
struct ice_sched_node *tc_node,
struct ice_sched_node *parent, u8 layer,
u16 num_nodes, u32 *first_node_teid,
u16 *num_nodes_added)
{
u32 *first_teid_ptr = first_node_teid;
u16 new_num_nodes, max_child_nodes;
enum ice_status status = ICE_SUCCESS;
struct ice_hw *hw = pi->hw;
u16 num_added = 0;
u32 temp;
*num_nodes_added = 0;
if (!num_nodes)
return status;
if (!parent || layer < hw->sw_entry_point_layer)
return ICE_ERR_PARAM;
/* max children per node per layer */
max_child_nodes = hw->max_children[parent->tx_sched_layer];
/* current number of children + required nodes exceed max children ? */
if ((parent->num_children + num_nodes) > max_child_nodes) {
/* Fail if the parent is a TC node */
if (parent == tc_node)
return ICE_ERR_CFG;
/* utilize all the spaces if the parent is not full */
if (parent->num_children < max_child_nodes) {
new_num_nodes = max_child_nodes - parent->num_children;
/* this recursion is intentional, and wouldn't
* go more than 2 calls
*/
status = ice_sched_add_nodes_to_layer(pi, tc_node,
parent, layer,
new_num_nodes,
first_node_teid,
&num_added);
if (status != ICE_SUCCESS)
return status;
*num_nodes_added += num_added;
}
/* Don't modify the first node TEID memory if the first node was
* added already in the above call. Instead send some temp
* memory for all other recursive calls.
*/
if (num_added)
first_teid_ptr = &temp;
new_num_nodes = num_nodes - num_added;
/* This parent is full, try the next sibling */
parent = parent->sibling;
/* this recursion is intentional, for 1024 queues
* per VSI, it goes max of 16 iterations.
* 1024 / 8 = 128 layer 8 nodes
* 128 /8 = 16 (add 8 nodes per iteration)
*/
status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
layer, new_num_nodes,
first_teid_ptr,
&num_added);
*num_nodes_added += num_added;
return status;
}
status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
num_nodes_added, first_node_teid);
return status;
}
/**
* ice_sched_get_qgrp_layer - get the current queue group layer number
* @hw: pointer to the HW struct
*
* This function returns the current queue group layer number
*/
static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
{
/* It's always total layers - 1, the array is 0 relative so -2 */
return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
}
/**
* ice_sched_get_vsi_layer - get the current VSI layer number
* @hw: pointer to the HW struct
*
* This function returns the current VSI layer number
*/
static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
{
/* Num Layers VSI layer
* 9 6
* 7 4
* 5 or less sw_entry_point_layer
*/
/* calculate the VSI layer based on number of layers. */
if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
if (layer > hw->sw_entry_point_layer)
return layer;
}
return hw->sw_entry_point_layer;
}
/**
* ice_sched_get_agg_layer - get the current aggregator layer number
* @hw: pointer to the HW struct
*
* This function returns the current aggregator layer number
*/
static u8 ice_sched_get_agg_layer(struct ice_hw *hw)
{
/* Num Layers aggregator layer
* 9 4
* 7 or less sw_entry_point_layer
*/
/* calculate the aggregator layer based on number of layers. */
if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
if (layer > hw->sw_entry_point_layer)
return layer;
}
return hw->sw_entry_point_layer;
}
/**
* ice_rm_dflt_leaf_node - remove the default leaf node in the tree
* @pi: port information structure
*
* This function removes the leaf node that was created by the FW
* during initialization
*/
static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
{
struct ice_sched_node *node;
node = pi->root;
while (node) {
if (!node->num_children)
break;
node = node->children[0];
}
if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
u32 teid = LE32_TO_CPU(node->info.node_teid);
enum ice_status status;
/* remove the default leaf node */
status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
if (!status)
ice_free_sched_node(pi, node);
}
}
/**
* ice_sched_rm_dflt_nodes - free the default nodes in the tree
* @pi: port information structure
*
* This function frees all the nodes except root and TC that were created by
* the FW during initialization
*/
static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
{
struct ice_sched_node *node;
ice_rm_dflt_leaf_node(pi);
/* remove the default nodes except TC and root nodes */
node = pi->root;
while (node) {
if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
ice_free_sched_node(pi, node);
break;
}
if (!node->num_children)
break;
node = node->children[0];
}
}
/**
* ice_sched_init_port - Initialize scheduler by querying information from FW
* @pi: port info structure for the tree to cleanup
*
* This function is the initial call to find the total number of Tx scheduler
* resources, default topology created by firmware and storing the information
* in SW DB.
*/
enum ice_status ice_sched_init_port(struct ice_port_info *pi)
{
struct ice_aqc_get_topo_elem *buf;
enum ice_status status;
struct ice_hw *hw;
u8 num_branches;
u16 num_elems;
u8 i, j;
if (!pi)
return ICE_ERR_PARAM;
hw = pi->hw;
/* Query the Default Topology from FW */
buf = (struct ice_aqc_get_topo_elem *)ice_malloc(hw,
ICE_AQ_MAX_BUF_LEN);
if (!buf)
return ICE_ERR_NO_MEMORY;
/* Query default scheduling tree topology */
status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
&num_branches, NULL);
if (status)
goto err_init_port;
/* num_branches should be between 1-8 */
if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
num_branches);
status = ICE_ERR_PARAM;
goto err_init_port;
}
/* get the number of elements on the default/first branch */
num_elems = LE16_TO_CPU(buf[0].hdr.num_elems);
/* num_elems should always be between 1-9 */
if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
num_elems);
status = ICE_ERR_PARAM;
goto err_init_port;
}
/* If the last node is a leaf node then the index of the queue group
* layer is two less than the number of elements.
*/
if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
ICE_AQC_ELEM_TYPE_LEAF)
pi->last_node_teid =
LE32_TO_CPU(buf[0].generic[num_elems - 2].node_teid);
else
pi->last_node_teid =
LE32_TO_CPU(buf[0].generic[num_elems - 1].node_teid);
/* Insert the Tx Sched root node */
status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
if (status)
goto err_init_port;
/* Parse the default tree and cache the information */
for (i = 0; i < num_branches; i++) {
num_elems = LE16_TO_CPU(buf[i].hdr.num_elems);
/* Skip root element as already inserted */
for (j = 1; j < num_elems; j++) {
/* update the sw entry point */
if (buf[0].generic[j].data.elem_type ==
ICE_AQC_ELEM_TYPE_ENTRY_POINT)
hw->sw_entry_point_layer = j;
status = ice_sched_add_node(pi, j, &buf[i].generic[j]);
if (status)
goto err_init_port;
}
}
/* Remove the default nodes. */
if (pi->root)
ice_sched_rm_dflt_nodes(pi);
/* initialize the port for handling the scheduler tree */
pi->port_state = ICE_SCHED_PORT_STATE_READY;
ice_init_lock(&pi->sched_lock);
for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
INIT_LIST_HEAD(&pi->rl_prof_list[i]);
err_init_port:
if (status && pi->root) {
ice_free_sched_node(pi, pi->root);
pi->root = NULL;
}
ice_free(hw, buf);
return status;
}
/**
* ice_sched_get_node - Get the struct ice_sched_node for given TEID
* @pi: port information structure
* @teid: Scheduler node TEID
*
* This function retrieves the ice_sched_node struct for given TEID from
* the SW DB and returns it to the caller.
*/
struct ice_sched_node *ice_sched_get_node(struct ice_port_info *pi, u32 teid)
{
struct ice_sched_node *node;
if (!pi)
return NULL;
/* Find the node starting from root */
ice_acquire_lock(&pi->sched_lock);
node = ice_sched_find_node_by_teid(pi->root, teid);
ice_release_lock(&pi->sched_lock);
if (!node)
ice_debug(pi->hw, ICE_DBG_SCHED,
"Node not found for teid=0x%x\n", teid);
return node;
}
/**
* ice_sched_query_res_alloc - query the FW for num of logical sched layers
* @hw: pointer to the HW struct
*
* query FW for allocated scheduler resources and store in HW struct
*/
enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
{
struct ice_aqc_query_txsched_res_resp *buf;
enum ice_status status = ICE_SUCCESS;
__le16 max_sibl;
u8 i;
if (hw->layer_info)
return status;
buf = (struct ice_aqc_query_txsched_res_resp *)
ice_malloc(hw, sizeof(*buf));
if (!buf)
return ICE_ERR_NO_MEMORY;
status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
if (status)
goto sched_query_out;
hw->num_tx_sched_layers = LE16_TO_CPU(buf->sched_props.logical_levels);
hw->num_tx_sched_phys_layers =
LE16_TO_CPU(buf->sched_props.phys_levels);
hw->flattened_layers = buf->sched_props.flattening_bitmap;
hw->max_cgds = buf->sched_props.max_pf_cgds;
/* max sibling group size of current layer refers to the max children
* of the below layer node.
* layer 1 node max children will be layer 2 max sibling group size
* layer 2 node max children will be layer 3 max sibling group size
* and so on. This array will be populated from root (index 0) to
* qgroup layer 7. Leaf node has no children.
*/
for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
hw->max_children[i] = LE16_TO_CPU(max_sibl);
}
hw->layer_info = (struct ice_aqc_layer_props *)
ice_memdup(hw, buf->layer_props,
(hw->num_tx_sched_layers *
sizeof(*hw->layer_info)),
ICE_DMA_TO_DMA);
if (!hw->layer_info) {
status = ICE_ERR_NO_MEMORY;
goto sched_query_out;
}
sched_query_out:
ice_free(hw, buf);
return status;
}
/**
* ice_sched_find_node_in_subtree - Find node in part of base node subtree
* @hw: pointer to the HW struct
* @base: pointer to the base node
* @node: pointer to the node to search
*
* This function checks whether a given node is part of the base node
* subtree or not
*/
bool
ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
struct ice_sched_node *node)
{
u8 i;
for (i = 0; i < base->num_children; i++) {
struct ice_sched_node *child = base->children[i];
if (node == child)
return true;
if (child->tx_sched_layer > node->tx_sched_layer)
return false;
/* this recursion is intentional, and wouldn't
* go more than 8 calls
*/
if (ice_sched_find_node_in_subtree(hw, child, node))
return true;
}
return false;
}
/**
* ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: branch number
* @owner: LAN or RDMA
*
* This function retrieves a free LAN or RDMA queue group node
*/
struct ice_sched_node *
ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
u8 owner)
{
struct ice_sched_node *vsi_node, *qgrp_node = NULL;
struct ice_vsi_ctx *vsi_ctx;
u16 max_children;
u8 qgrp_layer;
qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
max_children = pi->hw->max_children[qgrp_layer];
vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
if (!vsi_ctx)
return NULL;
vsi_node = vsi_ctx->sched.vsi_node[tc];
/* validate invalid VSI ID */
if (!vsi_node)
goto lan_q_exit;
/* get the first queue group node from VSI sub-tree */
qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
while (qgrp_node) {
/* make sure the qgroup node is part of the VSI subtree */
if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
if (qgrp_node->num_children < max_children &&
qgrp_node->owner == owner)
break;
qgrp_node = qgrp_node->sibling;
}
lan_q_exit:
return qgrp_node;
}
/**
* ice_sched_get_vsi_node - Get a VSI node based on VSI ID
* @pi: pointer to the port information structure
* @tc_node: pointer to the TC node
* @vsi_handle: software VSI handle
*
* This function retrieves a VSI node for a given VSI ID from a given
* TC branch
*/
struct ice_sched_node *
ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
u16 vsi_handle)
{
struct ice_sched_node *node;
u8 vsi_layer;
vsi_layer = ice_sched_get_vsi_layer(pi->hw);
node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
/* Check whether it already exists */
while (node) {
if (node->vsi_handle == vsi_handle)
return node;
node = node->sibling;
}
return node;
}
/**
* ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
* @pi: pointer to the port information structure
* @tc_node: pointer to the TC node
* @agg_id: aggregator ID
*
* This function retrieves an aggregator node for a given aggregator ID from
* a given TC branch
*/
static struct ice_sched_node *
ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
u32 agg_id)
{
struct ice_sched_node *node;
struct ice_hw *hw = pi->hw;
u8 agg_layer;
if (!hw)
return NULL;
agg_layer = ice_sched_get_agg_layer(hw);
node = ice_sched_get_first_node(pi, tc_node, agg_layer);
/* Check whether it already exists */
while (node) {
if (node->agg_id == agg_id)
return node;
node = node->sibling;
}
return node;
}
/**
* ice_sched_check_node - Compare node parameters between SW DB and HW DB
* @hw: pointer to the HW struct
* @node: pointer to the ice_sched_node struct
*
* This function queries and compares the HW element with SW DB node parameters
*/
static bool ice_sched_check_node(struct ice_hw *hw, struct ice_sched_node *node)
{
struct ice_aqc_get_elem buf;
enum ice_status status;
u32 node_teid;
node_teid = LE32_TO_CPU(node->info.node_teid);
status = ice_sched_query_elem(hw, node_teid, &buf);
if (status != ICE_SUCCESS)
return false;
if (memcmp(buf.generic, &node->info, sizeof(*buf.generic))) {
ice_debug(hw, ICE_DBG_SCHED, "Node mismatch for teid=0x%x\n",
node_teid);
return false;
}
return true;
}
/**
* ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
* @hw: pointer to the HW struct
* @num_qs: number of queues
* @num_nodes: num nodes array
*
* This function calculates the number of VSI child nodes based on the
* number of queues.
*/
static void
ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
{
u16 num = num_qs;
u8 i, qgl, vsil;
qgl = ice_sched_get_qgrp_layer(hw);
vsil = ice_sched_get_vsi_layer(hw);
/* calculate num nodes from queue group to VSI layer */
for (i = qgl; i > vsil; i--) {
/* round to the next integer if there is a remainder */
num = DIVIDE_AND_ROUND_UP(num, hw->max_children[i]);
/* need at least one node */
num_nodes[i] = num ? num : 1;
}
}
/**
* ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc_node: pointer to the TC node
* @num_nodes: pointer to the num nodes that needs to be added per layer
* @owner: node owner (LAN or RDMA)
*
* This function adds the VSI child nodes to tree. It gets called for
* LAN and RDMA separately.
*/
static enum ice_status
ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
struct ice_sched_node *tc_node, u16 *num_nodes,
u8 owner)
{
struct ice_sched_node *parent, *node;
struct ice_hw *hw = pi->hw;
enum ice_status status;
u32 first_node_teid;
u16 num_added = 0;
u8 i, qgl, vsil;
qgl = ice_sched_get_qgrp_layer(hw);
vsil = ice_sched_get_vsi_layer(hw);
parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
for (i = vsil + 1; i <= qgl; i++) {
if (!parent)
return ICE_ERR_CFG;
status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
num_nodes[i],
&first_node_teid,
&num_added);
if (status != ICE_SUCCESS || num_nodes[i] != num_added)
return ICE_ERR_CFG;
/* The newly added node can be a new parent for the next
* layer nodes
*/
if (num_added) {
parent = ice_sched_find_node_by_teid(tc_node,
first_node_teid);
node = parent;
while (node) {
node->owner = owner;
node = node->sibling;
}
} else {
parent = parent->children[0];
}
}
return ICE_SUCCESS;
}
/**
* ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
* @pi: pointer to the port info structure
* @tc_node: pointer to TC node
* @num_nodes: pointer to num nodes array
*
* This function calculates the number of supported nodes needed to add this
* VSI into Tx tree including the VSI, parent and intermediate nodes in below
* layers
*/
static void
ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
struct ice_sched_node *tc_node, u16 *num_nodes)
{
struct ice_sched_node *node;
u8 vsil;
int i;
vsil = ice_sched_get_vsi_layer(pi->hw);
for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
/* Add intermediate nodes if TC has no children and
* need at least one node for VSI
*/
if (!tc_node->num_children || i == vsil) {
num_nodes[i]++;
} else {
/* If intermediate nodes are reached max children
* then add a new one.
*/
node = ice_sched_get_first_node(pi, tc_node, (u8)i);
/* scan all the siblings */
while (node) {
if (node->num_children <
pi->hw->max_children[i])
break;
node = node->sibling;
}
/* tree has one intermediate node to add this new VSI.
* So no need to calculate supported nodes for below
* layers.
*/
if (node)
break;
/* all the nodes are full, allocate a new one */
num_nodes[i]++;
}
}
/**
* ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc_node: pointer to TC node
* @num_nodes: pointer to num nodes array
*
* This function adds the VSI supported nodes into Tx tree including the
* VSI, its parent and intermediate nodes in below layers
*/
static enum ice_status
ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
struct ice_sched_node *tc_node, u16 *num_nodes)
{
struct ice_sched_node *parent = tc_node;
enum ice_status status;
u32 first_node_teid;
u16 num_added = 0;
u8 i, vsil;
if (!pi)
return ICE_ERR_PARAM;
vsil = ice_sched_get_vsi_layer(pi->hw);
for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
i, num_nodes[i],
&first_node_teid,
&num_added);
if (status != ICE_SUCCESS || num_nodes[i] != num_added)
return ICE_ERR_CFG;
/* The newly added node can be a new parent for the next
* layer nodes
*/
if (num_added)
parent = ice_sched_find_node_by_teid(tc_node,
first_node_teid);
else
parent = parent->children[0];
if (!parent)
return ICE_ERR_CFG;
if (i == vsil)
parent->vsi_handle = vsi_handle;
}
return ICE_SUCCESS;
}
/**
* ice_sched_add_vsi_to_topo - add a new VSI into tree
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: TC number
*
* This function adds a new VSI into scheduler tree
*/
static enum ice_status
ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
{
u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
struct ice_sched_node *tc_node;
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
return ICE_ERR_PARAM;
/* calculate number of supported nodes needed for this VSI */
ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
/* add VSI supported nodes to TC subtree */
return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
num_nodes);
}
/**
* ice_sched_update_vsi_child_nodes - update VSI child nodes
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: TC number
* @new_numqs: new number of max queues
* @owner: owner of this subtree
*
* This function updates the VSI child nodes based on the number of queues
*/
static enum ice_status
ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
u8 tc, u16 new_numqs, u8 owner)
{
u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
struct ice_sched_node *vsi_node;
struct ice_sched_node *tc_node;
struct ice_vsi_ctx *vsi_ctx;
enum ice_status status = ICE_SUCCESS;
struct ice_hw *hw = pi->hw;
u16 prev_numqs;
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
return ICE_ERR_CFG;
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
if (!vsi_node)
return ICE_ERR_CFG;
vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
if (!vsi_ctx)
return ICE_ERR_PARAM;
prev_numqs = vsi_ctx->sched.max_lanq[tc];
/* num queues are not changed or less than the previous number */
if (new_numqs <= prev_numqs)
return status;
status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
if (status)
return status;
if (new_numqs)
ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
/* Keep the max number of queue configuration all the time. Update the
* tree only if number of queues > previous number of queues. This may
* leave some extra nodes in the tree if number of queues < previous
* number but that wouldn't harm anything. Removing those extra nodes
* may complicate the code if those nodes are part of SRL or
* individually rate limited.
*/
status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
new_num_nodes, owner);
if (status)
return status;
vsi_ctx->sched.max_lanq[tc] = new_numqs;
return ICE_SUCCESS;
}
/**
* ice_sched_cfg_vsi - configure the new/existing VSI
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: TC number
* @maxqs: max number of queues
* @owner: LAN or RDMA
* @enable: TC enabled or disabled
*
* This function adds/updates VSI nodes based on the number of queues. If TC is
* enabled and VSI is in suspended state then resume the VSI back. If TC is
* disabled then suspend the VSI if it is not already.
*/
enum ice_status
ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
u8 owner, bool enable)
{
struct ice_sched_node *vsi_node, *tc_node;
struct ice_vsi_ctx *vsi_ctx;
enum ice_status status = ICE_SUCCESS;
struct ice_hw *hw = pi->hw;
ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
return ICE_ERR_PARAM;
vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
if (!vsi_ctx)
return ICE_ERR_PARAM;
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
/* suspend the VSI if TC is not enabled */
if (!enable) {
if (vsi_node && vsi_node->in_use) {
u32 teid = LE32_TO_CPU(vsi_node->info.node_teid);
status = ice_sched_suspend_resume_elems(hw, 1, &teid,
true);
if (!status)
vsi_node->in_use = false;
}
return status;
}
/* TC is enabled, if it is a new VSI then add it to the tree */
if (!vsi_node) {
status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
if (status)
return status;
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
if (!vsi_node)
return ICE_ERR_CFG;
vsi_ctx->sched.vsi_node[tc] = vsi_node;
vsi_node->in_use = true;
/* invalidate the max queues whenever VSI gets added first time
* into the scheduler tree (boot or after reset). We need to
* recreate the child nodes all the time in these cases.
*/
vsi_ctx->sched.max_lanq[tc] = 0;
}
/* update the VSI child nodes */
status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
owner);
if (status)
return status;
/* TC is enabled, resume the VSI if it is in the suspend state */
if (!vsi_node->in_use) {
u32 teid = LE32_TO_CPU(vsi_node->info.node_teid);
status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
if (!status)
vsi_node->in_use = true;
}
return status;
}
/**
* ice_sched_rm_agg_vsi_entry - remove aggregator related VSI info entry
* @pi: port information structure
* @vsi_handle: software VSI handle
*
* This function removes single aggregator VSI info entry from
* aggregator list.
*/
static void
ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
{
struct ice_sched_agg_info *agg_info;
struct ice_sched_agg_info *atmp;
LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &pi->hw->agg_list,
ice_sched_agg_info,
list_entry) {
struct ice_sched_agg_vsi_info *agg_vsi_info;
struct ice_sched_agg_vsi_info *vtmp;
LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
&agg_info->agg_vsi_list,
ice_sched_agg_vsi_info, list_entry)
if (agg_vsi_info->vsi_handle == vsi_handle) {
LIST_DEL(&agg_vsi_info->list_entry);
ice_free(pi->hw, agg_vsi_info);
return;
}
}
}
/**
* ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
* @node: pointer to the sub-tree node
*
* This function checks for a leaf node presence in a given sub-tree node.
*/
static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
{
u8 i;
for (i = 0; i < node->num_children; i++)
if (ice_sched_is_leaf_node_present(node->children[i]))
return true;
/* check for a leaf node */
return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
}
/**
* ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
* @pi: port information structure
* @vsi_handle: software VSI handle
* @owner: LAN or RDMA
*
* This function removes the VSI and its LAN or RDMA children nodes from the
* scheduler tree.
*/
static enum ice_status
ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
{
enum ice_status status = ICE_ERR_PARAM;
struct ice_vsi_ctx *vsi_ctx;
u8 i;
ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
return status;
ice_acquire_lock(&pi->sched_lock);
vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
if (!vsi_ctx)
goto exit_sched_rm_vsi_cfg;
ice_for_each_traffic_class(i) {
struct ice_sched_node *vsi_node, *tc_node;
u8 j = 0;
tc_node = ice_sched_get_tc_node(pi, i);
if (!tc_node)
continue;
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
if (!vsi_node)
continue;
if (ice_sched_is_leaf_node_present(vsi_node)) {
ice_debug(pi->hw, ICE_DBG_SCHED,
"VSI has leaf nodes in TC %d\n", i);
status = ICE_ERR_IN_USE;
goto exit_sched_rm_vsi_cfg;
}
while (j < vsi_node->num_children) {
if (vsi_node->children[j]->owner == owner) {
ice_free_sched_node(pi, vsi_node->children[j]);
/* reset the counter again since the num
* children will be updated after node removal
*/
j = 0;
} else {
j++;
}
}
/* remove the VSI if it has no children */
if (!vsi_node->num_children) {
ice_free_sched_node(pi, vsi_node);
vsi_ctx->sched.vsi_node[i] = NULL;
/* clean up aggregator related VSI info if any */
ice_sched_rm_agg_vsi_info(pi, vsi_handle);
}
if (owner == ICE_SCHED_NODE_OWNER_LAN)
vsi_ctx->sched.max_lanq[i] = 0;
}
status = ICE_SUCCESS;
exit_sched_rm_vsi_cfg:
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
* @pi: port information structure
* @vsi_handle: software VSI handle
*
* This function clears the VSI and its LAN children nodes from scheduler tree
* for all TCs.
*/
enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
{
return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
}
/**
* ice_sched_is_tree_balanced - Check tree nodes are identical or not
* @hw: pointer to the HW struct
* @node: pointer to the ice_sched_node struct
*
* This function compares all the nodes for a given tree against HW DB nodes
* This function needs to be called with the port_info->sched_lock held
*/
bool ice_sched_is_tree_balanced(struct ice_hw *hw, struct ice_sched_node *node)
{
u8 i;
/* start from the leaf node */
for (i = 0; i < node->num_children; i++)
/* Fail if node doesn't match with the SW DB
* this recursion is intentional, and wouldn't
* go more than 9 calls
*/
if (!ice_sched_is_tree_balanced(hw, node->children[i]))
return false;
return ice_sched_check_node(hw, node);
}
/**
* ice_aq_query_node_to_root - retrieve the tree topology for a given node TEID
* @hw: pointer to the HW struct
* @node_teid: node TEID
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @cd: pointer to command details structure or NULL
*
* This function retrieves the tree topology from the firmware for a given
* node TEID to the root node.
*/
enum ice_status
ice_aq_query_node_to_root(struct ice_hw *hw, u32 node_teid,
struct ice_aqc_get_elem *buf, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_aqc_query_node_to_root *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.query_node_to_root;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_node_to_root);
cmd->teid = CPU_TO_LE32(node_teid);
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
}
/**
* ice_get_agg_info - get the aggregator ID
* @hw: pointer to the hardware structure
* @agg_id: aggregator ID
*
* This function validates aggregator ID. The function returns info if
* aggregator ID is present in list otherwise it returns null.
*/
static struct ice_sched_agg_info*
ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
{
struct ice_sched_agg_info *agg_info;
LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
list_entry)
if (agg_info->agg_id == agg_id)
return agg_info;
return NULL;
}
/**
* ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
* @hw: pointer to the HW struct
* @node: pointer to a child node
* @num_nodes: num nodes count array
*
* This function walks through the aggregator subtree to find a free parent
* node
*/
static struct ice_sched_node *
ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
u16 *num_nodes)
{
u8 l = node->tx_sched_layer;
u8 vsil, i;
vsil = ice_sched_get_vsi_layer(hw);
/* Is it VSI parent layer ? */
if (l == vsil - 1)
return (node->num_children < hw->max_children[l]) ? node : NULL;
/* We have intermediate nodes. Let's walk through the subtree. If the
* intermediate node has space to add a new node then clear the count
*/
if (node->num_children < hw->max_children[l])
num_nodes[l] = 0;
/* The below recursive call is intentional and wouldn't go more than
* 2 or 3 iterations.
*/
for (i = 0; i < node->num_children; i++) {
struct ice_sched_node *parent;
parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
num_nodes);
if (parent)
return parent;
}
return NULL;
}
/**
* ice_sched_update_parent - update the new parent in SW DB
* @new_parent: pointer to a new parent node
* @node: pointer to a child node
*
* This function removes the child from the old parent and adds it to a new
* parent
*/
static void
ice_sched_update_parent(struct ice_sched_node *new_parent,
struct ice_sched_node *node)
{
struct ice_sched_node *old_parent;
u8 i, j;
old_parent = node->parent;
/* update the old parent children */
for (i = 0; i < old_parent->num_children; i++)
if (old_parent->children[i] == node) {
for (j = i + 1; j < old_parent->num_children; j++)
old_parent->children[j - 1] =
old_parent->children[j];
old_parent->num_children--;
break;
}
/* now move the node to a new parent */
new_parent->children[new_parent->num_children++] = node;
node->parent = new_parent;
node->info.parent_teid = new_parent->info.node_teid;
}
/**
* ice_sched_move_nodes - move child nodes to a given parent
* @pi: port information structure
* @parent: pointer to parent node
* @num_items: number of child nodes to be moved
* @list: pointer to child node teids
*
* This function move the child nodes to a given parent.
*/
static enum ice_status
ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
u16 num_items, u32 *list)
{
enum ice_status status = ICE_SUCCESS;
struct ice_aqc_move_elem *buf;
struct ice_sched_node *node;
u16 i, grps_movd = 0;
struct ice_hw *hw;
hw = pi->hw;
if (!parent || !num_items)
return ICE_ERR_PARAM;
/* Does parent have enough space */
if (parent->num_children + num_items >=
hw->max_children[parent->tx_sched_layer])
return ICE_ERR_AQ_FULL;
buf = (struct ice_aqc_move_elem *)ice_malloc(hw, sizeof(*buf));
if (!buf)
return ICE_ERR_NO_MEMORY;
for (i = 0; i < num_items; i++) {
node = ice_sched_find_node_by_teid(pi->root, list[i]);
if (!node) {
status = ICE_ERR_PARAM;
goto move_err_exit;
}
buf->hdr.src_parent_teid = node->info.parent_teid;
buf->hdr.dest_parent_teid = parent->info.node_teid;
buf->teid[0] = node->info.node_teid;
buf->hdr.num_elems = CPU_TO_LE16(1);
status = ice_aq_move_sched_elems(hw, 1, buf, sizeof(*buf),
&grps_movd, NULL);
if (status && grps_movd != 1) {
status = ICE_ERR_CFG;
goto move_err_exit;
}
/* update the SW DB */
ice_sched_update_parent(parent, node);
}
move_err_exit:
ice_free(hw, buf);
return status;
}
/**
* ice_sched_move_vsi_to_agg - move VSI to aggregator node
* @pi: port information structure
* @vsi_handle: software VSI handle
* @agg_id: aggregator ID
* @tc: TC number
*
* This function moves a VSI to an aggregator node or its subtree.
* Intermediate nodes may be created if required.
*/
static enum ice_status
ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
u8 tc)
{
struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
u32 first_node_teid, vsi_teid;
enum ice_status status;
u16 num_nodes_added;
u8 aggl, vsil, i;
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
return ICE_ERR_CFG;
agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
if (!agg_node)
return ICE_ERR_DOES_NOT_EXIST;
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
if (!vsi_node)
return ICE_ERR_DOES_NOT_EXIST;
aggl = ice_sched_get_agg_layer(pi->hw);
vsil = ice_sched_get_vsi_layer(pi->hw);
/* set intermediate node count to 1 between aggregator and VSI layers */
for (i = aggl + 1; i < vsil; i++)
num_nodes[i] = 1;
/* Check if the aggregator subtree has any free node to add the VSI */
for (i = 0; i < agg_node->num_children; i++) {
parent = ice_sched_get_free_vsi_parent(pi->hw,
agg_node->children[i],
num_nodes);
if (parent)
goto move_nodes;
}
/* add new nodes */
parent = agg_node;
for (i = aggl + 1; i < vsil; i++) {
status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
num_nodes[i],
&first_node_teid,
&num_nodes_added);
if (status != ICE_SUCCESS || num_nodes[i] != num_nodes_added)
return ICE_ERR_CFG;
/* The newly added node can be a new parent for the next
* layer nodes
*/
if (num_nodes_added)
parent = ice_sched_find_node_by_teid(tc_node,
first_node_teid);
else
parent = parent->children[0];
if (!parent)
return ICE_ERR_CFG;
}
move_nodes:
vsi_teid = LE32_TO_CPU(vsi_node->info.node_teid);
return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
}
/**
* ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
* @pi: port information structure
* @agg_info: aggregator info
* @tc: traffic class number
* @rm_vsi_info: true or false
*
* This function move all the VSI(s) to the default aggregator and delete
* aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
* caller holds the scheduler lock.
*/
static enum ice_status
ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
struct ice_sched_agg_info *agg_info, u8 tc,
bool rm_vsi_info)
{
struct ice_sched_agg_vsi_info *agg_vsi_info;
struct ice_sched_agg_vsi_info *tmp;
enum ice_status status = ICE_SUCCESS;
LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
ice_sched_agg_vsi_info, list_entry) {
u16 vsi_handle = agg_vsi_info->vsi_handle;
/* Move VSI to default aggregator */
if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
continue;
status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
ICE_DFLT_AGG_ID, tc);
if (status)
break;
ice_clear_bit(tc, agg_vsi_info->tc_bitmap);
if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
LIST_DEL(&agg_vsi_info->list_entry);
ice_free(pi->hw, agg_vsi_info);
}
}
return status;
}
/**
* ice_sched_is_agg_inuse - check whether the aggregator is in use or not
* @pi: port information structure
* @node: node pointer
*
* This function checks whether the aggregator is attached with any VSI or not.
*/
static bool
ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
{
u8 vsil, i;
vsil = ice_sched_get_vsi_layer(pi->hw);
if (node->tx_sched_layer < vsil - 1) {
for (i = 0; i < node->num_children; i++)
if (ice_sched_is_agg_inuse(pi, node->children[i]))
return true;
return false;
} else {
return node->num_children ? true : false;
}
}
/**
* ice_sched_rm_agg_cfg - remove the aggregator node
* @pi: port information structure
* @agg_id: aggregator ID
* @tc: TC number
*
* This function removes the aggregator node and intermediate nodes if any
* from the given TC
*/
static enum ice_status
ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
{
struct ice_sched_node *tc_node, *agg_node;
struct ice_hw *hw = pi->hw;
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
return ICE_ERR_CFG;
agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
if (!agg_node)
return ICE_ERR_DOES_NOT_EXIST;
/* Can't remove the aggregator node if it has children */
if (ice_sched_is_agg_inuse(pi, agg_node))
return ICE_ERR_IN_USE;
/* need to remove the whole subtree if aggregator node is the
* only child.
*/
while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
struct ice_sched_node *parent = agg_node->parent;
if (!parent)
return ICE_ERR_CFG;
if (parent->num_children > 1)
break;
agg_node = parent;
}
ice_free_sched_node(pi, agg_node);
return ICE_SUCCESS;
}
/**
* ice_rm_agg_cfg_tc - remove aggregator configuration for TC
* @pi: port information structure
* @agg_info: aggregator ID
* @tc: TC number
* @rm_vsi_info: bool value true or false
*
* This function removes aggregator reference to VSI of given TC. It removes
* the aggregator configuration completely for requested TC. The caller needs
* to hold the scheduler lock.
*/
static enum ice_status
ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
u8 tc, bool rm_vsi_info)
{
enum ice_status status = ICE_SUCCESS;
/* If nothing to remove - return success */
if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
goto exit_rm_agg_cfg_tc;
status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
if (status)
goto exit_rm_agg_cfg_tc;
/* Delete aggregator node(s) */
status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
if (status)
goto exit_rm_agg_cfg_tc;
ice_clear_bit(tc, agg_info->tc_bitmap);
exit_rm_agg_cfg_tc:
return status;
}
/**
* ice_save_agg_tc_bitmap - save aggregator TC bitmap
* @pi: port information structure
* @agg_id: aggregator ID
* @tc_bitmap: 8 bits TC bitmap
*
* Save aggregator TC bitmap. This function needs to be called with scheduler
* lock held.
*/
static enum ice_status
ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
ice_bitmap_t *tc_bitmap)
{
struct ice_sched_agg_info *agg_info;
agg_info = ice_get_agg_info(pi->hw, agg_id);
if (!agg_info)
return ICE_ERR_PARAM;
ice_cp_bitmap(agg_info->replay_tc_bitmap, tc_bitmap,
ICE_MAX_TRAFFIC_CLASS);
return ICE_SUCCESS;
}
/**
* ice_sched_add_agg_cfg - create an aggregator node
* @pi: port information structure
* @agg_id: aggregator ID
* @tc: TC number
*
* This function creates an aggregator node and intermediate nodes if required
* for the given TC
*/
static enum ice_status
ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
{
struct ice_sched_node *parent, *agg_node, *tc_node;
u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
enum ice_status status = ICE_SUCCESS;
struct ice_hw *hw = pi->hw;
u32 first_node_teid;
u16 num_nodes_added;
u8 i, aggl;
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
return ICE_ERR_CFG;
agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
/* Does Agg node already exist ? */
if (agg_node)
return status;
aggl = ice_sched_get_agg_layer(hw);
/* need one node in Agg layer */
num_nodes[aggl] = 1;
/* Check whether the intermediate nodes have space to add the
* new aggregator. If they are full, then SW needs to allocate a new
* intermediate node on those layers
*/
for (i = hw->sw_entry_point_layer; i < aggl; i++) {
parent = ice_sched_get_first_node(pi, tc_node, i);
/* scan all the siblings */
while (parent) {
if (parent->num_children < hw->max_children[i])
break;
parent = parent->sibling;
}
/* all the nodes are full, reserve one for this layer */
if (!parent)
num_nodes[i]++;
}
/* add the aggregator node */
parent = tc_node;
for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
if (!parent)
return ICE_ERR_CFG;
status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
num_nodes[i],
&first_node_teid,
&num_nodes_added);
if (status != ICE_SUCCESS || num_nodes[i] != num_nodes_added)
return ICE_ERR_CFG;
/* The newly added node can be a new parent for the next
* layer nodes
*/
if (num_nodes_added) {
parent = ice_sched_find_node_by_teid(tc_node,
first_node_teid);
/* register aggregator ID with the aggregator node */
if (parent && i == aggl)
parent->agg_id = agg_id;
} else {
parent = parent->children[0];
}
}
return ICE_SUCCESS;
}
/**
* ice_sched_cfg_agg - configure aggregator node
* @pi: port information structure
* @agg_id: aggregator ID
* @agg_type: aggregator type queue, VSI, or aggregator group
* @tc_bitmap: bits TC bitmap
*
* It registers a unique aggregator node into scheduler services. It
* allows a user to register with a unique ID to track it's resources.
* The aggregator type determines if this is a queue group, VSI group
* or aggregator group. It then creates the aggregator node(s) for requested
* TC(s) or removes an existing aggregator node including its configuration
* if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
* resources and remove aggregator ID.
* This function needs to be called with scheduler lock held.
*/
static enum ice_status
ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
enum ice_agg_type agg_type, ice_bitmap_t *tc_bitmap)
{
struct ice_sched_agg_info *agg_info;
enum ice_status status = ICE_SUCCESS;
struct ice_hw *hw = pi->hw;
u8 tc;
agg_info = ice_get_agg_info(hw, agg_id);
if (!agg_info) {
/* Create new entry for new aggregator ID */
agg_info = (struct ice_sched_agg_info *)
ice_malloc(hw, sizeof(*agg_info));
if (!agg_info) {
status = ICE_ERR_NO_MEMORY;
goto exit_reg_agg;
}
agg_info->agg_id = agg_id;
agg_info->agg_type = agg_type;
agg_info->tc_bitmap[0] = 0;
/* Initialize the aggregator VSI list head */
INIT_LIST_HEAD(&agg_info->agg_vsi_list);
/* Add new entry in aggregator list */
LIST_ADD(&agg_info->list_entry, &hw->agg_list);
}
/* Create aggregator node(s) for requested TC(s) */
ice_for_each_traffic_class(tc) {
if (!ice_is_tc_ena(*tc_bitmap, tc)) {
/* Delete aggregator cfg TC if it exists previously */
status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
if (status)
break;
continue;
}
/* Check if aggregator node for TC already exists */
if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
continue;
/* Create new aggregator node for TC */
status = ice_sched_add_agg_cfg(pi, agg_id, tc);
if (status)
break;
/* Save aggregator node's TC information */
ice_set_bit(tc, agg_info->tc_bitmap);
}
exit_reg_agg:
return status;
}
/**
* ice_cfg_agg - config aggregator node
* @pi: port information structure
* @agg_id: aggregator ID
* @agg_type: aggregator type queue, VSI, or aggregator group
* @tc_bitmap: bits TC bitmap
*
* This function configures aggregator node(s).
*/
enum ice_status
ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
u8 tc_bitmap)
{
ice_bitmap_t bitmap = tc_bitmap;
enum ice_status status;
ice_acquire_lock(&pi->sched_lock);
status = ice_sched_cfg_agg(pi, agg_id, agg_type,
(ice_bitmap_t *)&bitmap);
if (!status)
status = ice_save_agg_tc_bitmap(pi, agg_id,
(ice_bitmap_t *)&bitmap);
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_get_agg_vsi_info - get the aggregator ID
* @agg_info: aggregator info
* @vsi_handle: software VSI handle
*
* The function returns aggregator VSI info based on VSI handle. This function
* needs to be called with scheduler lock held.
*/
static struct ice_sched_agg_vsi_info*
ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
{
struct ice_sched_agg_vsi_info *agg_vsi_info;
LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
ice_sched_agg_vsi_info, list_entry)
if (agg_vsi_info->vsi_handle == vsi_handle)
return agg_vsi_info;
return NULL;
}
/**
* ice_get_vsi_agg_info - get the aggregator info of VSI
* @hw: pointer to the hardware structure
* @vsi_handle: Sw VSI handle
*
* The function returns aggregator info of VSI represented via vsi_handle. The
* VSI has in this case a different aggregator than the default one. This
* function needs to be called with scheduler lock held.
*/
static struct ice_sched_agg_info*
ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
{
struct ice_sched_agg_info *agg_info;
LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
list_entry) {
struct ice_sched_agg_vsi_info *agg_vsi_info;
agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
if (agg_vsi_info)
return agg_info;
}
return NULL;
}
/**
* ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
* @pi: port information structure
* @agg_id: aggregator ID
* @vsi_handle: software VSI handle
* @tc_bitmap: TC bitmap of enabled TC(s)
*
* Save VSI to aggregator TC bitmap. This function needs to call with scheduler
* lock held.
*/
static enum ice_status
ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
ice_bitmap_t *tc_bitmap)
{
struct ice_sched_agg_vsi_info *agg_vsi_info;
struct ice_sched_agg_info *agg_info;
agg_info = ice_get_agg_info(pi->hw, agg_id);
if (!agg_info)
return ICE_ERR_PARAM;
/* check if entry already exist */
agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
if (!agg_vsi_info)
return ICE_ERR_PARAM;
ice_cp_bitmap(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
ICE_MAX_TRAFFIC_CLASS);
return ICE_SUCCESS;
}
/**
* ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
* @pi: port information structure
* @agg_id: aggregator ID
* @vsi_handle: software VSI handle
* @tc_bitmap: TC bitmap of enabled TC(s)
*
* This function moves VSI to a new or default aggregator node. If VSI is
* already associated to the aggregator node then no operation is performed on
* the tree. This function needs to be called with scheduler lock held.
*/
static enum ice_status
ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
u16 vsi_handle, ice_bitmap_t *tc_bitmap)
{
struct ice_sched_agg_vsi_info *agg_vsi_info;
struct ice_sched_agg_info *agg_info;
enum ice_status status = ICE_SUCCESS;
struct ice_hw *hw = pi->hw;
u8 tc;
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
return ICE_ERR_PARAM;
agg_info = ice_get_agg_info(hw, agg_id);
if (!agg_info)
return ICE_ERR_PARAM;
/* check if entry already exist */
agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
if (!agg_vsi_info) {
/* Create new entry for VSI under aggregator list */
agg_vsi_info = (struct ice_sched_agg_vsi_info *)
ice_malloc(hw, sizeof(*agg_vsi_info));
if (!agg_vsi_info)
return ICE_ERR_PARAM;
/* add VSI ID into the aggregator list */
agg_vsi_info->vsi_handle = vsi_handle;
LIST_ADD(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
}
/* Move VSI node to new aggregator node for requested TC(s) */
ice_for_each_traffic_class(tc) {
if (!ice_is_tc_ena(*tc_bitmap, tc))
continue;
/* Move VSI to new aggregator */
status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
if (status)
break;
if (agg_id != ICE_DFLT_AGG_ID)
ice_set_bit(tc, agg_vsi_info->tc_bitmap);
else
ice_clear_bit(tc, agg_vsi_info->tc_bitmap);
}
/* If VSI moved back to default aggregator, delete agg_vsi_info. */
if (!ice_is_any_bit_set(agg_vsi_info->tc_bitmap,
ICE_MAX_TRAFFIC_CLASS)) {
LIST_DEL(&agg_vsi_info->list_entry);
ice_free(hw, agg_vsi_info);
}
return status;
}
/**
* ice_sched_rm_unused_rl_prof - remove unused RL profile
* @pi: port information structure
*
* This function removes unused rate limit profiles from the HW and
* SW DB. The caller needs to hold scheduler lock.
*/
static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
{
u16 ln;
for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
struct ice_aqc_rl_profile_info *rl_prof_elem;
struct ice_aqc_rl_profile_info *rl_prof_tmp;
LIST_FOR_EACH_ENTRY_SAFE(rl_prof_elem, rl_prof_tmp,
&pi->rl_prof_list[ln],
ice_aqc_rl_profile_info, list_entry) {
if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
ice_debug(pi->hw, ICE_DBG_SCHED,
"Removed rl profile\n");
}
}
}
/**
* ice_sched_update_elem - update element
* @hw: pointer to the HW struct
* @node: pointer to node
* @info: node info to update
*
* It updates the HW DB, and local SW DB of node. It updates the scheduling
* parameters of node from argument info data buffer (Info->data buf) and
* returns success or error on config sched element failure. The caller
* needs to hold scheduler lock.
*/
static enum ice_status
ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
struct ice_aqc_txsched_elem_data *info)
{
struct ice_aqc_conf_elem buf;
enum ice_status status;
u16 elem_cfgd = 0;
u16 num_elems = 1;
buf.generic[0] = *info;
/* Parent TEID is reserved field in this aq call */
buf.generic[0].parent_teid = 0;
/* Element type is reserved field in this aq call */
buf.generic[0].data.elem_type = 0;
/* Flags is reserved field in this aq call */
buf.generic[0].data.flags = 0;
/* Update HW DB */
/* Configure element node */
status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
&elem_cfgd, NULL);
if (status || elem_cfgd != num_elems) {
ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
return ICE_ERR_CFG;
}
/* Config success case */
/* Now update local SW DB */
/* Only copy the data portion of info buffer */
node->info.data = info->data;
return status;
}
/**
* ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
* @hw: pointer to the HW struct
* @node: sched node to configure
* @rl_type: rate limit type CIR, EIR, or shared
* @bw_alloc: BW weight/allocation
*
* This function configures node element's BW allocation.
*/
static enum ice_status
ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
enum ice_rl_type rl_type, u8 bw_alloc)
{
struct ice_aqc_txsched_elem_data buf;
struct ice_aqc_txsched_elem *data;
enum ice_status status;
buf = node->info;
data = &buf.data;
if (rl_type == ICE_MIN_BW) {
data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
data->cir_bw.bw_alloc = CPU_TO_LE16(bw_alloc);
} else if (rl_type == ICE_MAX_BW) {
data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
data->eir_bw.bw_alloc = CPU_TO_LE16(bw_alloc);
} else {
return ICE_ERR_PARAM;
}
/* Configure element */
status = ice_sched_update_elem(hw, node, &buf);
return status;
}
/**
* ice_move_vsi_to_agg - moves VSI to new or default aggregator
* @pi: port information structure
* @agg_id: aggregator ID
* @vsi_handle: software VSI handle
* @tc_bitmap: TC bitmap of enabled TC(s)
*
* Move or associate VSI to a new or default aggregator node.
*/
enum ice_status
ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
u8 tc_bitmap)
{
ice_bitmap_t bitmap = tc_bitmap;
enum ice_status status;
ice_acquire_lock(&pi->sched_lock);
status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
(ice_bitmap_t *)&bitmap);
if (!status)
status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
(ice_bitmap_t *)&bitmap);
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_rm_agg_cfg - remove aggregator configuration
* @pi: port information structure
* @agg_id: aggregator ID
*
* This function removes aggregator reference to VSI and delete aggregator ID
* info. It removes the aggregator configuration completely.
*/
enum ice_status ice_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id)
{
struct ice_sched_agg_info *agg_info;
enum ice_status status = ICE_SUCCESS;
u8 tc;
ice_acquire_lock(&pi->sched_lock);
agg_info = ice_get_agg_info(pi->hw, agg_id);
if (!agg_info) {
status = ICE_ERR_DOES_NOT_EXIST;
goto exit_ice_rm_agg_cfg;
}
ice_for_each_traffic_class(tc) {
status = ice_rm_agg_cfg_tc(pi, agg_info, tc, true);
if (status)
goto exit_ice_rm_agg_cfg;
}
if (ice_is_any_bit_set(agg_info->tc_bitmap, ICE_MAX_TRAFFIC_CLASS)) {
status = ICE_ERR_IN_USE;
goto exit_ice_rm_agg_cfg;
}
/* Safe to delete entry now */
LIST_DEL(&agg_info->list_entry);
ice_free(pi->hw, agg_info);
/* Remove unused RL profile IDs from HW and SW DB */
ice_sched_rm_unused_rl_prof(pi);
exit_ice_rm_agg_cfg:
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_set_clear_cir_bw_alloc - set or clear CIR BW alloc information
* @bw_t_info: bandwidth type information structure
* @bw_alloc: Bandwidth allocation information
*
* Save or clear CIR BW alloc information (bw_alloc) in the passed param
* bw_t_info.
*/
static void
ice_set_clear_cir_bw_alloc(struct ice_bw_type_info *bw_t_info, u16 bw_alloc)
{
bw_t_info->cir_bw.bw_alloc = bw_alloc;
if (bw_t_info->cir_bw.bw_alloc)
ice_set_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap);
else
ice_clear_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap);
}
/**
* ice_set_clear_eir_bw_alloc - set or clear EIR BW alloc information
* @bw_t_info: bandwidth type information structure
* @bw_alloc: Bandwidth allocation information
*
* Save or clear EIR BW alloc information (bw_alloc) in the passed param
* bw_t_info.
*/
static void
ice_set_clear_eir_bw_alloc(struct ice_bw_type_info *bw_t_info, u16 bw_alloc)
{
bw_t_info->eir_bw.bw_alloc = bw_alloc;
if (bw_t_info->eir_bw.bw_alloc)
ice_set_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap);
else
ice_clear_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap);
}
/**
* ice_sched_save_vsi_bw_alloc - save VSI node's BW alloc information
* @pi: port information structure
* @vsi_handle: sw VSI handle
* @tc: traffic class
* @rl_type: rate limit type min or max
* @bw_alloc: Bandwidth allocation information
*
* Save BW alloc information of VSI type node for post replay use.
*/
static enum ice_status
ice_sched_save_vsi_bw_alloc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
enum ice_rl_type rl_type, u16 bw_alloc)
{
struct ice_vsi_ctx *vsi_ctx;
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
return ICE_ERR_PARAM;
vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
if (!vsi_ctx)
return ICE_ERR_PARAM;
switch (rl_type) {
case ICE_MIN_BW:
ice_set_clear_cir_bw_alloc(&vsi_ctx->sched.bw_t_info[tc],
bw_alloc);
break;
case ICE_MAX_BW:
ice_set_clear_eir_bw_alloc(&vsi_ctx->sched.bw_t_info[tc],
bw_alloc);
break;
default:
return ICE_ERR_PARAM;
}
return ICE_SUCCESS;
}
/**
* ice_set_clear_cir_bw - set or clear CIR BW
* @bw_t_info: bandwidth type information structure
* @bw: bandwidth in Kbps - Kilo bits per sec
*
* Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
*/
static void
ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
{
if (bw == ICE_SCHED_DFLT_BW) {
ice_clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
bw_t_info->cir_bw.bw = 0;
} else {
/* Save type of BW information */
ice_set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
bw_t_info->cir_bw.bw = bw;
}
}
/**
* ice_set_clear_eir_bw - set or clear EIR BW
* @bw_t_info: bandwidth type information structure
* @bw: bandwidth in Kbps - Kilo bits per sec
*
* Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
*/
static void
ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
{
if (bw == ICE_SCHED_DFLT_BW) {
ice_clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
bw_t_info->eir_bw.bw = 0;
} else {
/* EIR BW and Shared BW profiles are mutually exclusive and
* hence only one of them may be set for any given element.
* First clear earlier saved shared BW information.
*/
ice_clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
bw_t_info->shared_bw = 0;
/* save EIR BW information */
ice_set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
bw_t_info->eir_bw.bw = bw;
}
}
/**
* ice_set_clear_shared_bw - set or clear shared BW
* @bw_t_info: bandwidth type information structure
* @bw: bandwidth in Kbps - Kilo bits per sec
*
* Save or clear shared bandwidth (BW) in the passed param bw_t_info.
*/
static void
ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
{
if (bw == ICE_SCHED_DFLT_BW) {
ice_clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
bw_t_info->shared_bw = 0;
} else {
/* EIR BW and Shared BW profiles are mutually exclusive and
* hence only one of them may be set for any given element.
* First clear earlier saved EIR BW information.
*/
ice_clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
bw_t_info->eir_bw.bw = 0;
/* save shared BW information */
ice_set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
bw_t_info->shared_bw = bw;
}
}
/**
* ice_sched_save_vsi_bw - save VSI node's BW information
* @pi: port information structure
* @vsi_handle: sw VSI handle
* @tc: traffic class
* @rl_type: rate limit type min, max, or shared
* @bw: bandwidth in Kbps - Kilo bits per sec
*
* Save BW information of VSI type node for post replay use.
*/
static enum ice_status
ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
enum ice_rl_type rl_type, u32 bw)
{
struct ice_vsi_ctx *vsi_ctx;
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
return ICE_ERR_PARAM;
vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
if (!vsi_ctx)
return ICE_ERR_PARAM;
switch (rl_type) {
case ICE_MIN_BW:
ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
break;
case ICE_MAX_BW:
ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
break;
case ICE_SHARED_BW:
ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
break;
default:
return ICE_ERR_PARAM;
}
return ICE_SUCCESS;
}
/**
* ice_set_clear_prio - set or clear priority information
* @bw_t_info: bandwidth type information structure
* @prio: priority to save
*
* Save or clear priority (prio) in the passed param bw_t_info.
*/
static void
ice_set_clear_prio(struct ice_bw_type_info *bw_t_info, u8 prio)
{
bw_t_info->generic = prio;
if (bw_t_info->generic)
ice_set_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap);
else
ice_clear_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap);
}
/**
* ice_sched_save_vsi_prio - save VSI node's priority information
* @pi: port information structure
* @vsi_handle: Software VSI handle
* @tc: traffic class
* @prio: priority to save
*
* Save priority information of VSI type node for post replay use.
*/
static enum ice_status
ice_sched_save_vsi_prio(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
u8 prio)
{
struct ice_vsi_ctx *vsi_ctx;
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
return ICE_ERR_PARAM;
vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
if (!vsi_ctx)
return ICE_ERR_PARAM;
if (tc >= ICE_MAX_TRAFFIC_CLASS)
return ICE_ERR_PARAM;
ice_set_clear_prio(&vsi_ctx->sched.bw_t_info[tc], prio);
return ICE_SUCCESS;
}
/**
* ice_sched_save_agg_bw_alloc - save aggregator node's BW alloc information
* @pi: port information structure
* @agg_id: node aggregator ID
* @tc: traffic class
* @rl_type: rate limit type min or max
* @bw_alloc: bandwidth alloc information
*
* Save BW alloc information of AGG type node for post replay use.
*/
static enum ice_status
ice_sched_save_agg_bw_alloc(struct ice_port_info *pi, u32 agg_id, u8 tc,
enum ice_rl_type rl_type, u16 bw_alloc)
{
struct ice_sched_agg_info *agg_info;
agg_info = ice_get_agg_info(pi->hw, agg_id);
if (!agg_info)
return ICE_ERR_PARAM;
if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
return ICE_ERR_PARAM;
switch (rl_type) {
case ICE_MIN_BW:
ice_set_clear_cir_bw_alloc(&agg_info->bw_t_info[tc], bw_alloc);
break;
case ICE_MAX_BW:
ice_set_clear_eir_bw_alloc(&agg_info->bw_t_info[tc], bw_alloc);
break;
default:
return ICE_ERR_PARAM;
}
return ICE_SUCCESS;
}
/**
* ice_sched_save_agg_bw - save aggregator node's BW information
* @pi: port information structure
* @agg_id: node aggregator ID
* @tc: traffic class
* @rl_type: rate limit type min, max, or shared
* @bw: bandwidth in Kbps - Kilo bits per sec
*
* Save BW information of AGG type node for post replay use.
*/
static enum ice_status
ice_sched_save_agg_bw(struct ice_port_info *pi, u32 agg_id, u8 tc,
enum ice_rl_type rl_type, u32 bw)
{
struct ice_sched_agg_info *agg_info;
agg_info = ice_get_agg_info(pi->hw, agg_id);
if (!agg_info)
return ICE_ERR_PARAM;
if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
return ICE_ERR_PARAM;
switch (rl_type) {
case ICE_MIN_BW:
ice_set_clear_cir_bw(&agg_info->bw_t_info[tc], bw);
break;
case ICE_MAX_BW:
ice_set_clear_eir_bw(&agg_info->bw_t_info[tc], bw);
break;
case ICE_SHARED_BW:
ice_set_clear_shared_bw(&agg_info->bw_t_info[tc], bw);
break;
default:
return ICE_ERR_PARAM;
}
return ICE_SUCCESS;
}
/**
* ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: traffic class
* @rl_type: min or max
* @bw: bandwidth in Kbps
*
* This function configures BW limit of VSI scheduling node based on TC
* information.
*/
enum ice_status
ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
enum ice_rl_type rl_type, u32 bw)
{
enum ice_status status;
status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
ICE_AGG_TYPE_VSI,
tc, rl_type, bw);
if (!status) {
ice_acquire_lock(&pi->sched_lock);
status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
ice_release_lock(&pi->sched_lock);
}
return status;
}
/**
* ice_cfg_dflt_vsi_bw_lmt_per_tc - configure default VSI BW limit per TC
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: traffic class
* @rl_type: min or max
*
* This function configures default BW limit of VSI scheduling node based on TC
* information.
*/
enum ice_status
ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
enum ice_rl_type rl_type)
{
enum ice_status status;
status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
ICE_AGG_TYPE_VSI,
tc, rl_type,
ICE_SCHED_DFLT_BW);
if (!status) {
ice_acquire_lock(&pi->sched_lock);
status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
ICE_SCHED_DFLT_BW);
ice_release_lock(&pi->sched_lock);
}
return status;
}
/**
* ice_cfg_agg_bw_lmt_per_tc - configure aggregator BW limit per TC
* @pi: port information structure
* @agg_id: aggregator ID
* @tc: traffic class
* @rl_type: min or max
* @bw: bandwidth in Kbps
*
* This function applies BW limit to aggregator scheduling node based on TC
* information.
*/
enum ice_status
ice_cfg_agg_bw_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
enum ice_rl_type rl_type, u32 bw)
{
enum ice_status status;
status = ice_sched_set_node_bw_lmt_per_tc(pi, agg_id, ICE_AGG_TYPE_AGG,
tc, rl_type, bw);
if (!status) {
ice_acquire_lock(&pi->sched_lock);
status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type, bw);
ice_release_lock(&pi->sched_lock);
}
return status;
}
/**
* ice_cfg_agg_bw_dflt_lmt_per_tc - configure aggregator BW default limit per TC
* @pi: port information structure
* @agg_id: aggregator ID
* @tc: traffic class
* @rl_type: min or max
*
* This function applies default BW limit to aggregator scheduling node based
* on TC information.
*/
enum ice_status
ice_cfg_agg_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
enum ice_rl_type rl_type)
{
enum ice_status status;
status = ice_sched_set_node_bw_lmt_per_tc(pi, agg_id, ICE_AGG_TYPE_AGG,
tc, rl_type,
ICE_SCHED_DFLT_BW);
if (!status) {
ice_acquire_lock(&pi->sched_lock);
status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type,
ICE_SCHED_DFLT_BW);
ice_release_lock(&pi->sched_lock);
}
return status;
}
/**
* ice_cfg_vsi_bw_shared_lmt - configure VSI BW shared limit
* @pi: port information structure
* @vsi_handle: software VSI handle
* @bw: bandwidth in Kbps
*
* This function Configures shared rate limiter(SRL) of all VSI type nodes
* across all traffic classes for VSI matching handle.
*/
enum ice_status
ice_cfg_vsi_bw_shared_lmt(struct ice_port_info *pi, u16 vsi_handle, u32 bw)
{
return ice_sched_set_vsi_bw_shared_lmt(pi, vsi_handle, bw);
}
/**
* ice_cfg_vsi_bw_no_shared_lmt - configure VSI BW for no shared limiter
* @pi: port information structure
* @vsi_handle: software VSI handle
*
* This function removes the shared rate limiter(SRL) of all VSI type nodes
* across all traffic classes for VSI matching handle.
*/
enum ice_status
ice_cfg_vsi_bw_no_shared_lmt(struct ice_port_info *pi, u16 vsi_handle)
{
return ice_sched_set_vsi_bw_shared_lmt(pi, vsi_handle,
ICE_SCHED_DFLT_BW);
}
/**
* ice_cfg_agg_bw_shared_lmt - configure aggregator BW shared limit
* @pi: port information structure
* @agg_id: aggregator ID
* @bw: bandwidth in Kbps
*
* This function configures the shared rate limiter(SRL) of all aggregator type
* nodes across all traffic classes for aggregator matching agg_id.
*/
enum ice_status
ice_cfg_agg_bw_shared_lmt(struct ice_port_info *pi, u32 agg_id, u32 bw)
{
return ice_sched_set_agg_bw_shared_lmt(pi, agg_id, bw);
}
/**
* ice_cfg_agg_bw_no_shared_lmt - configure aggregator BW for no shared limiter
* @pi: port information structure
* @agg_id: aggregator ID
*
* This function removes the shared rate limiter(SRL) of all aggregator type
* nodes across all traffic classes for aggregator matching agg_id.
*/
enum ice_status
ice_cfg_agg_bw_no_shared_lmt(struct ice_port_info *pi, u32 agg_id)
{
return ice_sched_set_agg_bw_shared_lmt(pi, agg_id, ICE_SCHED_DFLT_BW);
}
/**
* ice_config_vsi_queue_priority - config VSI queue priority of node
* @pi: port information structure
* @num_qs: number of VSI queues
* @q_ids: queue IDs array
* @q_ids: queue IDs array
* @q_prio: queue priority array
*
* This function configures the queue node priority (Sibling Priority) of the
* passed in VSI's queue(s) for a given traffic class (TC).
*/
enum ice_status
ice_cfg_vsi_q_priority(struct ice_port_info *pi, u16 num_qs, u32 *q_ids,
u8 *q_prio)
{
enum ice_status status = ICE_ERR_PARAM;
u16 i;
ice_acquire_lock(&pi->sched_lock);
for (i = 0; i < num_qs; i++) {
struct ice_sched_node *node;
node = ice_sched_find_node_by_teid(pi->root, q_ids[i]);
if (!node || node->info.data.elem_type !=
ICE_AQC_ELEM_TYPE_LEAF) {
status = ICE_ERR_PARAM;
break;
}
/* Configure Priority */
status = ice_sched_cfg_sibl_node_prio(pi, node, q_prio[i]);
if (status)
break;
}
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_cfg_agg_vsi_priority_per_tc - config aggregator's VSI priority per TC
* @pi: port information structure
* @agg_id: Aggregator ID
* @num_vsis: number of VSI(s)
* @vsi_handle_arr: array of software VSI handles
* @node_prio: pointer to node priority
* @tc: traffic class
*
* This function configures the node priority (Sibling Priority) of the
* passed in VSI's for a given traffic class (TC) of an Aggregator ID.
*/
enum ice_status
ice_cfg_agg_vsi_priority_per_tc(struct ice_port_info *pi, u32 agg_id,
u16 num_vsis, u16 *vsi_handle_arr,
u8 *node_prio, u8 tc)
{
struct ice_sched_agg_vsi_info *agg_vsi_info;
struct ice_sched_node *tc_node, *agg_node;
enum ice_status status = ICE_ERR_PARAM;
struct ice_sched_agg_info *agg_info;
bool agg_id_present = false;
struct ice_hw *hw = pi->hw;
u16 i;
ice_acquire_lock(&pi->sched_lock);
LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
list_entry)
if (agg_info->agg_id == agg_id) {
agg_id_present = true;
break;
}
if (!agg_id_present)
goto exit_agg_priority_per_tc;
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
goto exit_agg_priority_per_tc;
agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
if (!agg_node)
goto exit_agg_priority_per_tc;
if (num_vsis > hw->max_children[agg_node->tx_sched_layer])
goto exit_agg_priority_per_tc;
for (i = 0; i < num_vsis; i++) {
struct ice_sched_node *vsi_node;
bool vsi_handle_valid = false;
u16 vsi_handle;
status = ICE_ERR_PARAM;
vsi_handle = vsi_handle_arr[i];
if (!ice_is_vsi_valid(hw, vsi_handle))
goto exit_agg_priority_per_tc;
/* Verify child nodes before applying settings */
LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
ice_sched_agg_vsi_info, list_entry)
if (agg_vsi_info->vsi_handle == vsi_handle) {
/* cppcheck-suppress unreadVariable */
vsi_handle_valid = true;
break;
}
if (!vsi_handle_valid)
goto exit_agg_priority_per_tc;
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
if (!vsi_node)
goto exit_agg_priority_per_tc;
if (ice_sched_find_node_in_subtree(hw, agg_node, vsi_node)) {
/* Configure Priority */
status = ice_sched_cfg_sibl_node_prio(pi, vsi_node,
node_prio[i]);
if (status)
break;
status = ice_sched_save_vsi_prio(pi, vsi_handle, tc,
node_prio[i]);
if (status)
break;
}
}
exit_agg_priority_per_tc:
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_cfg_vsi_bw_alloc - config VSI BW alloc per TC
* @pi: port information structure
* @vsi_handle: software VSI handle
* @ena_tcmap: enabled TC map
* @rl_type: Rate limit type CIR/EIR
* @bw_alloc: Array of BW alloc
*
* This function configures the BW allocation of the passed in VSI's
* node(s) for enabled traffic class.
*/
enum ice_status
ice_cfg_vsi_bw_alloc(struct ice_port_info *pi, u16 vsi_handle, u8 ena_tcmap,
enum ice_rl_type rl_type, u8 *bw_alloc)
{
enum ice_status status = ICE_SUCCESS;
u8 tc;
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
return ICE_ERR_PARAM;
ice_acquire_lock(&pi->sched_lock);
/* Return success if no nodes are present across TC */
ice_for_each_traffic_class(tc) {
struct ice_sched_node *tc_node, *vsi_node;
if (!ice_is_tc_ena(ena_tcmap, tc))
continue;
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
continue;
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
if (!vsi_node)
continue;
status = ice_sched_cfg_node_bw_alloc(pi->hw, vsi_node, rl_type,
bw_alloc[tc]);
if (status)
break;
status = ice_sched_save_vsi_bw_alloc(pi, vsi_handle, tc,
rl_type, bw_alloc[tc]);
if (status)
break;
}
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_cfg_agg_bw_alloc - config aggregator BW alloc
* @pi: port information structure
* @agg_id: aggregator ID
* @ena_tcmap: enabled TC map
* @rl_type: rate limit type CIR/EIR
* @bw_alloc: array of BW alloc
*
* This function configures the BW allocation of passed in aggregator for
* enabled traffic class(s).
*/
enum ice_status
ice_cfg_agg_bw_alloc(struct ice_port_info *pi, u32 agg_id, u8 ena_tcmap,
enum ice_rl_type rl_type, u8 *bw_alloc)
{
struct ice_sched_agg_info *agg_info;
bool agg_id_present = false;
enum ice_status status = ICE_SUCCESS;
struct ice_hw *hw = pi->hw;
u8 tc;
ice_acquire_lock(&pi->sched_lock);
LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
list_entry)
if (agg_info->agg_id == agg_id) {
agg_id_present = true;
break;
}
if (!agg_id_present) {
status = ICE_ERR_PARAM;
goto exit_cfg_agg_bw_alloc;
}
/* Return success if no nodes are present across TC */
ice_for_each_traffic_class(tc) {
struct ice_sched_node *tc_node, *agg_node;
if (!ice_is_tc_ena(ena_tcmap, tc))
continue;
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
continue;
agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
if (!agg_node)
continue;
status = ice_sched_cfg_node_bw_alloc(hw, agg_node, rl_type,
bw_alloc[tc]);
if (status)
break;
status = ice_sched_save_agg_bw_alloc(pi, agg_id, tc, rl_type,
bw_alloc[tc]);
if (status)
break;
}
exit_cfg_agg_bw_alloc:
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_sched_calc_wakeup - calculate RL profile wakeup parameter
* @bw: bandwidth in Kbps
*
* This function calculates the wakeup parameter of RL profile.
*/
static u16 ice_sched_calc_wakeup(s32 bw)
{
s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
s32 wakeup_f_int;
u16 wakeup = 0;
/* Get the wakeup integer value */
bytes_per_sec = DIV_64BIT(((s64)bw * 1000), BITS_PER_BYTE);
wakeup_int = DIV_64BIT(ICE_RL_PROF_FREQUENCY, bytes_per_sec);
if (wakeup_int > 63) {
wakeup = (u16)((1 << 15) | wakeup_int);
} else {
/* Calculate fraction value up to 4 decimals
* Convert Integer value to a constant multiplier
*/
wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
wakeup_a = DIV_64BIT((s64)ICE_RL_PROF_MULTIPLIER *
ICE_RL_PROF_FREQUENCY, bytes_per_sec);
/* Get Fraction value */
wakeup_f = wakeup_a - wakeup_b;
/* Round up the Fractional value via Ceil(Fractional value) */
if (wakeup_f > DIV_64BIT(ICE_RL_PROF_MULTIPLIER, 2))
wakeup_f += 1;
wakeup_f_int = (s32)DIV_64BIT(wakeup_f * ICE_RL_PROF_FRACTION,
ICE_RL_PROF_MULTIPLIER);
wakeup |= (u16)(wakeup_int << 9);
wakeup |= (u16)(0x1ff & wakeup_f_int);
}
return wakeup;
}
/**
* ice_sched_bw_to_rl_profile - convert BW to profile parameters
* @bw: bandwidth in Kbps
* @profile: profile parameters to return
*
* This function converts the BW to profile structure format.
*/
static enum ice_status
ice_sched_bw_to_rl_profile(u32 bw, struct ice_aqc_rl_profile_elem *profile)
{
enum ice_status status = ICE_ERR_PARAM;
s64 bytes_per_sec, ts_rate, mv_tmp;
bool found = false;
s32 encode = 0;
s64 mv = 0;
s32 i;
/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
return status;
/* Bytes per second from Kbps */
bytes_per_sec = DIV_64BIT(((s64)bw * 1000), BITS_PER_BYTE);
/* encode is 6 bits but really useful are 5 bits */
for (i = 0; i < 64; i++) {
u64 pow_result = BIT_ULL(i);
ts_rate = DIV_64BIT((s64)ICE_RL_PROF_FREQUENCY,
pow_result * ICE_RL_PROF_TS_MULTIPLIER);
if (ts_rate <= 0)
continue;
/* Multiplier value */
mv_tmp = DIV_64BIT(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
ts_rate);
/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
/* First multiplier value greater than the given
* accuracy bytes
*/
if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
encode = i;
found = true;
break;
}
}
if (found) {
u16 wm;
wm = ice_sched_calc_wakeup(bw);
profile->rl_multiply = CPU_TO_LE16(mv);
profile->wake_up_calc = CPU_TO_LE16(wm);
profile->rl_encode = CPU_TO_LE16(encode);
status = ICE_SUCCESS;
} else {
status = ICE_ERR_DOES_NOT_EXIST;
}
return status;
}
/**
* ice_sched_add_rl_profile - add RL profile
* @pi: port information structure
* @rl_type: type of rate limit BW - min, max, or shared
* @bw: bandwidth in Kbps - Kilo bits per sec
* @layer_num: specifies in which layer to create profile
*
* This function first checks the existing list for corresponding BW
* parameter. If it exists, it returns the associated profile otherwise
* it creates a new rate limit profile for requested BW, and adds it to
* the HW DB and local list. It returns the new profile or null on error.
* The caller needs to hold the scheduler lock.
*/
static struct ice_aqc_rl_profile_info *
ice_sched_add_rl_profile(struct ice_port_info *pi,
enum ice_rl_type rl_type, u32 bw, u8 layer_num)
{
struct ice_aqc_rl_profile_generic_elem *buf;
struct ice_aqc_rl_profile_info *rl_prof_elem;
u16 profiles_added = 0, num_profiles = 1;
enum ice_status status;
struct ice_hw *hw;
u8 profile_type;
if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
return NULL;
switch (rl_type) {
case ICE_MIN_BW:
profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
break;
case ICE_MAX_BW:
profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
break;
case ICE_SHARED_BW:
profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
break;
default:
return NULL;
}
if (!pi)
return NULL;
hw = pi->hw;
LIST_FOR_EACH_ENTRY(rl_prof_elem, &pi->rl_prof_list[layer_num],
ice_aqc_rl_profile_info, list_entry)
if (rl_prof_elem->profile.flags == profile_type &&
rl_prof_elem->bw == bw)
/* Return existing profile ID info */
return rl_prof_elem;
/* Create new profile ID */
rl_prof_elem = (struct ice_aqc_rl_profile_info *)
ice_malloc(hw, sizeof(*rl_prof_elem));
if (!rl_prof_elem)
return NULL;
status = ice_sched_bw_to_rl_profile(bw, &rl_prof_elem->profile);
if (status != ICE_SUCCESS)
goto exit_add_rl_prof;
rl_prof_elem->bw = bw;
/* layer_num is zero relative, and fw expects level from 1 to 9 */
rl_prof_elem->profile.level = layer_num + 1;
rl_prof_elem->profile.flags = profile_type;
rl_prof_elem->profile.max_burst_size = CPU_TO_LE16(hw->max_burst_size);
/* Create new entry in HW DB */
buf = (struct ice_aqc_rl_profile_generic_elem *)
&rl_prof_elem->profile;
status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
&profiles_added, NULL);
if (status || profiles_added != num_profiles)
goto exit_add_rl_prof;
/* Good entry - add in the list */
rl_prof_elem->prof_id_ref = 0;
LIST_ADD(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
return rl_prof_elem;
exit_add_rl_prof:
ice_free(hw, rl_prof_elem);
return NULL;
}
/**
* ice_sched_cfg_node_bw_lmt - configure node sched params
* @hw: pointer to the HW struct
* @node: sched node to configure
* @rl_type: rate limit type CIR, EIR, or shared
* @rl_prof_id: rate limit profile ID
*
* This function configures node element's BW limit.
*/
static enum ice_status
ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
enum ice_rl_type rl_type, u16 rl_prof_id)
{
struct ice_aqc_txsched_elem_data buf;
struct ice_aqc_txsched_elem *data;
buf = node->info;
data = &buf.data;
switch (rl_type) {
case ICE_MIN_BW:
data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
data->cir_bw.bw_profile_idx = CPU_TO_LE16(rl_prof_id);
break;
case ICE_MAX_BW:
/* EIR BW and Shared BW profiles are mutually exclusive and
* hence only one of them may be set for any given element
*/
if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
return ICE_ERR_CFG;
data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
data->eir_bw.bw_profile_idx = CPU_TO_LE16(rl_prof_id);
break;
case ICE_SHARED_BW:
/* Check for removing shared BW */
if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
/* remove shared profile */
data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
data->srl_id = 0; /* clear SRL field */
/* enable back EIR to default profile */
data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
data->eir_bw.bw_profile_idx =
CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
break;
}
/* EIR BW and Shared BW profiles are mutually exclusive and
* hence only one of them may be set for any given element
*/
if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
(LE16_TO_CPU(data->eir_bw.bw_profile_idx) !=
ICE_SCHED_DFLT_RL_PROF_ID))
return ICE_ERR_CFG;
/* EIR BW is set to default, disable it */
data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
/* Okay to enable shared BW now */
data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
data->srl_id = CPU_TO_LE16(rl_prof_id);
break;
default:
/* Unknown rate limit type */
return ICE_ERR_PARAM;
}
/* Configure element */
return ice_sched_update_elem(hw, node, &buf);
}
/**
* ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
* @node: sched node
* @rl_type: rate limit type
*
* If existing profile matches, it returns the corresponding rate
* limit profile ID, otherwise it returns an invalid ID as error.
*/
static u16
ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
enum ice_rl_type rl_type)
{
u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
struct ice_aqc_txsched_elem *data;
data = &node->info.data;
switch (rl_type) {
case ICE_MIN_BW:
if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
rl_prof_id = LE16_TO_CPU(data->cir_bw.bw_profile_idx);
break;
case ICE_MAX_BW:
if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
rl_prof_id = LE16_TO_CPU(data->eir_bw.bw_profile_idx);
break;
case ICE_SHARED_BW:
if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
rl_prof_id = LE16_TO_CPU(data->srl_id);
break;
default:
break;
}
return rl_prof_id;
}
/**
* ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
* @pi: port information structure
* @rl_type: type of rate limit BW - min, max, or shared
* @layer_index: layer index
*
* This function returns requested profile creation layer.
*/
static u8
ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
u8 layer_index)
{
struct ice_hw *hw = pi->hw;
if (layer_index >= hw->num_tx_sched_layers)
return ICE_SCHED_INVAL_LAYER_NUM;
switch (rl_type) {
case ICE_MIN_BW:
if (hw->layer_info[layer_index].max_cir_rl_profiles)
return layer_index;
break;
case ICE_MAX_BW:
if (hw->layer_info[layer_index].max_eir_rl_profiles)
return layer_index;
break;
case ICE_SHARED_BW:
/* if current layer doesn't support SRL profile creation
* then try a layer up or down.
*/
if (hw->layer_info[layer_index].max_srl_profiles)
return layer_index;
else if (layer_index < hw->num_tx_sched_layers - 1 &&
hw->layer_info[layer_index + 1].max_srl_profiles)
return layer_index + 1;
else if (layer_index > 0 &&
hw->layer_info[layer_index - 1].max_srl_profiles)
return layer_index - 1;
break;
default:
break;
}
return ICE_SCHED_INVAL_LAYER_NUM;
}
/**
* ice_sched_get_srl_node - get shared rate limit node
* @node: tree node
* @srl_layer: shared rate limit layer
*
* This function returns SRL node to be used for shared rate limit purpose.
* The caller needs to hold scheduler lock.
*/
static struct ice_sched_node *
ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
{
if (srl_layer > node->tx_sched_layer)
return node->children[0];
else if (srl_layer < node->tx_sched_layer)
/* Node can't be created without a parent. It will always
* have a valid parent except root node.
*/
return node->parent;
else
return node;
}
/**
* ice_sched_rm_rl_profile - remove RL profile ID
* @pi: port information structure
* @layer_num: layer number where profiles are saved
* @profile_type: profile type like EIR, CIR, or SRL
* @profile_id: profile ID to remove
*
* This function removes rate limit profile from layer 'layer_num' of type
* 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
* scheduler lock.
*/
static enum ice_status
ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
u16 profile_id)
{
struct ice_aqc_rl_profile_info *rl_prof_elem;
enum ice_status status = ICE_SUCCESS;
if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
return ICE_ERR_PARAM;
/* Check the existing list for RL profile */
LIST_FOR_EACH_ENTRY(rl_prof_elem, &pi->rl_prof_list[layer_num],
ice_aqc_rl_profile_info, list_entry)
if (rl_prof_elem->profile.flags == profile_type &&
LE16_TO_CPU(rl_prof_elem->profile.profile_id) ==
profile_id) {
if (rl_prof_elem->prof_id_ref)
rl_prof_elem->prof_id_ref--;
/* Remove old profile ID from database */
status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
if (status && status != ICE_ERR_IN_USE)
ice_debug(pi->hw, ICE_DBG_SCHED,
"Remove rl profile failed\n");
break;
}
if (status == ICE_ERR_IN_USE)
status = ICE_SUCCESS;
return status;
}
/**
* ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
* @pi: port information structure
* @node: pointer to node structure
* @rl_type: rate limit type min, max, or shared
* @layer_num: layer number where RL profiles are saved
*
* This function configures node element's BW rate limit profile ID of
* type CIR, EIR, or SRL to default. This function needs to be called
* with the scheduler lock held.
*/
static enum ice_status
ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
struct ice_sched_node *node,
enum ice_rl_type rl_type, u8 layer_num)
{
enum ice_status status;
struct ice_hw *hw;
u8 profile_type;
u16 rl_prof_id;
u16 old_id;
hw = pi->hw;
switch (rl_type) {
case ICE_MIN_BW:
profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
break;
case ICE_MAX_BW:
profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
break;
case ICE_SHARED_BW:
profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
/* No SRL is configured for default case */
rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
break;
default:
return ICE_ERR_PARAM;
}
/* Save existing RL prof ID for later clean up */
old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
/* Configure BW scheduling parameters */
status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
if (status)
return status;
/* Remove stale RL profile ID */
if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
old_id == ICE_SCHED_INVAL_PROF_ID)
return ICE_SUCCESS;
return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
}
/**
* ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
* @pi: port information structure
* @node: pointer to node structure
* @layer_num: layer number where rate limit profiles are saved
* @rl_type: rate limit type min, max, or shared
* @bw: bandwidth value
*
* This function prepares node element's bandwidth to SRL or EIR exclusively.
* EIR BW and Shared BW profiles are mutually exclusive and hence only one of
* them may be set for any given element. This function needs to be called
* with the scheduler lock held.
*/
static enum ice_status
ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
struct ice_sched_node *node,
u8 layer_num, enum ice_rl_type rl_type, u32 bw)
{
if (rl_type == ICE_SHARED_BW) {
/* SRL node passed in this case, it may be different node */
if (bw == ICE_SCHED_DFLT_BW)
/* SRL being removed, ice_sched_cfg_node_bw_lmt()
* enables EIR to default. EIR is not set in this
* case, so no additional action is required.
*/
return ICE_SUCCESS;
/* SRL being configured, set EIR to default here.
* ice_sched_cfg_node_bw_lmt() disables EIR when it
* configures SRL
*/
return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
layer_num);
} else if (rl_type == ICE_MAX_BW &&
node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
/* Remove Shared profile. Set default shared BW call
* removes shared profile for a node.
*/
return ice_sched_set_node_bw_dflt(pi, node,
ICE_SHARED_BW,
layer_num);
}
return ICE_SUCCESS;
}
/**
* ice_sched_set_node_bw - set node's bandwidth
* @pi: port information structure
* @node: tree node
* @rl_type: rate limit type min, max, or shared
* @bw: bandwidth in Kbps - Kilo bits per sec
* @layer_num: layer number
*
* This function adds new profile corresponding to requested BW, configures
* node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
* ID from local database. The caller needs to hold scheduler lock.
*/
static enum ice_status
ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
enum ice_rl_type rl_type, u32 bw, u8 layer_num)
{
struct ice_aqc_rl_profile_info *rl_prof_info;
enum ice_status status = ICE_ERR_PARAM;
struct ice_hw *hw = pi->hw;
u16 old_id, rl_prof_id;
rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
if (!rl_prof_info)
return status;
rl_prof_id = LE16_TO_CPU(rl_prof_info->profile.profile_id);
/* Save existing RL prof ID for later clean up */
old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
/* Configure BW scheduling parameters */
status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
if (status)
return status;
/* New changes has been applied */
/* Increment the profile ID reference count */
rl_prof_info->prof_id_ref++;
/* Check for old ID removal */
if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
return ICE_SUCCESS;
return ice_sched_rm_rl_profile(pi, layer_num,
rl_prof_info->profile.flags,
old_id);
}
/**
* ice_sched_set_node_bw_lmt - set node's BW limit
* @pi: port information structure
* @node: tree node
* @rl_type: rate limit type min, max, or shared
* @bw: bandwidth in Kbps - Kilo bits per sec
*
* It updates node's BW limit parameters like BW RL profile ID of type CIR,
* EIR, or SRL. The caller needs to hold scheduler lock.
*/
static enum ice_status
ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
enum ice_rl_type rl_type, u32 bw)
{
struct ice_sched_node *cfg_node = node;
enum ice_status status;
struct ice_hw *hw;
u8 layer_num;
if (!pi)
return ICE_ERR_PARAM;
hw = pi->hw;
/* Remove unused RL profile IDs from HW and SW DB */
ice_sched_rm_unused_rl_prof(pi);
layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
node->tx_sched_layer);
if (layer_num >= hw->num_tx_sched_layers)
return ICE_ERR_PARAM;
if (rl_type == ICE_SHARED_BW) {
/* SRL node may be different */
cfg_node = ice_sched_get_srl_node(node, layer_num);
if (!cfg_node)
return ICE_ERR_CFG;
}
/* EIR BW and Shared BW profiles are mutually exclusive and
* hence only one of them may be set for any given element
*/
status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
bw);
if (status)
return status;
if (bw == ICE_SCHED_DFLT_BW)
return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
layer_num);
return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
}
/**
* ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
* @pi: port information structure
* @node: pointer to node structure
* @rl_type: rate limit type min, max, or shared
*
* This function configures node element's BW rate limit profile ID of
* type CIR, EIR, or SRL to default. This function needs to be called
* with the scheduler lock held.
*/
static enum ice_status
ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
struct ice_sched_node *node,
enum ice_rl_type rl_type)
{
return ice_sched_set_node_bw_lmt(pi, node, rl_type,
ICE_SCHED_DFLT_BW);
}
/**
* ice_sched_validate_srl_node - Check node for SRL applicability
* @node: sched node to configure
* @sel_layer: selected SRL layer
*
* This function checks if the SRL can be applied to a selceted layer node on
* behalf of the requested node (first argument). This function needs to be
* called with scheduler lock held.
*/
static enum ice_status
ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
{
/* SRL profiles are not available on all layers. Check if the
* SRL profile can be applied to a node above or below the
* requested node. SRL configuration is possible only if the
* selected layer's node has single child.
*/
if (sel_layer == node->tx_sched_layer ||
((sel_layer == node->tx_sched_layer + 1) &&
node->num_children == 1) ||
((sel_layer == node->tx_sched_layer - 1) &&
(node->parent && node->parent->num_children == 1)))
return ICE_SUCCESS;
return ICE_ERR_CFG;
}
/**
* ice_sched_save_q_bw - save queue node's BW information
* @q_ctx: queue context structure
* @rl_type: rate limit type min, max, or shared
* @bw: bandwidth in Kbps - Kilo bits per sec
*
* Save BW information of queue type node for post replay use.
*/
static enum ice_status
ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
{
switch (rl_type) {
case ICE_MIN_BW:
ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
break;
case ICE_MAX_BW:
ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
break;
case ICE_SHARED_BW:
ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
break;
default:
return ICE_ERR_PARAM;
}
return ICE_SUCCESS;
}
/**
* ice_sched_set_q_bw_lmt - sets queue BW limit
* @pi: port information structure
* @vsi_handle: sw VSI handle
* @tc: traffic class
* @q_handle: software queue handle
* @rl_type: min, max, or shared
* @bw: bandwidth in Kbps
*
* This function sets BW limit of queue scheduling node.
*/
static enum ice_status
ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
u16 q_handle, enum ice_rl_type rl_type, u32 bw)
{
enum ice_status status = ICE_ERR_PARAM;
struct ice_sched_node *node;
struct ice_q_ctx *q_ctx;
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
return ICE_ERR_PARAM;
ice_acquire_lock(&pi->sched_lock);
q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
if (!q_ctx)
goto exit_q_bw_lmt;
node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
if (!node) {
ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
goto exit_q_bw_lmt;
}
/* Return error if it is not a leaf node */
if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
goto exit_q_bw_lmt;
/* SRL bandwidth layer selection */
if (rl_type == ICE_SHARED_BW) {
u8 sel_layer; /* selected layer */
sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
node->tx_sched_layer);
if (sel_layer >= pi->hw->num_tx_sched_layers) {
status = ICE_ERR_PARAM;
goto exit_q_bw_lmt;
}
status = ice_sched_validate_srl_node(node, sel_layer);
if (status)
goto exit_q_bw_lmt;
}
if (bw == ICE_SCHED_DFLT_BW)
status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
else
status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
if (!status)
status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
exit_q_bw_lmt:
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_cfg_q_bw_lmt - configure queue BW limit
* @pi: port information structure
* @vsi_handle: sw VSI handle
* @tc: traffic class
* @q_handle: software queue handle
* @rl_type: min, max, or shared
* @bw: bandwidth in Kbps
*
* This function configures BW limit of queue scheduling node.
*/
enum ice_status
ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
u16 q_handle, enum ice_rl_type rl_type, u32 bw)
{
return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
bw);
}
/**
* ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
* @pi: port information structure
* @vsi_handle: sw VSI handle
* @tc: traffic class
* @q_handle: software queue handle
* @rl_type: min, max, or shared
*
* This function configures BW default limit of queue scheduling node.
*/
enum ice_status
ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
u16 q_handle, enum ice_rl_type rl_type)
{
return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
ICE_SCHED_DFLT_BW);
}
/**
* ice_sched_save_tc_node_bw - save TC node BW limit
* @pi: port information structure
* @tc: TC number
* @rl_type: min or max
* @bw: bandwidth in Kbps
*
* This function saves the modified values of bandwidth settings for later
* replay purpose (restore) after reset.
*/
static enum ice_status
ice_sched_save_tc_node_bw(struct ice_port_info *pi, u8 tc,
enum ice_rl_type rl_type, u32 bw)
{
if (tc >= ICE_MAX_TRAFFIC_CLASS)
return ICE_ERR_PARAM;
switch (rl_type) {
case ICE_MIN_BW:
ice_set_clear_cir_bw(&pi->tc_node_bw_t_info[tc], bw);
break;
case ICE_MAX_BW:
ice_set_clear_eir_bw(&pi->tc_node_bw_t_info[tc], bw);
break;
case ICE_SHARED_BW:
ice_set_clear_shared_bw(&pi->tc_node_bw_t_info[tc], bw);
break;
default:
return ICE_ERR_PARAM;
}
return ICE_SUCCESS;
}
/**
* ice_sched_set_tc_node_bw_lmt - sets TC node BW limit
* @pi: port information structure
* @tc: TC number
* @rl_type: min or max
* @bw: bandwidth in Kbps
*
* This function configures bandwidth limit of TC node.
*/
static enum ice_status
ice_sched_set_tc_node_bw_lmt(struct ice_port_info *pi, u8 tc,
enum ice_rl_type rl_type, u32 bw)
{
enum ice_status status = ICE_ERR_PARAM;
struct ice_sched_node *tc_node;
if (tc >= ICE_MAX_TRAFFIC_CLASS)
return status;
ice_acquire_lock(&pi->sched_lock);
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
goto exit_set_tc_node_bw;
if (bw == ICE_SCHED_DFLT_BW)
status = ice_sched_set_node_bw_dflt_lmt(pi, tc_node, rl_type);
else
status = ice_sched_set_node_bw_lmt(pi, tc_node, rl_type, bw);
if (!status)
status = ice_sched_save_tc_node_bw(pi, tc, rl_type, bw);
exit_set_tc_node_bw:
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_cfg_tc_node_bw_lmt - configure TC node BW limit
* @pi: port information structure
* @tc: TC number
* @rl_type: min or max
* @bw: bandwidth in Kbps
*
* This function configures BW limit of TC node.
* Note: The minimum guaranteed reservation is done via DCBX.
*/
enum ice_status
ice_cfg_tc_node_bw_lmt(struct ice_port_info *pi, u8 tc,
enum ice_rl_type rl_type, u32 bw)
{
return ice_sched_set_tc_node_bw_lmt(pi, tc, rl_type, bw);
}
/**
* ice_cfg_tc_node_bw_dflt_lmt - configure TC node BW default limit
* @pi: port information structure
* @tc: TC number
* @rl_type: min or max
*
* This function configures BW default limit of TC node.
*/
enum ice_status
ice_cfg_tc_node_bw_dflt_lmt(struct ice_port_info *pi, u8 tc,
enum ice_rl_type rl_type)
{
return ice_sched_set_tc_node_bw_lmt(pi, tc, rl_type, ICE_SCHED_DFLT_BW);
}
/**
* ice_sched_save_tc_node_bw_alloc - save TC node's BW alloc information
* @pi: port information structure
* @tc: traffic class
* @rl_type: rate limit type min or max
* @bw_alloc: Bandwidth allocation information
*
* Save BW alloc information of VSI type node for post replay use.
*/
static enum ice_status
ice_sched_save_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
enum ice_rl_type rl_type, u16 bw_alloc)
{
if (tc >= ICE_MAX_TRAFFIC_CLASS)
return ICE_ERR_PARAM;
switch (rl_type) {
case ICE_MIN_BW:
ice_set_clear_cir_bw_alloc(&pi->tc_node_bw_t_info[tc],
bw_alloc);
break;
case ICE_MAX_BW:
ice_set_clear_eir_bw_alloc(&pi->tc_node_bw_t_info[tc],
bw_alloc);
break;
default:
return ICE_ERR_PARAM;
}
return ICE_SUCCESS;
}
/**
* ice_sched_set_tc_node_bw_alloc - set TC node BW alloc
* @pi: port information structure
* @tc: TC number
* @rl_type: min or max
* @bw_alloc: bandwidth alloc
*
* This function configures bandwidth alloc of TC node, also saves the
* changed settings for replay purpose, and return success if it succeeds
* in modifying bandwidth alloc setting.
*/
static enum ice_status
ice_sched_set_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
enum ice_rl_type rl_type, u8 bw_alloc)
{
enum ice_status status = ICE_ERR_PARAM;
struct ice_sched_node *tc_node;
if (tc >= ICE_MAX_TRAFFIC_CLASS)
return status;
ice_acquire_lock(&pi->sched_lock);
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
goto exit_set_tc_node_bw_alloc;
status = ice_sched_cfg_node_bw_alloc(pi->hw, tc_node, rl_type,
bw_alloc);
if (status)
goto exit_set_tc_node_bw_alloc;
status = ice_sched_save_tc_node_bw_alloc(pi, tc, rl_type, bw_alloc);
exit_set_tc_node_bw_alloc:
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_cfg_tc_node_bw_alloc - configure TC node BW alloc
* @pi: port information structure
* @tc: TC number
* @rl_type: min or max
* @bw_alloc: bandwidth alloc
*
* This function configures BW limit of TC node.
* Note: The minimum guaranteed reservation is done via DCBX.
*/
enum ice_status
ice_cfg_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
enum ice_rl_type rl_type, u8 bw_alloc)
{
return ice_sched_set_tc_node_bw_alloc(pi, tc, rl_type, bw_alloc);
}
/**
* ice_sched_set_agg_bw_dflt_lmt - set aggregator node's BW limit to default
* @pi: port information structure
* @vsi_handle: software VSI handle
*
* This function retrieves the aggregator ID based on VSI ID and TC,
* and sets node's BW limit to default. This function needs to be
* called with the scheduler lock held.
*/
enum ice_status
ice_sched_set_agg_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle)
{
struct ice_vsi_ctx *vsi_ctx;
enum ice_status status = ICE_SUCCESS;
u8 tc;
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
return ICE_ERR_PARAM;
vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
if (!vsi_ctx)
return ICE_ERR_PARAM;
ice_for_each_traffic_class(tc) {
struct ice_sched_node *node;
node = vsi_ctx->sched.ag_node[tc];
if (!node)
continue;
/* Set min profile to default */
status = ice_sched_set_node_bw_dflt_lmt(pi, node, ICE_MIN_BW);
if (status)
break;
/* Set max profile to default */
status = ice_sched_set_node_bw_dflt_lmt(pi, node, ICE_MAX_BW);
if (status)
break;
/* Remove shared profile, if there is one */
status = ice_sched_set_node_bw_dflt_lmt(pi, node,
ICE_SHARED_BW);
if (status)
break;
}
return status;
}
/**
* ice_sched_get_node_by_id_type - get node from ID type
* @pi: port information structure
* @id: identifier
* @agg_type: type of aggregator
* @tc: traffic class
*
* This function returns node identified by ID of type aggregator, and
* based on traffic class (TC). This function needs to be called with
* the scheduler lock held.
*/
static struct ice_sched_node *
ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
enum ice_agg_type agg_type, u8 tc)
{
struct ice_sched_node *node = NULL;
struct ice_sched_node *child_node;
switch (agg_type) {
case ICE_AGG_TYPE_VSI: {
struct ice_vsi_ctx *vsi_ctx;
u16 vsi_handle = (u16)id;
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
break;
/* Get sched_vsi_info */
vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
if (!vsi_ctx)
break;
node = vsi_ctx->sched.vsi_node[tc];
break;
}
case ICE_AGG_TYPE_AGG: {
struct ice_sched_node *tc_node;
tc_node = ice_sched_get_tc_node(pi, tc);
if (tc_node)
node = ice_sched_get_agg_node(pi, tc_node, id);
break;
}
case ICE_AGG_TYPE_Q:
/* The current implementation allows single queue to modify */
node = ice_sched_get_node(pi, id);
break;
case ICE_AGG_TYPE_QG:
/* The current implementation allows single qg to modify */
child_node = ice_sched_get_node(pi, id);
if (!child_node)
break;
node = child_node->parent;
break;
default:
break;
}
return node;
}
/**
* ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
* @pi: port information structure
* @id: ID (software VSI handle or AGG ID)
* @agg_type: aggregator type (VSI or AGG type node)
* @tc: traffic class
* @rl_type: min or max
* @bw: bandwidth in Kbps
*
* This function sets BW limit of VSI or Aggregator scheduling node
* based on TC information from passed in argument BW.
*/
enum ice_status
ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
enum ice_agg_type agg_type, u8 tc,
enum ice_rl_type rl_type, u32 bw)
{
enum ice_status status = ICE_ERR_PARAM;
struct ice_sched_node *node;
if (!pi)
return status;
if (rl_type == ICE_UNKNOWN_BW)
return status;
ice_acquire_lock(&pi->sched_lock);
node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
if (!node) {
ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
goto exit_set_node_bw_lmt_per_tc;
}
if (bw == ICE_SCHED_DFLT_BW)
status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
else
status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
exit_set_node_bw_lmt_per_tc:
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_sched_validate_vsi_srl_node - validate VSI SRL node
* @pi: port information structure
* @vsi_handle: software VSI handle
*
* This function validates SRL node of the VSI node if available SRL layer is
* different than the VSI node layer on all TC(s).This function needs to be
* called with scheduler lock held.
*/
static enum ice_status
ice_sched_validate_vsi_srl_node(struct ice_port_info *pi, u16 vsi_handle)
{
u8 sel_layer = ICE_SCHED_INVAL_LAYER_NUM;
u8 tc;
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
return ICE_ERR_PARAM;
/* Return success if no nodes are present across TC */
ice_for_each_traffic_class(tc) {
struct ice_sched_node *tc_node, *vsi_node;
enum ice_rl_type rl_type = ICE_SHARED_BW;
enum ice_status status;
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
continue;
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
if (!vsi_node)
continue;
/* SRL bandwidth layer selection */
if (sel_layer == ICE_SCHED_INVAL_LAYER_NUM) {
u8 node_layer = vsi_node->tx_sched_layer;
u8 layer_num;
layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
node_layer);
if (layer_num >= pi->hw->num_tx_sched_layers)
return ICE_ERR_PARAM;
sel_layer = layer_num;
}
status = ice_sched_validate_srl_node(vsi_node, sel_layer);
if (status)
return status;
}
return ICE_SUCCESS;
}
/**
* ice_sched_set_vsi_bw_shared_lmt - set VSI BW shared limit
* @pi: port information structure
* @vsi_handle: software VSI handle
* @bw: bandwidth in Kbps
*
* This function Configures shared rate limiter(SRL) of all VSI type nodes
* across all traffic classes for VSI matching handle. When BW value of
* ICE_SCHED_DFLT_BW is passed, it removes the SRL from the node.
*/
enum ice_status
ice_sched_set_vsi_bw_shared_lmt(struct ice_port_info *pi, u16 vsi_handle,
u32 bw)
{
enum ice_status status = ICE_SUCCESS;
u8 tc;
if (!pi)
return ICE_ERR_PARAM;
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
return ICE_ERR_PARAM;
ice_acquire_lock(&pi->sched_lock);
status = ice_sched_validate_vsi_srl_node(pi, vsi_handle);
if (status)
goto exit_set_vsi_bw_shared_lmt;
/* Return success if no nodes are present across TC */
ice_for_each_traffic_class(tc) {
struct ice_sched_node *tc_node, *vsi_node;
enum ice_rl_type rl_type = ICE_SHARED_BW;
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
continue;
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
if (!vsi_node)
continue;
if (bw == ICE_SCHED_DFLT_BW)
/* It removes existing SRL from the node */
status = ice_sched_set_node_bw_dflt_lmt(pi, vsi_node,
rl_type);
else
status = ice_sched_set_node_bw_lmt(pi, vsi_node,
rl_type, bw);
if (status)
break;
status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
if (status)
break;
}
exit_set_vsi_bw_shared_lmt:
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_sched_validate_agg_srl_node - validate AGG SRL node
* @pi: port information structure
* @agg_id: aggregator ID
*
* This function validates SRL node of the AGG node if available SRL layer is
* different than the AGG node layer on all TC(s).This function needs to be
* called with scheduler lock held.
*/
static enum ice_status
ice_sched_validate_agg_srl_node(struct ice_port_info *pi, u32 agg_id)
{
u8 sel_layer = ICE_SCHED_INVAL_LAYER_NUM;
struct ice_sched_agg_info *agg_info;
bool agg_id_present = false;
enum ice_status status = ICE_SUCCESS;
u8 tc;
LIST_FOR_EACH_ENTRY(agg_info, &pi->hw->agg_list, ice_sched_agg_info,
list_entry)
if (agg_info->agg_id == agg_id) {
agg_id_present = true;
break;
}
if (!agg_id_present)
return ICE_ERR_PARAM;
/* Return success if no nodes are present across TC */
ice_for_each_traffic_class(tc) {
struct ice_sched_node *tc_node, *agg_node;
enum ice_rl_type rl_type = ICE_SHARED_BW;
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
continue;
agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
if (!agg_node)
continue;
/* SRL bandwidth layer selection */
if (sel_layer == ICE_SCHED_INVAL_LAYER_NUM) {
u8 node_layer = agg_node->tx_sched_layer;
u8 layer_num;
layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
node_layer);
if (layer_num >= pi->hw->num_tx_sched_layers)
return ICE_ERR_PARAM;
sel_layer = layer_num;
}
status = ice_sched_validate_srl_node(agg_node, sel_layer);
if (status)
break;
}
return status;
}
/**
* ice_sched_set_agg_bw_shared_lmt - set aggregator BW shared limit
* @pi: port information structure
* @agg_id: aggregator ID
* @bw: bandwidth in Kbps
*
* This function configures the shared rate limiter(SRL) of all aggregator type
* nodes across all traffic classes for aggregator matching agg_id. When
* BW value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the
* node(s).
*/
enum ice_status
ice_sched_set_agg_bw_shared_lmt(struct ice_port_info *pi, u32 agg_id, u32 bw)
{
struct ice_sched_agg_info *agg_info;
struct ice_sched_agg_info *tmp;
bool agg_id_present = false;
enum ice_status status = ICE_SUCCESS;
u8 tc;
if (!pi)
return ICE_ERR_PARAM;
ice_acquire_lock(&pi->sched_lock);
status = ice_sched_validate_agg_srl_node(pi, agg_id);
if (status)
goto exit_agg_bw_shared_lmt;
LIST_FOR_EACH_ENTRY_SAFE(agg_info, tmp, &pi->hw->agg_list,
ice_sched_agg_info, list_entry)
if (agg_info->agg_id == agg_id) {
agg_id_present = true;
break;
}
if (!agg_id_present) {
status = ICE_ERR_PARAM;
goto exit_agg_bw_shared_lmt;
}
/* Return success if no nodes are present across TC */
ice_for_each_traffic_class(tc) {
enum ice_rl_type rl_type = ICE_SHARED_BW;
struct ice_sched_node *tc_node, *agg_node;
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
continue;
agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
if (!agg_node)
continue;
if (bw == ICE_SCHED_DFLT_BW)
/* It removes existing SRL from the node */
status = ice_sched_set_node_bw_dflt_lmt(pi, agg_node,
rl_type);
else
status = ice_sched_set_node_bw_lmt(pi, agg_node,
rl_type, bw);
if (status)
break;
status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type, bw);
if (status)
break;
}
exit_agg_bw_shared_lmt:
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_sched_cfg_sibl_node_prio - configure node sibling priority
* @pi: port information structure
* @node: sched node to configure
* @priority: sibling priority
*
* This function configures node element's sibling priority only. This
* function needs to be called with scheduler lock held.
*/
enum ice_status
ice_sched_cfg_sibl_node_prio(struct ice_port_info *pi,
struct ice_sched_node *node, u8 priority)
{
struct ice_aqc_txsched_elem_data buf;
struct ice_aqc_txsched_elem *data;
struct ice_hw *hw = pi->hw;
enum ice_status status;
if (!hw)
return ICE_ERR_PARAM;
buf = node->info;
data = &buf.data;
data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
priority = (priority << ICE_AQC_ELEM_GENERIC_PRIO_S) &
ICE_AQC_ELEM_GENERIC_PRIO_M;
data->generic &= ~ICE_AQC_ELEM_GENERIC_PRIO_M;
data->generic |= priority;
/* Configure element */
status = ice_sched_update_elem(hw, node, &buf);
return status;
}
/**
* ice_cfg_rl_burst_size - Set burst size value
* @hw: pointer to the HW struct
* @bytes: burst size in bytes
*
* This function configures/set the burst size to requested new value. The new
* burst size value is used for future rate limit calls. It doesn't change the
* existing or previously created RL profiles.
*/
enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
{
u16 burst_size_to_prog;
if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
bytes > ICE_MAX_BURST_SIZE_ALLOWED)
return ICE_ERR_PARAM;
if (ice_round_to_num(bytes, 64) <=
ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
/* 64 byte granularity case */
/* Disable MSB granularity bit */
burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
/* round number to nearest 64 byte granularity */
bytes = ice_round_to_num(bytes, 64);
/* The value is in 64 byte chunks */
burst_size_to_prog |= (u16)(bytes / 64);
} else {
/* k bytes granularity case */
/* Enable MSB granularity bit */
burst_size_to_prog = ICE_KBYTE_GRANULARITY;
/* round number to nearest 1024 granularity */
bytes = ice_round_to_num(bytes, 1024);
/* check rounding doesn't go beyond allowed */
if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
/* The value is in k bytes */
burst_size_to_prog |= (u16)(bytes / 1024);
}
hw->max_burst_size = burst_size_to_prog;
return ICE_SUCCESS;
}
/*
* ice_sched_replay_node_prio - re-configure node priority
* @hw: pointer to the HW struct
* @node: sched node to configure
* @priority: priority value
*
* This function configures node element's priority value. It
* needs to be called with scheduler lock held.
*/
static enum ice_status
ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
u8 priority)
{
struct ice_aqc_txsched_elem_data buf;
struct ice_aqc_txsched_elem *data;
enum ice_status status;
buf = node->info;
data = &buf.data;
data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
data->generic = priority;
/* Configure element */
status = ice_sched_update_elem(hw, node, &buf);
return status;
}
/**
* ice_sched_replay_node_bw - replay node(s) BW
* @hw: pointer to the HW struct
* @node: sched node to configure
* @bw_t_info: BW type information
*
* This function restores node's BW from bw_t_info. The caller needs
* to hold the scheduler lock.
*/
static enum ice_status
ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
struct ice_bw_type_info *bw_t_info)
{
struct ice_port_info *pi = hw->port_info;
enum ice_status status = ICE_ERR_PARAM;
u16 bw_alloc;
if (!node)
return status;
if (!ice_is_any_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
return ICE_SUCCESS;
if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_PRIO)) {
status = ice_sched_replay_node_prio(hw, node,
bw_t_info->generic);
if (status)
return status;
}
if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR)) {
status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
bw_t_info->cir_bw.bw);
if (status)
return status;
}
if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR_WT)) {
bw_alloc = bw_t_info->cir_bw.bw_alloc;
status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
bw_alloc);
if (status)
return status;
}
if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR)) {
status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
bw_t_info->eir_bw.bw);
if (status)
return status;
}
if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR_WT)) {
bw_alloc = bw_t_info->eir_bw.bw_alloc;
status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
bw_alloc);
if (status)
return status;
}
if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_SHARED))
status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
bw_t_info->shared_bw);
return status;
}
/**
* ice_sched_replay_agg_bw - replay aggregator node(s) BW
* @hw: pointer to the HW struct
* @agg_info: aggregator data structure
*
* This function re-creates aggregator type nodes. The caller needs to hold
* the scheduler lock.
*/
static enum ice_status
ice_sched_replay_agg_bw(struct ice_hw *hw, struct ice_sched_agg_info *agg_info)
{
struct ice_sched_node *tc_node, *agg_node;
enum ice_status status = ICE_SUCCESS;
u8 tc;
if (!agg_info)
return ICE_ERR_PARAM;
ice_for_each_traffic_class(tc) {
if (!ice_is_any_bit_set(agg_info->bw_t_info[tc].bw_t_bitmap,
ICE_BW_TYPE_CNT))
continue;
tc_node = ice_sched_get_tc_node(hw->port_info, tc);
if (!tc_node) {
status = ICE_ERR_PARAM;
break;
}
agg_node = ice_sched_get_agg_node(hw->port_info, tc_node,
agg_info->agg_id);
if (!agg_node) {
status = ICE_ERR_PARAM;
break;
}
status = ice_sched_replay_node_bw(hw, agg_node,
&agg_info->bw_t_info[tc]);
if (status)
break;
}
return status;
}
/**
* ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
* @pi: port info struct
* @tc_bitmap: 8 bits TC bitmap to check
* @ena_tc_bitmap: 8 bits enabled TC bitmap to return
*
* This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
* may be missing, it returns enabled TCs. This function needs to be called with
* scheduler lock held.
*/
static void
ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, ice_bitmap_t *tc_bitmap,
ice_bitmap_t *ena_tc_bitmap)
{
u8 tc;
/* Some TC(s) may be missing after reset, adjust for replay */
ice_for_each_traffic_class(tc)
if (ice_is_tc_ena(*tc_bitmap, tc) &&
(ice_sched_get_tc_node(pi, tc)))
ice_set_bit(tc, ena_tc_bitmap);
}
/**
* ice_sched_replay_agg - recreate aggregator node(s)
* @hw: pointer to the HW struct
*
* This function recreate aggregator type nodes which are not replayed earlier.
* It also replay aggregator BW information. These aggregator nodes are not
* associated with VSI type node yet.
*/
void ice_sched_replay_agg(struct ice_hw *hw)
{
struct ice_port_info *pi = hw->port_info;
struct ice_sched_agg_info *agg_info;
ice_acquire_lock(&pi->sched_lock);
LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
list_entry) {
/* replay aggregator (re-create aggregator node) */
if (!ice_cmp_bitmap(agg_info->tc_bitmap,
agg_info->replay_tc_bitmap,
ICE_MAX_TRAFFIC_CLASS)) {
ice_declare_bitmap(replay_bitmap,
ICE_MAX_TRAFFIC_CLASS);
enum ice_status status;
ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
ice_sched_get_ena_tc_bitmap(pi,
agg_info->replay_tc_bitmap,
replay_bitmap);
status = ice_sched_cfg_agg(hw->port_info,
agg_info->agg_id,
ICE_AGG_TYPE_AGG,
replay_bitmap);
if (status) {
ice_info(hw, "Replay agg id[%d] failed\n",
agg_info->agg_id);
/* Move on to next one */
continue;
}
/* Replay aggregator node BW (restore aggregator BW) */
status = ice_sched_replay_agg_bw(hw, agg_info);
if (status)
ice_info(hw, "Replay agg bw [id=%d] failed\n",
agg_info->agg_id);
}
}
ice_release_lock(&pi->sched_lock);
}
/**
* ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
* @hw: pointer to the HW struct
*
* This function initialize aggregator(s) TC bitmap to zero. A required
* preinit step for replaying aggregators.
*/
void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
{
struct ice_port_info *pi = hw->port_info;
struct ice_sched_agg_info *agg_info;
ice_acquire_lock(&pi->sched_lock);
LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
list_entry) {
struct ice_sched_agg_vsi_info *agg_vsi_info;
agg_info->tc_bitmap[0] = 0;
LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
ice_sched_agg_vsi_info, list_entry)
agg_vsi_info->tc_bitmap[0] = 0;
}
ice_release_lock(&pi->sched_lock);
}
/**
* ice_sched_replay_tc_node_bw - replay TC node(s) BW
* @pi: port information structure
*
* This function replay TC nodes.
*/
enum ice_status
ice_sched_replay_tc_node_bw(struct ice_port_info *pi)
{
enum ice_status status = ICE_SUCCESS;
u8 tc;
if (!pi->hw)
return ICE_ERR_PARAM;
ice_acquire_lock(&pi->sched_lock);
ice_for_each_traffic_class(tc) {
struct ice_sched_node *tc_node;
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
continue; /* TC not present */
status = ice_sched_replay_node_bw(pi->hw, tc_node,
&pi->tc_node_bw_t_info[tc]);
if (status)
break;
}
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_sched_replay_vsi_bw - replay VSI type node(s) BW
* @hw: pointer to the HW struct
* @vsi_handle: software VSI handle
* @tc_bitmap: 8 bits TC bitmap
*
* This function replays VSI type nodes bandwidth. This function needs to be
* called with scheduler lock held.
*/
static enum ice_status
ice_sched_replay_vsi_bw(struct ice_hw *hw, u16 vsi_handle,
ice_bitmap_t *tc_bitmap)
{
struct ice_sched_node *vsi_node, *tc_node;
struct ice_port_info *pi = hw->port_info;
struct ice_bw_type_info *bw_t_info;
struct ice_vsi_ctx *vsi_ctx;
enum ice_status status = ICE_SUCCESS;
u8 tc;
vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
if (!vsi_ctx)
return ICE_ERR_PARAM;
ice_for_each_traffic_class(tc) {
if (!ice_is_tc_ena(*tc_bitmap, tc))
continue;
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
continue;
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
if (!vsi_node)
continue;
bw_t_info = &vsi_ctx->sched.bw_t_info[tc];
status = ice_sched_replay_node_bw(hw, vsi_node, bw_t_info);
if (status)
break;
}
return status;
}
/**
* ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
* @hw: pointer to the HW struct
* @vsi_handle: software VSI handle
*
* This function replays aggregator node, VSI to aggregator type nodes, and
* their node bandwidth information. This function needs to be called with
* scheduler lock held.
*/
static enum ice_status
ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
{
ice_declare_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
struct ice_sched_agg_vsi_info *agg_vsi_info;
struct ice_port_info *pi = hw->port_info;
struct ice_sched_agg_info *agg_info;
enum ice_status status;
ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
if (!agg_info)
return ICE_SUCCESS; /* Not present in list - default Agg case */
agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
if (!agg_vsi_info)
return ICE_SUCCESS; /* Not present in list - default Agg case */
ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
replay_bitmap);
/* Replay aggregator node associated to vsi_handle */
status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
ICE_AGG_TYPE_AGG, replay_bitmap);
if (status)
return status;
/* Replay aggregator node BW (restore aggregator BW) */
status = ice_sched_replay_agg_bw(hw, agg_info);
if (status)
return status;
ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
replay_bitmap);
/* Move this VSI (vsi_handle) to above aggregator */
status = ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
replay_bitmap);
if (status)
return status;
/* Replay VSI BW (restore VSI BW) */
return ice_sched_replay_vsi_bw(hw, vsi_handle,
agg_vsi_info->tc_bitmap);
}
/**
* ice_replay_vsi_agg - replay VSI to aggregator node
* @hw: pointer to the HW struct
* @vsi_handle: software VSI handle
*
* This function replays association of VSI to aggregator type nodes, and
* node bandwidth information.
*/
enum ice_status
ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
{
struct ice_port_info *pi = hw->port_info;
enum ice_status status;
ice_acquire_lock(&pi->sched_lock);
status = ice_sched_replay_vsi_agg(hw, vsi_handle);
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_sched_replay_q_bw - replay queue type node BW
* @pi: port information structure
* @q_ctx: queue context structure
*
* This function replays queue type node bandwidth. This function needs to be
* called with scheduler lock held.
*/
enum ice_status
ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
{
struct ice_sched_node *q_node;
/* Following also checks the presence of node in tree */
q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
if (!q_node)
return ICE_ERR_PARAM;
return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
}